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We explore sufficient conditions for inseparability in mixed states with a globally conserved charge, such as a
particle number. We argue that even separable states may contain entanglement in fixed charge sectors, as long
as the state cannot be separated into charge-conserving components. As a witness of symmetric inseparability
we study the number entanglement (NE), �Sm, defined as the entropy change due to a subsystem’s charge
measurement. Whenever �Sm > 0, there exist inseparable charge sectors, having finite (logarithmic) negativity,
even when the full state either is separable or has vanishing negativity. We demonstrate that the NE is not only
a witness of symmetric inseparability, but also an entanglement monotone. Finally, we study the scaling of �Sm

in thermal one-dimensional systems combining high-temperature expansion and conformal field theory.
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I. INTRODUCTION

Quantifying and exploiting quantum entanglement is a
central activity unifying quantum information and condensed
matter [1–5]. Entanglement quantifies the inseparability of
quantum states. A separable state can be written as

ρ =
∑

i

piρ
i
A ⊗ ρ i

B, (1)

where ρ i
A and ρ i

B are density matrices for the two subsys-
tems A and B = Ā, with probabilities

∑
i pi = 1. Determining

whether a mixed state is separable is NP-hard [6–8]. The
criterion for a state to have finite negativity, i.e., negative
eigenvalues after partial transposition, is a sufficient condition
for inseparability [9–11].

In this paper we consider mixed states in the presence
of a conserved charge, such as the total particle number
N̂ = N̂A + N̂B, such that [ρ, N̂] = 0. The separability condi-
tion Eq. (1) does not require that the individual classically
combined components ρ i

A ⊗ ρ i
B are symmetric. Since the lat-

ter should describe plausible physical states, we supplement
Eq. (1) by the symmetry condition

∀i
[
ρ i

A ⊗ ρ i
B, N̂

] = 0. (2)

As a familiar example, a state of free bosons hopping on
a lattice at temperature T and chemical potential μ, ρ =
e−β(H−μN )/Z , where β = T −1 is the inverse temperature and
Z is the partition function, has a separable form in terms of
coherent states [12]. But since coherent states are not number
eigenstates, Eq. (2) is not satisfied. Thus while this state has
zero negativity, it does not satisfy symmetric separability. As
a consequence of symmetric inseparability, we will show that
such a state must contain entanglement in specific charge
sectors.

In this paper we explore a measurable quantity that
provides a necessary condition for symmetric separability,
Eqs. (1) and (2). We consider the entropy change due to an
unselective measurement of the subsystem’s charge:

�Sm = S(ρm) − S(ρ), (3)

where ρm = ∑
NA

�(NA)ρ�(NA), S(ρ) = −Tr(ρ ln ρ), and
�(NA) is a projector to a fixed number NA of the subsys-
tem. Equivalently, �Sm = S(ρ||ρm) is the relative entropy of
charge coherence with respect to NA [13]; we refer to �Sm as
the number entanglement (NE).

We show that �Sm vanishes for symmetrically separa-
ble states, so that �Sm > 0 implies that a state cannot be
symmetrically separable. In systems with a fixed particle
number, �Sm > 0 may only occur when negativity is already
present [see Fig. 1(a)]. As our main result, in the general
case with fluctuating number of particles, we show that when-
ever �Sm > 0, there exists some total charge-N block in the
density matrix which is inseparable and has finite negativity
[see Fig. 1(b)]. Then entanglement can be extracted via a
projection to a total charge sector. Importantly, �Sm > 0 may
happen even in (nonsymmetrically) separable states. In these
cases the only way to display separability is by violating the
symmetry Eq. (2).

Similar to Bell’s inequalities, an entanglement witness
gives a yes or no answer to the separability condition. Re-
markably, we find that �Sm is not only an entanglement
witness in mixed states with a conserved particle number. It is
also an entanglement monotone. An entanglement monotone
is nonincreasing under local operations and classical commu-
nication (LOCC) [14]. Here, we show that the NE, �Sm, is
nonincreasing under symmetric LOCC, which conserve the
total charge. This gives a comparative meaning to the value of
the NE, allowing an interpretation in terms of the number of
Bell pairs in the charge sector.
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FIG. 1. The space of symmetric states ρ is divided by the thick
ellipse into states with either finite or zero logarithmic negativity N .
Part of the latter are separable (white region). (a) For fixed particle
number N , the set of states with finite �Sm (yellow region) is in-
cluded in the set of states with finite negativity. (b) For general states
with multiple total-charge blocks, describing, e.g., systems with a
chemical potential, the set of states with finite �Sm may include
separable states.

The paper is organized as follows. In Sec. II we de-
scribe the key properties of �Sm in general mixed states
with a conserved charge. In Sec. III we show that �Sm is
an entanglement monotone. In Sec. IV we connect �Sm with
negativity, showing that whenever �Sm > 0 there exists a
charge sector with finite negativity; examples are given in
Sec. V. In Sec. VI we describe methods to compute �Sm in
extended one-dimensional (1D) systems, including numerical
free-fermion methods, high-temperature expansion, and con-
formal field theory (CFT). We summarize in Sec. VII.

II. GENERAL PROPERTIES

Consider general symmetric mixed states ρ with [ρ, N̂] =
0. To demonstrate that �Sm is a measure of symmetric insep-
arability, we note that �Sm satisfies a number of properties.

(1) �Sm � 0.

(2) �Sm = 0 for symmetric separable states.

One can show that �Sm � 0 by demonstrating that �Sm

equals the relative entropy between ρ and ρm [13,15]:
S(ρ||ρm) = Tr(ρ ln ρ) − Tr(ρ ln ρm). This follows from the
fact that

Tr(ρm ln ρm) =
∑
NA

Tr[�(NA)ρ�(NA) ln ρm]

=
∑
NA

Tr[ρ�(NA) ln (ρm)�(NA)]

= Tr(ρ ln ρm),

where we used the property that ρm commutes with all projec-
tion operators �(NA). So �Sm � 0 follows directly from the
positivity of the relative entropy.

