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Non-Abelian statistics with mixed-boundary punctures on the toric code
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The toric code is a simple and exactly solvable example of topological order realizing Abelian anyons.
However, it was shown to support nonlocal lattice defects, namely twists, which exhibit non-Abelian anyonic
behavior [Phys. Rev. Lett. 105, 030403 (2010)]. Motivated by this result, we investigated the potential of
having non-Abelian statistics from puncture defects on the toric code. We demonstrate that an encoding with
mixed-boundary punctures reproduces Ising fusion, and a logical Pauli-X upon their braiding. Our construction
paves the way for local lattice defects to exhibit non-Abelian properties that can be employed for quantum
information tasks.
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I. INTRODUCTION

Anyons are excitations in two-dimensional systems that are
neither bosons nor fermions [1]. Abelian anyons collect an
arbitrary complex phase factor upon exchange. The exchange
of two non-Abelian anyons is described by a matrix repre-
sentation of the braid group [2] acting on the Hilbert space
describing the composite anyonic system. The latter type is
of particular interest since its anyons can be used to pro-
cess information by braiding them in a topological quantum
computing scheme [3,4]. Anyons emerge in phases of matter
that have topological order such as fractional quantum Hall
(FQH) states, the Kitaev honeycomb lattice model (KHLM),
quantum double models [3,5], etc. The Ising model famously
characterizes the behavior of quasiparticles arising from phys-
ical systems supporting Majorana zero modes (MZM) [6,7].

Lattice models consisting of a qubit ensemble arranged on
a two-dimensional surface are a practical tool to study such
topological systems. These models, such as stabilizer codes
[8,9], allow for computational schemes that encode quantum
information in nonlocal degrees of freedom. The canonical
example is the toric code, introduced by Kitaev in Ref. [5].
It encodes logical qubits in the degenerate ground states of a
square spin lattice defined on a torus [10]. The toric code was
shown to emerge in the Abelian phase of the KHLM [10,11].

The toric code admits local, pointlike defects and nonlocal,
linelike defects. Punctures are local defects corresponding
to holes on the lattice. They were introduced as candidates
for quantum memory and computation through their braiding
[12–14], while twists are the endpoints of nonlocal domain
walls that enforce a symmetry on the toric code anyons. The
latter defects have been described with topological quantum
field theories (TQFTs) [15,16]. They are also computationally
interesting since they were shown to behave like Majorana
zero modes under fusion and exchange [17–19]. A novel
hybrid of these two defect types was even introduced in
Ref. [20], also capable of encoding logical qubits.

In this article, we investigate the topological properties
of yet another defect on the toric code, namely punctures

with mixed boundaries. Following the adiabatic equivalence
between vortices and twists demonstrated in the non-Abelian
phase of Kitaev’s honeycomb lattice model [21], we studied
all possible deformations of twists that could be adiabatically
deformed to punctures. None of them worked in providing
pointlike defects that could support the desired statistics.
Thus, we resorted to the mixed-boundary punctures as the
optimal tool for an encoding of Majoranas that takes advan-
tage of the Abelian statistics and nonlocal encoding of gates.
Moreover, our choice is congruent with the insight in Ref. [22]
that the quantum dimensions of the Ising model and of the
toric code are equal. This gives the basis for employing toric
code anyonic statistics in order to realize more complex Ising
anyon properties. In particular, we demonstrate non-Abelian
fusion and braiding properties reminiscent of Majorana ex-
change. To achieve it, we employ local lattice defects of the
toric code with mixed boundary conditions in conjunction
with a nonlocal logical encoding between them. Our approach
enriches the type of defects that can reproduce the behavior
of Majorana anyons, thus helping to close the gap between
their exotic statistics and their physical realization or possible
simulation with a quantum computer.

This work is organised as follows: In Sec. II, we review
the planar code defects and briefly outline non-Abelian Ising
statistics and their relation to twist defects. In Sec. III, we
introduce defects which generalize punctures to ones with
mixed-boundary conditions in order to encode non-Abelian
fusion rules. We demonstrate their Ising-like fusion and braid-
ing statistics after defining a logical encoding based on a
superposition of their population states. We conclude and
discuss our results in Sec. IV.