To show that �Sm = 0 for symmetrically separable states,
satisfying Eqs. (1) and (2), let us temporarily focus on the sim-
ple product state, ρ = ρA ⊗ ρB. The requirement [ρ, N̂] = 0
implies [ρA, N̂A] = 0 (by taking a partial trace on both sides

of the equation). So ρA actually commutes with all projec-
tion operators �(NA). Thus the postmeasurement state is the
same as ρ and there is no entropy change. The same is true
for general symmetric-separable states since each component
satisfies Eq. (2).

(3) �Sm is invariant under symmetry-preserving local uni-
tary transformations. Here we consider local unitaries which
preserve the total charge N . Because it is a local operator
acting in either A or B, it preserves NA, i.e., [U, N̂A] = 0. These
could be unitaries acting on internal degrees of freedom. Then
it is not hard to show that

�Sm → S

[∑
NA

�(NA)UρU †�(NA)

]
− S(UρU †)

= S

[∑
NA

�(NA)ρ�(NA)

]
− S(ρ) = �Sm, (4)

where we used the properties S(ρ) = S(UρU †) and
[�(NA),U ] = 0, which follows from [U, N̂A] = 0.

(4) �Sm is symmetric if we exchange A and B. In other
words if we choose to measure the particle number in B or
in A, the postmeasurement states are the same, as obtained by
annihilating all off-diagonal blocks with respect to NA.

(5) �Sm is additive. Consider two flavors of particles ρ =
ρ f1 ⊗ ρ f2 . Here we require that the number of particles of
each flavor Nf1 and Nf2 are separately conserved. Now if we
separately measure the particle number of both flavors of
particles in subsystem A, it is straightforward to show that
ρm = ρ f1,m ⊗ ρ f2,m and hence �Sm(ρ) = Sm(ρ f1 ) + Sm(ρ f2 ).

Pure states

We now study Sm in pure states. The most general pure
state with N particles can be written as

|�〉 =
∑
NA

√
P(NA)

(∑
i,α

c(NA )
i,α |NA, i〉A|N − NA, α〉B

)
, (5)

where P(NA) is the probability to find the subsystem A with
charge NA, i and α denote basis states in regions A and B
for a given number of particles, and c(NA )

i,α are normalized as∑
i,α |c(NA )

i,α |2 = 1. For pure states obviously S(ρ) = 0, and

�Sm = S(ρm) = −
∑
NA

P(NA) ln P(NA) (pure states). (6)

Thus, �Sm coincides for pure states with the number entropy
[16–22], i.e., the entropy of the distribution function of the
subsystem’s charge. If one of the subsystems contains only
one site (with no additional internal degrees of freedom)
then the number entropy equals the entanglement entropy
(EE) SEE = S(ρA) where ρA = TrBρ, but in general SEE >

−∑
NA

P(NA) ln P(NA). In addition we note that the number
entropy is bounded from above by ln(1 + NA,max − NA,min)
where 1 + NA,max − NA,min is the number of subsystem charge
states. The part of the entanglement entropy not included in
the number entropy is often referred to as configuration or ac-
cessible entropy [23–25], and it admits a symmetry resolution
[16,17,19,26–36] (see Appendix A).
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The relationship between �Sm, entanglement, and number
entropy can be visualized by simple examples. Consider the
state |�〉 = α |01〉 + β |10〉, defined on two sites, where |0〉
represents an empty site and |1〉 represents a filled site, with
|α|2 + |β|2 = 1. The reduced density matrix of the first site is
ρA = |α|2 |0〉 〈0| + |β|2 |1〉 〈1|. Consider measuring the parti-
cle number in the first site, yielding

ρm = |α|2 |01〉 〈01| + |β|2 |10〉 〈10| . (7)

In this example where the subsystem consists of a single
site, NA fully specifies the quantum state in A, and hence the
entropy change coincides with the entanglement entropy and
number entropy.

Now consider the following state on four sites:

|�〉 = 1√
2

(|0101〉 + |1010〉), (8)

which is entangled, and satisfies [N̂, |�〉 〈�|] = 0. Consider
measuring the particle number in the first two sites. In this
case the quantum state does not change, i.e., �Sm = 0. Sim-
ilarly the number entropy vanishes. This example illustrates
that �Sm does not capture the full entanglement, only the
entanglement between different symmetry sectors.

However, in general mixed states the number entropy is
unrelated to entanglement. This can be seen by the following
example of a symmetrically separable (and hence unentan-
gled) state:

ρ =
∑
NA

P(NA)|NA〉A〈NA| ⊗ |N − NA〉B〈N − NA|. (9)

Now consider instead the following state on two sites:

|φ〉 = |0〉 ⊗ |0〉 + |1〉√
2

, (10)

which is clearly a product state, with no entanglement. How-
ever, if we measure the particle number in the second site, the
measured state is

ρm = |0〉 〈0| ⊗ 1
2 (|0〉 〈0| + |1〉 〈1|), (11)

and the entropy change is not zero. �Sm fails to indicate
entanglement here because [N̂, |φ〉 〈φ|] �= 0. This example
illustrates that we have to restrict to those states which possess
a conserved quantity.

III. MONOTONICITY

The discussion so far emphasized, through properties 1–5
listed in Sec. II, that the NE �Sm > 0 is a witness of symmet-
ric inseparability in mixed states with a conserved charge. Yet,
the actual value of �Sm did not play any role. Now we provide
a comparative meaning to the value of �Sm in different states,
showing that �Sm is actually an entanglement monotone in
the presence of charge conservation. We apply the results of
Ref. [13] which made related claims.

To show that the NE is an entanglement monotone, we
consider symmetric LOCC transformations:

K(ρ) =
∑

n

KnρK†
n , (12)

where the Lindblad operators Kn (i) satisfy [14]
∑

n K†
n Kn = I ,

(ii) can be written as Kn = K (A)
n ⊗ K (B)

n , and (iii) satisfy the
symmetry condition [Kn, N̂] = 0. This goes beyond unitary
transformations, as it describes coupling to a bath, and also
includes classical communication. We will show that

�Sm does not increase under symmetric LOCC.

Thus the only way to increase �Sm is by genuine quantum
entangling nonlocal operations. We demand the symmetry
which is required for �Sm to be served as a witness of in-
separability.

Proof. The NE is defined as the relative entropy of the
unmeasured and measured states:

�Sm(ρ) = Tr[ρ ln ρ] − Tr

[
ρ ln

∑
NA

�(NA)ρ�(NA)

]
. (13)

We then need to prove that

�Sm(ρ) � �Sm(K(ρ)), (14)

where

�Sm(K(ρ)) = Tr[K(ρ) lnK(ρ)]

− Tr[K(ρ) ln
∑
NA

�(NA)K(ρ)�(NA)]. (15)

We proceed by showing that the symmetric LOCC transfor-
mation commutes with the charge measurement, namely,

∑
NA

�(NA)K(ρ)�(NA) = K
[∑

NA

�(NA)ρ�(NA)

]
. (16)

To prove this, we first use an alternative representation of the
postprojective measurement state:

ρm =
∑
NA

�(NA)ρ�(NA) =
∫ π

−π

dα

2π
eiαN̂Aρe−iαN̂A . (17)

Notice that
∫ π

−π
dα
2π

eiαN̂A · · · e−iαN̂A acts as a projection op-

erator, because
∫ π

−π

dq
2π

eiqN = δN,0. In other words, it kills
coherence between states with different NA. We also use the
properties of the symmetric LOCC operators Kn. As shown in
Ref. [13], the Kn operators satisfy

[Kn, N̂A] = δnKn. (18)

We then say that the Lindblad operator Kn has subsystem
charge δn.

Using Eqs. (17) and (18), we have

∑
NA

�(NA)K(ρ)�(NA) =
∑

n

∫ π

−π

dα

2π
eiαN̂A KnρK†

n e−iαN̂A

=
∑

n

∫ π

−π

dα

2π
KneiαN̂Aρe−iαN̂A K†

n = K(ρm). (19)

As a result of Eq. (16), we see that the entropy
change after the symmetric LOCC becomes �Sm(K(ρ)) =
S(K(ρ)||K(ρm)). Finally, we use a property of the relative
entropy between two arbitrary density matrices S(ρ||σ ), being
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nonincreasing under any completely positive trace preserving
map applied on both ρ and σ [15]:

S(ρ||σ ) � S[K(ρ)||K(σ )]. (20)

This proves the monotonicity condition Eq. (14) [14].
We now discuss simple examples on two sites. First con-

sider an initial product state |00〉 which is transformed via a
local operation on the second site to the state |φ〉 in Eq. (8).
Under this LOCC �Sm increases. But as explained above |φ〉
does not commute with the symmetry, and then �Sm does not
measure entanglement. This example emphasizes that �Sm

cannot increase under the specific LOCC transformations that
conserve charge, and explains why this nonincreasing condi-
tion is restricted to symmetric LOCC.

As a second example, we consider a transformation that
acts nontrivially only in the N = 1 sector, taking

|01〉〈01| → 1
2 (|01〉〈01| + |10〉〈10|) (21)

and

|10〉〈10| → 1
2 (|01〉〈01| + |10〉〈10|). (22)

This is an example of classical communication creating clas-
sical correlations between A and B but no entanglement. The
Lindblad operators describing this process are

K1 = 1√
2
|10〉〈10|, K2 = 1√

2
|01〉〈01|,

K3 = 1√
2
|10〉〈01|, K4 = 1√

2
|01〉〈10|. (23)

These operators satisfy conditions (i), (ii), and (iii). Consider
an initial density matrix:

ρ = a|10〉〈10| + (1 − a)|01〉〈01| + b|10〉〈01| + b∗|01〉〈10|,
(24)

the NE of which �Sm(ρ) > 0 since it has a finite subsystem
charge coherence |b| �= 0. Now consider K(ρ):

K(ρ) =
∑

n

KnρK†
n = 1

2 |10〉〈10| + 1
2 |01〉〈01|. (25)

In this case, �Sm(K(ρ)) = 0, which satisfies Eq. (14).

IV. RELATION BETWEEN �Sm AND NEGATIVITY

Having demonstrated that �Sm witnesses symmetric insep-
arability, we now discuss its relation to negativity. Consider
mixed states with a fixed number of particles, N . Logarithmic
negativity is defined by N = ln ||ρTA || where TA represents a
partial transposition with respect to subsystem A. We make
two statements.

(1) If subsystem A has only one site, i.e., its state is fully
specified by NA, then the set of states with zero negativity
equals the set of states with zero �Sm.

(2) If subsystem A contains more than one site, the set of
states with zero negativity is included in the set of states with
zero �Sm.

The second more general statement is illustrated in
Fig. 1(a) and is proven as follows. The most general mixed

FIG. 2. The total charge-N block of the density matrix contains
both diagonal and off-diagonal subblocks in terms of the subsystems
charge NA. Under partial transposition the off-diagonal blocks map
to different total charge sectors [see Eq. (27)]. Under unselective
measurement ρ → ρm, the off-diagonal blocks are annihilated.

state with a fixed total particle number can be written as

ρ =
∑

NA,N ′
A,i,i′,α,α′

CNA,N ′
A

i,i′,α,α′

× |NA, i〉A〈N ′
A, i′| ⊗ |N − NA, α〉B〈N − N ′

A, α′|. (26)

By considering separately terms in the sum with NA = N ′
A and

NA �= N ′
A, we split the density matrix into two parts ρ = ρd +

ρo, being either diagonal or off-diagonal with respect to NA,
respectively (see Fig. 2). If we perform a partial transposition
with respect to A we obtain