II. BACKGROUND

A. Anyon models

Anyon models are algebraic structures that characterize
topological order in many-body systems. They comprise exci-
tations a, b, . . . ,∈ C, where C is a finite set of quasiparticles,
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distinguished by their charges. Two anyons a and b fuse
following a × b = ∑

c Nc
abc, where Nc

ab is the multiplicity of
outcome c ∈ C. Moreover, the braiding rules of an anyon
model are specified by the phases or operators obtained under
their exchange. The toric code is a quantum double of Z2 with
Abelian anyons that comprises a vacuum charge 1, excitations
e, m, and their composition ε. All of the above fuse to vacuum
when composed with an anyon of the same type, and also obey
e × m = ε. The self and mutual statistics of toric code anyons
are described by the R matrices, i.e., the evolution operators
describing the exchange of anyons:

Ree = Rmm = 1,

Rεε = −1,

RemRme = ReεRεe = −1. (1)

The braiding relations in Eq. (1) tell us that e and m are
both bosons, while ε is a fermion. Additionally, e and m are
mutual semions, meaning that braiding an e around an m
returns a phase of −1, and similarly for e and ε (and m and
ε). In a surface code defined on a lattice of qubits, e and m
anyons emerge at the ends of strings of respectively Z and X
operations. In the following, we will refer to defects on the
toric code which have similar characteristics and behavior as
Ising anyons. Ising anyons belong to the non-Abelian Ising
model which is characterized by anyonic charges 1, σ , and ψ

such that

ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ, (2)

where ψ is a fermion and two Ising anyons σ can fuse to the
vacuum charge 1 or one ψ . Hence, there is a two-dimensional
Hilbert space associated with a pair of σ anyons, with basis
states characterized by their fusion channels, i.e.,

|σσ −→ 1〉 and |σσ −→ ψ〉 , (3)

where 1 is the vacuum sector indicating that each pair of σ

anyons has annihilated to vacuum, and ψ is another superse-
lection sector indicating fusion to two ψ fermions. However,
while the σ anyons remain separated, their system is described
by the quantum states in Eq. (3) [10]. In order to access
superpositions of these two states, a qubit can be encoded in
the global state of a composite system of four σ anyons, under
the constraint that the total fermion parity is conserved. The
basis in this space can be spanned by

|(σσ )(σσ ) −→ 1; 1〉 and |(σσ )(σσ ) −→ ψ ; ψ〉 . (4)

Let us assume we have four Ising anyons enumerated 1, 2, 3,
and 4. Modifying the fusion order from (12)(34) to (13)(24)
corresponds to a basis change in this Hilbert space given by a
fusion matrix

FIsing = 1√
2

(
1 1
1 −1

)
, (5)

while all other F matrices in the model are phases only [3].
Moreover, the nontrivial braiding relations are given by

Rψψ = −1, Rψσ Rσψ = −1,

Rσσ = e−i π
8

(
1 0
0 i

)
. (6)

FIG. 1. Different types of puncture defects on the toric code.
The puncture and code boundary in (a) are rough while the punc-
ture and code boundary in (c) are smooth. The measured stabilisers
creating the punctures, and non-contractible loops stabilising them,
are also shown for each puncture type in (a) and (c). Panels (b) and
(d) show their respective diagrammatic representations as introduced
in Ref. [25].

The braiding evolution for Ising anyons is described using the
above F and R matrices such that

B = FR2F−1 = e−i π
4

(
0 1
1 0

)
, (7)

which is a nontrivial unitary logical operation, specifically the
Pauli-X gate (up to a global phase factor). This feature gives
rise to the Clifford group by braiding anyons from two σ pairs
encoding a qubit. This model is reproduced by Ising anyons
in fractional quantum Hall states, as well as Majorana zero
modes in topological superconductors [23,24].