ρ
TA
d =

∑
NA,i,i′,α,α′

CNA,NA
i,i′,α,α′

× |NA, i′〉A〈NA, i| ⊗ |N − NA, α〉B〈N − NA, α′|,
ρTA

o =
∑

NA �=N ′
A,i,i′,α,α′

CNA,N ′
A

i,i′,α,α′

× |N ′
A, i′〉A〈NA, i| ⊗ |N − NA, α〉B〈N − N ′

A, α′|. (27)

From these expressions it is clear that (i) ρ
TA
d still lies in the

same symmetry sector with total particle number N , whereas
on the other hand ρTA

o lies completely outside of the origi-
nal symmetry sector (see Fig. 2); (ii) both ρ

TA
d and ρTA

o are
Hermitian matrices because partial transposition preserves
Hermiticity; and (iii) TrρTA

o = 0.
Because ρ

TA
d and ρTA

o lie in completely different sectors we
can diagonalize them separately. The matrix ρTA

o is traceless
and Hermitian. Thus all of its eigenvalues are real and sum up
to zero. Hence negative eigenvalues are guaranteed unless all
the eigenvalues vanish, i.e., all the matrix elements vanish.

Therefore, zero negativity means at least that ρo vanishes.
The inverse is not true because some residue of the effect
of partial transposition is acting on the internal i degrees of
freedom. However, if there are no other degrees of freedom
besides the local particle number in subsystem A, e.g., if it
contains only one site, then the set of states with zero negativ-
ity equals the set of states with no off-diagonal elements with
respect to NA.
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FIG. 3. Entropy change �Sm and logarithmic negativity N for
the two-site XXZ model Eq. (28). The leftmost, middle, and right-
most solid (dashed) lines correspond to �Sm (N ) for η = 0, 2, 4,
respectively. While the latter displays a sudden death above some
interaction dependent temperature [37], we have �Sm > 0 indicating
finite entanglement in fixed sectors at any temperature.

Now consider mixed states with fluctuating total N as in
Fig. 1(b). From statement 2 above we deduce our main state-
ment: If a symmetric state has �Sm > 0 then it necessarily
contains negativity in some charge sectors. Thus, entangle-
ment can be extracted by projection to a fixed total charge
sector. This statement follows because �Sm > 0 ensures that
there exists at least one charge-N block with finite ρo.

The generalization of the concept of negativity based on
partial transposition to fermionic systems had been a chal-
lenge addressed recently [38–40]. In Appendix C we comment
on the comparison of �Sm and fermionic negativity.

V. EXAMPLES

A. Sudden death of entanglement in the XXZ model

We now consider an example illustrating that �Sm > 0
implies entanglement in fixed charge sectors even when N =
0. As a standard interacting model with a U(1) symmetry,
consider the XXZ Hamiltonian

HXXZ = J
L−1∑
i=1

(
sx

i sx
i+1 + sy

i sy
i+1 + ηsz

i s
z
i+1

)
, (28)

where sa
i are spin-1/2 operators acting on site i. This

1D model is equivalent to interacting hard-core bosons, or
fermions, with hopping amplitude t = J

2 and interaction Jη.
sz conservation maps to a particle number conservation. The
thermal state ρ = e−βHXXZ

Z was shown [37] to display a sudden
death of negativity at some critical temperature. However, we
find that �Sm > 0 at any temperature. The comparison of N
and �Sm is plotted in Fig. 3 in the simple case with L = 2 and

LA = 1. The thermal density matrix can be written as

ρ = 1

Z

⎛
⎜⎜⎜⎜⎜⎜⎝

|00〉 |01〉 |10〉 |11〉
e− βη

4 0 0 0

0 e
βη

4 cosh β

2 −e
βη

4 sinh β

2 0

0 −e
βη

4 sinh β

2 e
βη

4 cosh β

2 0

0 0 0 e− βη

4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We can see that there is entanglement in the N = 1 sector,
which is encoded in the off-diagonal elements ∝ sinh (β/2).
A similar situation occurs for thermal free bosons as discussed
in Appendix B. Extending on this example, we now construct
examples of separable states with �Sm > 0, either for bosons
or for fermions.

B. Separable states with �Sm > 0

We now provide two examples of separable states with
�Sm > 0, as marked with diagonal lines in Fig. 1(b). Al-
though these states are separable they contain entanglement in
specific charge sectors. The only way to achieve a separable
form is by violating Eq. (2) on the level of each classically
combined component.

1. Two-site spin state

As an example illustrating that �Sm > 0 implies entangle-
ment in fixed charge sectors even for separable states, consider
the two-site example

ρ = 1
4 (|x+〉〈x+| ⊗ |x−〉〈x−| + |x−〉〈x−| ⊗ |x+〉〈x+|
+ |y+〉〈y+| ⊗ |y−〉〈y−| + |y−〉〈y−| ⊗ |y+〉〈y+|), (29)

where |x±〉 and |y±〉 are states with ±1 eigenvalues of
the Pauli-matrix operators σ x and σ y, respectively. Map-
ping spin ↑ (↓) to an occupied (empty) site, we use
the basis {|00〉, |01〉, |10〉, |11〉}. This state can be written
as ρ = 1

4 (|00〉〈00| + |11〉〈11|) + 1
2 |ψ−〉〈ψ−|, where |ψ−〉 =

|01〉−|10〉√
2

. We see that this explicitly separable state has a block

structure, i.e., [ρ, N̂] = 0. Clearly, this state has �Sm > 0 and
it indeed has a nonseparable charge sector of N = 1. Neither
of the components of Eq. (29) conserves the symmetry; only
their sum does.