B. Toric code defects

The toric code can be represented on a lattice with qubits
at the vertices, and its code space encoded in the ground state
of the Hamiltonian

H =
∑

p

Ap +
∑

p

Bp, (8)

where the plaquette operators are defined as Ap = ∏
j∈∂ p Xj

and Bp = ∏
j∈∂ p Z j with the products taken over the qubits

around each white and dark plaquette, specifying the stabilizer
group of the code [5,12,17]. This code representation under-
lies Figs. 1(a) and 1(c) where the bicoloring represents the
plaquette type, namely light for X -type stabilizer operators
and dark for the Z type. A useful way to encode informa-
tion on the toric code with open boundary conditions, i.e.,
the planar code, is to introduce defects on its surface. One
such defect is the puncture, which consists of a hole on the

042417-2



NON-ABELIAN STATISTICS WITH MIXED-BOUNDARY … PHYSICAL REVIEW A 105, 042417 (2022)

FIG. 2. Twists on the toric code. Panel (a) shows a qubit en-
coded using two pairs of twists, with logical operators X̄ and Z̄ .
Panel (b) shows twist defect lines moved to the corners of the code
boundary [25].

lattice created by measuring stabilizers so as to disentangle
the measured spin systems from the code [9,13]. The type of
boundary of a puncture depends on which type of stabilizer
was measured in its creation, namely rough (smooth) bound-
ary for Pauli Z (X ) type as shown in Fig. 1. When the code
and puncture boundaries are of the same type, a logical qubit
is encoded by defining a logical operator X̄ as a sequence
of Pauli-X operations supported on qubits along a loop en-
closing the puncture, and Z̄ as a string of Pauli-Z applied
on qubits between code and puncture boundaries, satisfying
the necessary anticommutation as described in Figs. 1(a) and
1(b), and equivalently for a smooth puncture in Figs. 1(c) and
1(d). From the topological anyon picture, the two-level system
is designed by encoding the parity of the puncture’s anyon
population, where each anyon has been passed from the code
boundary to the puncture. These are e anyons if the boundaries
are rough and m if smooth.

Another type of extrinsic defect on the planar code are
twists which are created by introducing a translation [17] or
a series of measurements on the lattice [25] modifying its
stabilizers as shown in Fig. 3, where twists are represented
by weight-five stabilizer operators of the form XZY XZ at
the ends of a dislocation on the lattice. A single braiding
of an anyon around a twist on the toric code applies a map
respecting the symmetry e ↔ m, leaving ψ invariant, where
a symmetry on the code permutes anyon labels while leaving
braiding and fusion rules unchanged. This can be seen by the
fact that a domain wall between twists exchanges a string of

FIG. 3. Lattice representation of a pair of twists connected by a
defect line, created by a dislocation in the lattice as introduced in
Ref. [17]. The green endpoints represent the twist stabilizers, which
take the form XZY XZ . We show that an e anyon created on one side
emerges as an m from the defect line.

FIG. 4. A mixed-boundary puncture on the toric code lattice
(a) and in diagrammatic representation (b) where the bulk details are
omitted. Both blue (X -type) and red (Z-type) strings can terminate
at its boundaries. The red and blue loops stabilize this defect. The
boundary stabilizers in the puncture have weight two, of Z and X
types (smooth). The crosses in panel (b) indicate the meeting point
of rough and smooth boundaries, i.e., twists. Note that we need a
hybrid code boundary for the attached strings.

e defects on the toric code to a string of m defects as shown
in Fig. 3. As with MZMs, twists were shown to behave like
Ising anyons. Two pairs of twists can encode a logical qubit
as shown in Fig. 2, and logical Pauli operations are achieved
by braiding twists. In Ref. [25], Brown et al. showed that the
planar code with mixed boundaries supports corner defects
which can be deformed into twists on the lattice. Hence, there
is an equivalence between the right and left panels in Fig. 2.
Our graphical notation is consistent with the language intro-
duced in Ref. [25]. The blue background represents the planar
code bulk; a dashed line is a smooth boundary condensing
m anyons, while a continuous one is rough and condenses e
anyons. Condensation refers to the annihilation of an anyon to
the vacuum state by local operators at an appropriate bound-
ary, thereby changing its state. Specifically here, e anyons and
m anyons are respectively mapped to boundary excitations fol-
lowing {1, e} −→ 1 and {1, m} −→ 1 [26,27]. Such anyons are
transported inside punctures on the toric code using Pauli X
and Z rotations until they reach appropriate puncture bound-
aries, at which they lose their energy, i.e., their Hamiltonian
terms vanish, leaving the ground-state energy intact.