2. Fermions

In dealing with fermionic systems we first deal with parity
conservation. Separable states are defined as in Eq. (1) where,
importantly, we require[

ρ i
A, (−1)NA

] = 0. (30)

We divide nonseparable states into two branches [39]: (1)
states with a block-diagonal form in terms of the fermion-
number parity of the subsystem,

[ρ, (−1)FA ] = 0, (31)

and (2) states containing off-diagonal blocks in terms of the
fermion-number parity of the subsystem,

[ρ, (−1)FA ] �= 0. (32)
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It is clear that �S(parity)
m , the entropy change induced by a

parity measurement, is nonzero for all nonseparable states in
branch 2.

Now, suppose that besides the fermion-number parity, we
have an additional U(1) symmetry. As in the bosonic case, we
could find separable states where each decomposition does not
conserve this U(1) symmetry.

Analogous to the bosonic counterexample, consider the
following mixed state of four fermions:

ρ =

⎛
⎜⎜⎜⎝

|0000〉 |0011〉 |1100〉 |1111〉
1
4 0 0 0
0 1

4 − 1
4 0

0 − 1
4

1
4 0

0 0 0 1
4

⎞
⎟⎟⎟⎠,

where the subsystem A consists of the first two sites. This
mixed state has a decomposition similar to the mixed state
of two qubits, while preserving the local fermion parity. This
separable state has zero negativity, but has a finite �Sm. This
state is of branch 1.

VI. CALCULATION METHODS AND SCALING
PROPERTIES

We are now interested in the scaling of �Sm with T , L,
and LA. The von Neumann entropy �Sm can in principle be
calculated from its Rényi moments via the replica trick using
analytic methods [1]. Leaving this formidable task to future
work, here we focus on the second moment of the NE, i.e.,
the change of second Rényi entropy �S2 = S2(ρm) − S2(ρ),
where S2 = − ln Trρ2.

According to Eq. (17), for a thermal state ρ = e−βH

Z , we
need to calculate

Trρ2
m =

∫
dα1dα2

(2π )2

1

Z2
Tr(e−βH e−iα12N̂A e−βH eiα12N̂A ), (33)

where α12 = α1 − α2.
We apply this formula as a starting point for various meth-

ods: (i) numerical calculation for free fermions, (ii) CFT, and
(iii) high-temperature expansion. To illustrate these methods
below, the model of interest is a free-fermion chain, H =
−t

∑
i(c

†
i+1ci + H.c.).

A. Numerical results

We first develop a numerical method to calculate �S2

(and similar quantities) in lattice models of free fermions.
The method is based on properties of Gaussian operators.
Specifically,

ec†
i Ai j c j ec†

mBmncn = ec†
k Fkl cl , (34)

where F = ln (eAeB). This can be proven using the Baker-
Campbell-Hausdorff formula. Secondly,

Trec†
i Si j c j = det(I + eS ). (35)

This holds true for a general non-Hermitian S (see Ref. [41]).
We start with Eq. (33). It is important to notice that both
e−βH and e−i(α1−α2 )N̂A are Gaussian operators. According to

Eq. (34), the product of four Gaussian operators is still Gaus-
sian, and the trace can be calculated using Eq. (35).

So suppose H = ∑
i, j c†

i hi jc j , and N̂A = ∑
i, j c†

i nA
i jc j .

Then we conclude

Tr(e−βH e−i(α1−α2 )N̂A e−βH ei(α1−α2 )N̂A )

= det(I + e−βhe−iα12nA
e−βheiα12nA

). (36)

The calculation of Z in Eq. (33) and the second Rényi entropy
of the unmeasured state S2(ρ) is straightforward.

Using the above methods, we calculate �S2 in a chain of
size L = 1000; the subsystem size is fixed to be LA = 100. We
plot the temperature dependence of �S2 in the right panel of
Fig. 4, as square symbols.

B. High-temperature limit

At temperatures T � t , performing a high-temperature
expansion we find that in a general lattice with hopping am-
plitude t and area A separating A and B, the NE becomes

�Sm → (t2A)/(4T 2) (37)

The derivation, which is essentially an expansion in β of
Eq. (33), is given in Appendix D. This form holds true for
the second Rényi entropy as shown in the inset of the right
panel of Fig. 4.

C. CFT methods

To obtain the NE at T = 0, we borrow results for the
number entropy [16,22] �Sm ∼ 1

2 ln( 2K
π

ln LA) where K is the
Luttinger parameter. This is demonstrated in the left panel of
Fig. 4 for noninteracting fermions, and also compared with
the entanglement entropy SEE [1]. While the two coincide for a
single site in A, SEE ∼ 1

3 ln LA exceeds �Sm, since the NE only
captures entanglement between charge degrees of freedom.

We now are interested in the scaling of the NE at finite tem-
perature, which is either small or large compared to the level
spacing within the subsystem (∝ 1/LA). Using CFT methods,

we can express �S2 = − ln Trρ2
m

Trρ2 = − ln
∫ dα1dα2

(2π )2 V1V2V3V42β

in terms of a correlation function on a cylinder of circumfer-

ence 2β, with V1V2V3V42β = ( 2β

π
tanh πLA

2β
)−

(α1−α2 )2

π2 . The details
of the derivation are given in Appendix E. This is valid for
any ratio β/LA, as long as T is lower than the high-energy
cutoff �, set by t . From this, we derive a crossover from the
low-temperature regime discussed above, to an intermediate-
temperature regime, 1

LA
� T � �, where we find �S2 ∼

1
2 ln ln β. This is compared with numerical results in the right
panel of Fig. 4. Deviations from CFT results are seen for
T � �.

The result for the NE combining these various methods is
summarized in the central panel of Fig. 4. We can see that at
zero temperature the NE coincides with the number entropy,
which itself is only a part of the entanglement entropy, except
when the subsystem has only one site. The definition of the
NE �Sm extends to finite temperature, where at very high
temperature it decays as 1/T 2 according to an area law.
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FIG. 4. Middle panel: Schematic temperature dependence of �Sm for general systems. At T → 0 it approaches the number entropy, which
is contained in the entanglement entropy SEE. At high temperature it decays as 1/T 2 following an area law. Left panel: Comparison of SEE

(upper) and �Sm (lower) at T = 0 for free fermions and L → ∞, LA denotes the number of sites in subsystem A. Analytic fits are �Sm
∼=

1
2 ln[1.731(ln LA + 2.269)] and SEE

∼= 1
3 ln LA + .726. Right panel: Second Rényi entropy �S2 for L = 1000 and LA = 100 using numerical

(squares) and CFT results. Inset: Fit to 1/T 2 form.