III. FUSION AND EXCHANGE OF MIXED-BOUNDARY
PUNCTURES

A. The system

In Fig. 2(b), corners of the planar code correspond to
points at which smooth and rough boundaries are juxtaposed.
Given their relationship with twists, we ask whether punctures
with mixed boundaries can exhibit Ising-like behavior. Indeed
by this definition, one can see that a puncture with mixed
boundaries, shown in Fig. 4, carries two twists, located at the
meeting point of the different boundaries. A mixed-boundary
puncture is created by measuring both X - and Z-type stabiliz-
ers as depicted in Fig. 4(a), where the disentangled qubits have
been measured by X (left) and Z (right) stabilizers [13,28].
The boundary operators for mixed-boundary punctures are
defined similarly to those of the code, that is supporting
weight-two Z and X stabilizer operators respectively to indi-
cate the rough or smooth boundaries. A twist can be moved to
the bulk of the code by applying a Pauli Y on the qubit lying
at the intersection of the two boundary types [25]. The strings
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FIG. 5. A state of a pair of mixed-boundary punctures. This state
is defined in Eq. (9) and describes a superposition of red and blue
string configurations, respectively describing p1 and p2, each one
absorbing an e or an m anyon.

allowed at its boundaries, and the loop operators that stabilize
it in Figs. 4(a) and 4(b), indicate that a mixed-boundary punc-
ture condenses both e and m anyons. Since one can encode a
qubit using four MZMs or twists on the toric code and achieve
Clifford gates on its state through pair-wise braidings, our
system will be composed of four copies of mixed-boundary
punctures. However, despite the ability of these punctures to
hold both toric code anyons, their braiding remains Abelian.
Hence, we introduce nonlocality in the encoding of Abelian
anyons in order to generate the non-Abelian character. This is
done by taking superpositions of anyons populating the punc-
tures, which translates into superpositions of strings between
each pair of punctures.

B. Logical encoding

We consider a pair of punctures with mixed boundaries
created from vacuum, denoted by p1 and p2, and allow strings
between their matching boundaries. We denote the state of a
pair of punctures by its anyon population such that the state
of a pair enclosing an e anyon in each puncture is |ee〉; this
corresponds to a red string with endpoints at each puncture,
and likewise blue for |mm〉. Since the anyons are inside the
punctures, we remain in the ground state of the code as op-
posed to an open string which has excitations at its endpoints.
We now let the pair (p1, p2) be in the superposition of states
given by

|p1, p2; ±〉 = |e1e2〉 ± |m1m2〉√
2

, (9)

where this notation translates to the two-puncture system be-
ing in a superposition of red and blue string configurations, as
shown in Fig. 5, and the states given by Eq. (9) are degenerate.
In fact, this choice of superposition is motivated by the fusion
rules of Ising anyons in Eq. (2).

We will consider two such pairs of punctures (p1, p2) and
(p3, p4) and using Eq. (9) write their general joint state as

|(p1, p2; ±)(p3, p4; ±)〉
= 1

2 (|e1e2〉 |e3e4〉 ± |e1e2〉 |m3m4〉
± |m1m2〉 |e3e4〉 + |m1m2〉 |m3m4〉). (10)

Note that these configurations are constructed from local
lattice defects where nonlocal quantum operations can be
encoded. The terms in Eq. (10) correspond to the string con-
figurations indicated in Fig. 6.

FIG. 6. Logical encoding of four mixed-boundary punctures.
The system is separated into two pairs each in a state described in
Fig. 5. The string configurations and their corresponding quantum
states are based on puncture populations, and each quadrant repre-
sents a term in the joint state in Eq. (10).

C. Fusion

We can verify that this system of punctures reproduces
the fusion properties characteristic of Ising anyons by respec-
tively fusing the charge contents of the pairs (p1, p3) and
(p2, p4). Indeed, the fusion takes the joint state in Eq. (10)
to the state

|p13, p24; ±〉 = 1√
2

(|113, 124〉 ± |ψ13, ψ24〉), (11)

where we define

|113, 124〉 = 1√
2

(|e1e2〉 |e3e4〉 + |m1m2〉 |m3m4〉) (12)

and

|ψ13, ψ24〉 = 1√
2

(|e1e2〉 |m3m4〉 + |m1m2〉 |e3e4〉), (13)

analogously to the scheme in Ref. [21]. We can understand
this as the punctures from the terms in Eq. (12) behaving as
the vacuum charge since each composite object is made up of
either two e or two m anyons, while the terms in Eq. (13) each
behave as a fermion string (i.e., both red and blue strings).
If we identify the states |113, 124〉 and |ψ13, ψ24〉 respectively
with the vacuum and ψ fermion sectors as described by the
basis states in Eq. (4), then they are related to the fusion
outcomes in Eq. (11) by a fusion matrix

Fpunct = 1√
2

(
1 1
1 −1

)
, (14)

which matches the Ising model fusion properties in
Eq. (5).

D. Braiding

We are now interested in how the state in Eq. (10) is af-
fected by braiding individual punctures. For this purpose, we
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FIG. 7. Braiding operation shown for state |e1e2〉 |m3m4〉. The
steps are shown in panels (a)–(d), taking p1 around p3 for the string
configuration in Fig. 6(c), and illustrate the full exchange of the e
anyon in p1 around m in p3. The braiding has to be carried out
without performing a self-twist of p1 in order to recover (d).

can encode a logical qubit using the configuration described
in Eq. (10), in the logical basis {|++〉 , |−−〉} where |++〉 =
|p1, p2; +〉 |p3, p4; +〉 and |−−〉 = |p1, p2; −〉 |p3, p4; −〉.
This corresponds to the even-parity sector. The basis in the
odd-parity sector is {|+−〉 , |−+〉} but we will not consider it
here.

Braiding p1 around p3 affects the states shown in Fig. 6 dif-
ferently. The case for |e1e2〉 |m3m4〉 is detailed in Fig. 7, where
the step between Figs. 7(c) and 7(d) consists of respectively
multiplying the red and blue strings by a Z-type stabilizer (i.e.,
a red loop) and X -type stabilizer (i.e., a blue loop) operator,
which are trivial operations on the toric code. We notice that
in addition to the initial string configuration, punctures p1 and
p3 are now enclosed by X (blue) and Z (red) loop operators
after the braiding, crossing the original strings which are of
opposite type. This evolution is a result of braiding the e anyon
in p1 around the m anyon in p3. This is particularly interesting
when considering how each term in Eq. (10) evolves under the
braiding. Indeed, we show the final configurations in Fig. 8,
where only Figs. 8(b) and 8(c) have X and Z strings crossing
and hence anticommuting, while the braiding in Figs. 8(a) and
8(d) results in string crossings of the same type, i.e., Abelian.
In fact, the braiding in Figs. 8(a) and 8(b) is equivalent to
full self-rotations of p1 and p3. The combined effect from
this exchange acts on an encoded qubit nontrivially. Indeed,
braiding p1 around p3 flips the sign in the second and third
terms of Eq. (10) due to the mutual statistics of the toric code
e and m anyons, resulting in the state in Eq. (15):

|(p1, p2; ∓)(p3, p4; ∓)〉
= 1

2 (|e1e2〉 |e3e4〉 ∓ |e1e2〉 |m3m4〉
∓ |m1m2〉 |e3e4〉 + |m1m2〉 |m3m4〉). (15)

Upon rewriting Eq. (15) as a product of the states
of pairs (p1, p2) and (p3, p4), one can see that the

FIG. 8. Logical gate by braiding operation in the four-puncture
system. In all panels p1 and p3 were exchanged. The evolution
in panels (a) and (d) is trivial, but combined with panels (b) and
(c) affects the nonlocal superposition state in Eq. (10) (as shown
in Fig. 6) nontrivially. This results in this final string configuration
describing the state in Eq. (15).

braiding changes the relative phase in the superpositions
of both states. This transforms the logical encoding basis
following

B2
13 |++〉 = |−−〉 , (16)

B2
13 |−−〉 = |++〉 , (17)

where B2
23 denotes the full braid of p1 around p3. This is

identified with the Pauli-X operation, which is the signature
of non-Abelian statistics of Ising anyon exchange given in
Eq. (7). We also observe from Eq. (10) that braiding p1 and p4

or alternatively p2 and p3 or p2 and p4 changes the state in an
equivalent fashion. However, braiding p1 and p2 or p3 and p4