VII. SUMMARY

A projective measurement the result of which is not be-
ing recorded increases the entropy of a quantum system.
When applied to a subsystem in a conserved charge basis,
it annihilates any coherences between blocks with different
subsystem charges. The entropy change, referred to as number
entanglement, indicates entanglement, or inseparability be-
tween the measured subsystem and its complement.

The NE quantifies entanglement in mixed states as long
as the density matrix commutes with the symmetry. It goes
beyond other quantities such as entanglement entropy, which
is restricted to pure states, or logarithmic negativity, which
does not account for the symmetry resolution of inseparability.

There are a number of directions to measure �Sm in
experiment. These include cold atom experiments realizing
the replica trick [42], which also allow one to measure
negativity [26,43], as well as experiments realizing random
unitaries [33,44]. Another promising direction is based on
mesoscopic systems. Recently, it was demonstrated how to
measure changes of entropy [45–48]. We envision �Sm as a
special case of an entropy change occurring as we turn on a
nearby mesoscopic conductor acting as charge detector, which
causes dephasing and decoherence [49,50].
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APPENDIX A: RELATION TO SYMMETRY-RESOLVED
ENTANGLEMENT

In this Appendix, we discuss the entropy change upon
measurement, �Sm, in the context of entanglement entropy
and symmetry-resolved entanglement (SRE).

For pure states with a global conserved charge the entan-
glement entropy can be separated as

S(ρA) = H1{[P(NA)]} +
∑
NA

P(NA)S[ρA(NA)], (T = 0).

(A1)
Here H1{[P(NA)]} = −∑

NA
P(NA) ln P(NA) is the Shannon

entropy of the subsystem charge probability distribution,
which we refer to as number entropy. Also it is often referred
to as inaccessible entanglement [24,25]. The second term
[23] is the weighted contribution of the SRE originating from
each superselection sector corresponding to NA particles in A,
where

ρA(NA) = 1

P(NA)
�(NA)ρA�(NA). (A2)

This separation of the EE into a number entropy and the
weighted SRE is displayed in Fig. 4 of the main text. Relat-
edly, connections between entanglement entropy and charge
fluctuations were emphasized in one dimension [51–53].

In this paper we consider a general mixed density matrix ρ

and our quantity of interest is

�Sm = H1{[P(NA)]} +
∑
NA

P(NA){S[ρ(NA)] − S(ρ)}. (A3)

Here, compared to the pure state decomposition Eq. (A1), in
the second term we have the entropy of the full state acting
both on A and on B after it has been projected and normalized
to a given number of particles in A:

ρ(NA) = 1

P(NA)
�(NA)ρ�(NA). (A4)

Note the difference compared to Eq. (A2) which involves the
reduced density matrix. Thus the second term in Eq. (A3) is
the weighted entropy change for each charge state. Interest-
ingly, this is equivalent to our simple definition Eq. (3). Note
that in Eq. (3) ρm = ∑

NA
�(NA)ρ�(NA) = ⊕NA P(NA)ρ(NA)

is normalized but consists of non-normalized blocks.
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FIG. 5. The uppermost, middle, and lowermost solid (dashed)
lines correspond to �Sm (N ) for N = 3, 2, 1, respectively.

APPENDIX B: THERMAL STATE OF TWO BOSON MODES

We consider the Hamiltonian

H = (a†
1 a†

2)

(−μ t
t −μ

)(
a1

a2

)
,

which conserves the total particle number N . The Gibbs state
ρ = e−βH was shown to be separable [12]. Hence the negativ-
ity of the full state vanishes.

However, according to our results, some of the symmetry
sectors ρ(N ) = �(N )ρ�(N ) are entangled, because the off-
diagonal terms in NA generally exist in the occupation number
basis. In the following, we calculate �Sm and negativity in the
N = 1, 2, 3 sectors, and plot both of them in Fig. 5.

The state we consider is ρ = 1
Z e−βH�(N ), or equivalently

ρ = 1
Z e−βH (N ) where H (N ) is the charge-N block of H .

In the one boson subspace, H can be written as

H1 =
( |10〉 |01〉

−μ t

t −μ

)
.

Thus we have

ρ = 1

Z
e−βH1 =

(
1
2 − 1

2 tanh β

− 1
2 tanh β 1

2

)
.

After simple algebra, we find that the negativity and the en-
tropy change are

N = ln (1 + tanh β ), (B1)

�Sm = ln 2 + 1 − tanh β

2
ln

1 − tanh β

2

+ 1 + tanh β

2
ln

1 + tanh β

2
. (B2)

Similarly we could derive the negativity and entropy change
in N = 2, 3 subspaces, as plotted in Fig. 5.

APPENDIX C: FERMIONIC NEGATIVITY

In this Appendix we comment on the comparison of �Sm

and fermionic negativity. The generalization of the concept of

negativity based on partial transposition to fermionic systems
had been a challenge addressed recently [38–40]. First, the
example in Sec. V B 2 gives a fermionic state with �Sm, but
zero fermionic negativity. In this sense, also the fermionic
negativity fails to account for the additional U(1) symmetry
that can allow one to extract entanglement by projecting to
specific sectors. Below we show results for the fermionic
negativity N f and �Sm for the same XXZ two-site system
studied in the main text. We first provide definitions. To define
fermionic negativity, we first need to define fermionic partial
transpose. In the occupation number basis,

|{n j} j∈A, {n j} j∈B〉
= ( f †

j1
)n j1 · · · ( f †

jmA
)n jmA · · · ( f †

j′mB
)
n j′mB |0〉 , (C1)

the fermionic partial transpose is defined as

(|{n j} j∈A, {n j} j∈B〉 〈{n̄ j} j∈A, {n̄ j} j∈B|)RA

= (−1)φ(n j ,n̄ j )U †
A |{n̄ j} j∈A, {n j} j∈B〉 〈{n j} j∈A, {n̄ j} j∈B|UA.

(C2)

To make a distinction between fermionic partial transpose and
normal partial transpose, here we denote it as (|· · ·〉 〈· · ·|)RA .
We can see it is the same as normal partial transpose up to
a phase factor. Because of this phase factor, the fermionic
partial transpose of a density matrix is no longer Hermitian.
The fermionic negativity is defined as

N f = ln Tr
√

ρRA (ρRA )†. (C3)

As an explicit example, let us calculate the fermionic
negativity in the XXZ model. Performing Jordan-Wigner
transformation to the two-site XXZ Hamiltonian Eq. (28), we
obtain

H = J

[
− 1

2
(c1c†

2 + c2c†
1) + η(1 − 2c†

1c1)(1 − 2c†
2c2)

]
.

(C4)
The thermal density matrix ρ = e−βH/Z is

ρ = 1

Z

⎛
⎜⎜⎜⎜⎜⎜⎝

|00〉 |01〉 |10〉 |11〉
e− βη

4 0 0 0

0 e
βη

4 cosh β

2 −e
βη

4 sinh β

2 0

0 −e
βη

4 sinh β

2 e
βη

4 cosh β

2 0

0 0 0 e− βη

4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(C5)

The fermionic partial transpose of ρRA times Z is

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

|00〉 |01〉 |10〉 |11〉
e− βη

4 0 0 −ie
βη

4 sinh β

2

0 e
βη

4 cosh β

2 0 0

0 0 e
βη

4 cosh β

2 0

−ie
βη

4 sinh β

2 0 0 e− βη

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we could calculate N f , as in Eq. (C3). We plot the
temperature and interaction strength dependence of N f in
Fig. 6.
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FIG. 6. N f and �Sm of ρ in Eq. (C5); the leftmost, middle,
and rightmost solid (dashed) lines correspond to �Sm (N f ) for
η = 0, 2, 4, respectively.

APPENDIX D: HIGH-TEMPERATURE EXPANSION

In this Appendix, we work out the high-temperature ex-
pansion of �S2 and �Sm in the tight-binding chain of free
fermions:

H = −t
∑

i

(c†
i+1ci + H.c.). (D1)

The analysis below shows that it is sensitive to the hopping
terms in the Hamiltonian, and immune to the interactions, as
one might expect. According to Eq. (33),

�S2 = − ln
∫

dα1dα2

(2π )2

Tr(e−βH e−iα12N̂A e−βH eiα12N̂A )

Tre−2βH
. (D2)

Here and in the following, αi j = αi − α j . For the denomina-
tor, we have the high-temperature expansion:

Tre−2βH ≈ Tr

[
I − 2βH + (2β )2

2
H2

]

= DH − 2βTrH + (2β )2

2
TrH2. (D3)

Clearly, DH denotes the dimension of the Hilbert space. For
the numerator, similarly we have

Tr(e−βH e−iα12N̂A e−βH eiα12N̂A )

≈ DH − 2βTrH + β2TrH2

+ β2Tr(He−iα12N̂A Heiα12N̂A ). (D4)

In the above expression, we used the cyclic property of the
trace. Comparing Eqs. (D3) and (D4), we see that

Tr(e−βH e−iα12N̂A e−βH eiα12N̂A )

Tre−2βH

≈ 1 + β2 Tr(He−iα12N̂A Heiα12N̂A ) − TrH2

DH
. (D5)

From the above expression, we can infer that the lowest order
of β expansion of �S2 is the β2 order. Equation (D5) can be

simplified further:

Tr(He−iα12N̂A Heiα12N̂A ) − TrH2 = Tr(HO), (D6)

where

O = e−iα12N̂A Heiα12N̂A − H. (D7)

Most of the terms in H actually commute with N̂A, except for
those terms that live at the boundary. Specifically, suppose that

N̂A = c†
1c1 + · · · + c†

mcm, (D8)

and that H is given by Eq. (D1). Here m = LA is the number
of sites of subregion A. Then the only terms which have a non-
vanishing commutator with N̂A, and thus contribute to O, are
Hhop = −t (c†

0c1 + c†
1c0 + c†

mcm+1 + c†
m+1cm), which generate

hopping of particles between A and its complement. The oper-
ator O can be calculated using the Baker-Campbell-Hausdorff
formula:

e−iα12N̂A Heiα12N̂A

= H + iα21[N̂A, H] + (iα21)2

2
[N̂A, [N̂A, H]] + · · · .

(D9)

Interestingly, we find

[N̂A, Hhop]

= −t (−c†
0c1 + c†

1c0 + c†
mcm+1 − c†

m+1cm), (D10)

[N̂A, [N̂A, Hhop]]

= −t (c†
0c1 + c†

1c0 + c†
mcm+1 + c†

m+1cm) = Hhop. (D11)

Then Eq. (D9) yields

e−iα12N̂A Hhopeiα12N̂A

= cos α21Hhop + i sin α21[N̂A, Hhop]. (D12)

So we conclude

O = cos α21Hhop + i sin α21[N̂A, Hhop] − Hhop. (D13)

To calculate Tr(HO), notice that

Trc†
i c j = 1

2δi jDH , (D14)

Trc†
i c jc

†
mcn = 1

4 (δi jδmn + δinδm j )DH . (D15)

The only part in H which contributes to Tr(HO) is Hhop again.
Then

Tr(HO) = (cos α21 − 1)TrH2
hop

+ i sin α21Tr(Hhop[N̂A, Hhop]). (D16)