(i.e., punctures from the same pair) acts trivially on Eq. (10)
and likewise on our logical basis. Therefore, it appears that
we cannot recreate the full set of operations achievable with
Ising anyons (and twists by association). Indeed, obtaining a
Pauli-Z operation in the same basis starting from the state in
Eq. (10) requires an operation that transforms states according
to |e1e2〉 −→ |m1m2〉 and |m1m2〉 −→ |e1e2〉, which cannot be
done exclusively by braiding operations in our system. We
identify this Z logical operator with the string combination
in Fig. 9. This operation corresponds to transporting two ψ

fermions to the boundary of p1 and p2 in each panel of
Fig. 6, such that each term in the superposition state Eq. (10)
is modified accordingly. This can be done by creating two
pairs of e and m anyons in the bulk and transporting them
using Z and X rotations up to the boundary of punctures p1

and p2. In consequence, the above encoding does not benefit
from the simplicity of the logical operators available with
twists since the logical X , which corresponds to applying
the loop superposition in Fig. 8, and Z , and cannot be inter-
changed by puncture braiding only. Note that the punctures
in this setting do not behave as real Ising anyons, but simulate
some of their properties, crucially their non-Abelian exchange
statistics.
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FIG. 9. Logical Z operator for the logical encoding described
in Eq. (10) using the four mixed-boundary punctures. This string
operator is applied to each panel of Fig. 6 to recover the desired
operation.

IV. DISCUSSION

We studied an unusual defect on the toric code referred
to as mixed-boundary puncture, which is introduced by two
types of stabilizer measurements creating a hybrid boundary.
This opened interesting possibilities of anyon configurations
combined with the punctures. It was recently shown that twists
in the non-Abelian phase of the KHLM not only localize
Majorana zero modes but are also equivalent to vortices via
an adiabatic lattice transformation [21]. Motivated by this, we
explored such an equivalence between twists and punctures
using code deformations, in an attempt to find a local defect on
the toric code that localises MZMs. We exhaustively studied
different boundary and defect configurations on the toric code
encompassing a wide variety of allowed deformations, yet no
local encoding was found which recreates the equivalence in
the non-Abelian phase analog. Indeed, the latter provides a
richer topological defect structure than the toric code phase,
and in the Abelian phase of the KHM twists and punctures
behave differently in that only twists have the ability to act as
sources and sinks for ψ fermions and recreate the Ising anyon
fusion space. In contrast, while punctures ensure fault toler-
ance, regardless of their boundary composition they cannot
provide the mechanical nonlocality offered by twists. In fact,
mixed-boundary punctures inherently support a pair of twists
on their boundary, and we find that any adiabatic mechanism
that would promote them to an object that behaves as an Ising
anyon requires moving the twists from the puncture boundary
to the bulk of the code, which undermines the integrity of
the puncture. Therefore, in order to recover the non-Abelian

statistics on the toric code, we introduced a scheme that em-
braces the nonlocality of twists by simulating their domain
wall using our logical encoding. Indeed, we considered a
logical basis for computation formulated on a superposition
of the anyonic population of four mixed-boundary punctures,
and found that braiding punctures from distinct pairs created
from vacuum induces a Pauli-X operation on the encoded
qubit, thus reproducing the non-Abelian exchange statistics
characteristic of the Ising model. This type of structure ap-
pears to be the way around using twist defects in order to
recreate Majorana statistics on the toric code.

Topological quantum memories at finite temperature are
prone to thermal excitations, namely undesired anyon creation
transport and annihilation, which we disregard for the pur-
pose of our framework [29,30]. The code distance, defined
as the smallest set of qubits which support a nontrivial logical
operator of the code, indicates the number of qubit rotations
which will introduce a logical operation on the code subspace,
and therefore quantifies the noise tolerance of the code. In our
encoding, we expect the punctures and defects to remain far
from each other, where their separation provides the distance
of the error-correcting code which for the open boundary
toric code is half of the distance between opposite boundaries.
Moreover, a similar separation should be maintained between
the defects and the boundary of the code and set the length of
the boundaries of the punctures themselves [28].

The existing schemes such as those presented in
Refs. [13,28] also utilize punctures to realize fault-tolerant
gates by braiding, using combinations of X and Z boundary
configurations, and can achieve Clifford and entangling gates.
In contrast, further braiding operations with our chosen en-
coding do not expand our gate set to the full scope of logical
operations accessible with twist and MZM exchange, and
therefore does not recover the full set of Clifford gates topo-
logically. However, we emphasize that the aforementioned
operations are produced by the Abelian braiding of toric code
anyons, while we exploit similar defects, with a different
encoding combined with braiding to give rise to non-Abelian
statistics.
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