After integration over α2 and α1, we conclude

�S2 = − ln

(
1 − β2

TrH2
hop

DH

)
≈ β2

TrH2
hop

DH
= β2t2. (D17)

This result holds when β2t2 � 1. For a general lattice in any
dimension, with nearest-neighbor hopping, we have

�S2 = At2

2T 2
, (D18)
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FIG. 7. Cylinder geometry of circumference 2β where the corre-
lation function V1V2V3V4 is computed.

where the hopping amplitude t is assumed to be constant and
A is the area between A and B. For our 1D case, we have
A = 2. Now consider a fermion chain with nearest-neighbor
interactions:

H = −t
∑

i

(c†
i+1ci + c†

i ci+1) + V
∑

i

nini+1. (D19)

This Hamiltonian also preserves the total particle number.
Although there might exist strong interaction between the
fermions, the above analysis yields the same high-temperature
expansion of �S2. Specifically notice that [N̂A, nini+1] = 0
for all i. Essentially the same analysis leads to the high-
temperature expansion of �Sm, defined as

�Sm = S(ρm) − S(ρ)

= − lim
n→1

∂nTrρn
m − (− lim

n→1
∂nTrρn). (D20)

The high-temperature expansion turns out to be

�Sm = 1
2 (βt )2. (D21)

This result is also immune to the interaction. A similar result
has been derived for the mutual information [54].

APPENDIX E: CFT METHODS

In the following, we identify the trace in Eq. (33) as a
path integral on a cylinder of circumference 2β with angular
variable τ and infinite coordinate x (see Fig. 7). Following a
related computation of the SRE [16], each of the operators
e±iαN̂A at τ = 0 and τ = β is realized by a pair of vertex
operator insertions as eiαN̂A = ei α

2π
φ(τ,LA )e−i α

2π
φ(τ,0). We obtain

a normalized correlation function of vertex operators:

Tr(e−βH e−i(α1−α2 )N̂A e−βH ei(α1−α2 )N̂A )

Tre−2βH
= V1V2V3V4. (E1)

Here the four vertex operators are located at

(0, 0) : V1 = e− α1−α2
2π

φ(0,0),

(LA, 0) : V2 = e
α1−α2

2π
φ(LA,0),

(0, β ) : V3 = e
α1−α2

2π
φ(0,β ),

(LA, β ) : V4 = e− α1−α2
2π

φ(LA,β ).

Notice that while Trρ2 = Tre−2βH

Z2 , we have

Trρ2
m =

Tre−2βH
∫ dα1dα2

(2π )2 V1V2V3V4

Z2
. (E2)

The object of interest is entropy change, which can be written

as �S2 = − ln Trρ2
m

Trρ2 resulting in Eq. (E1). We conclude that
�S2 is determined entirely by the four-point function:

�S2 = − ln
∫

dα1dα2

(2π )2
V1V2V3V4. (E3)

The four-point function can be calculated by mapping the
cylinder to the complex plane, on which there is a closed
formula for the multipoint correlation function. As shown in
the following subsection,

V1V2V3V4 =
(2β tanh πLA

2β

π

)− (α1−α2 )2

π2

. (E4)

The integration over α1 and α2 can be done exactly. In the
following, we consider two temperature regions separately,
T = 0 and 1

LA
� T � �. (a) T = 0. In this limit

lim
β→∞

(2β tanh πLA
2β

π

)
= LA. (E5)

The integration over α1 and α2 gives the aforementioned dou-
ble log scaling:

�S2 = 1
2 ln ln LA + const. (E6)

(b) 1
LA

� T � � ∼ t . In this regime tanh πLA
2β

∼= 1 and the
four-point function depends on β solely. The same integration
gives

�S2 ∼ 1
2 ln ln

const

T
+ const′. (E7)

The CFT results hold true only when T � �. In Fig. 4 of the
main text we plot the result of exact integration of Eq. (E4)
over the α′

is.

Derivation of Eq. (E4)

Here we provide the details of the calculation of the four-
point correlation function of vertex operators on the cylinder,
Eq. (E4).

We introduce complex coordinate w = x + iτ , and map the
cylinder to the complex plane by

z = e
π
β
w
. (E8)

The operators are now inserted at
(1, 0), (−1, 0), (x, 0), (−x, 0), where (x, y) denotes a point
on a complex plane with z = x + iy. Here x = e

π
β

LA . The
multipoint correlation function of vertex operators V A = eiAφ ,
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where A = ± αi
2π

is given by

V A1 (z1, z̄1) · · ·V An (zn, z̄n) =
∏
i< j

|zi − z j |2AiA j . (E9)

According to the above formula, we get

V1(z1, z̄1)V2(z2, z̄2)V3(z3, z̄3)V4(z4, z̄4)

= (x − 1)−
(α1−α2 )2

π2 (x + 1)
(α1−α2 )2

π2 (2x)−
(α1−α2 )2

2π2 2− (α1−α2 )2

2π2 .

(E10)

To get the correlation function on the cylinder, we have to add
the factor associated with the conformal transformation:

φ′(w, w̄) =
∣∣∣∣ ∂z

∂w

∣∣∣∣
2h

φ(z, z̄), (E11)

where z = e
π
β
w and ∂z

∂w
= π

β
z. We conclude that the four-point

function on the cylinder is given by

V1(w1, w̄1)V2(w2, w̄2)V3(w3, w̄3)V4(w4, w̄4)

= (x − 1)−
(α1−α2 )2

π2 (x + 1)
(α1−α2 )2

π2 (2x)−
(α1−α2 )2

2π2

2− (α1−α2 )2

2π2

(
π

β
x

) (α1−α2 )2

2π2
(

π

β

) (α1−α2 )2

2π2

=
(

2β

π

x − 1

x + 1

)− (α1−α2 )2

π2

=
(

2β

π
tanh

πLA

2β

)− (α1−α2 )2

π2

. (E12)
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