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Robust population inversion in three-level systems by composite pulses
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In this work, we exploit the idea of composite pulses to achieve robust population inversion in a three-level
quantum system. The scheme is based on the modulation of the coupling strength, while the other physical
parameters remain unchanged. The composite pulses sequence is designed by vanishing high-order error
terms, and can compensate the systematic errors to any desired order. In particular, this scheme keeps a good
performance under the disturbance of waveform deformations. This trait ensures that population inversion can
be nearly obtained even when the pulse sequence has a short jump delay. As an example, we employ the
designed composite pulse sequence to prepare the W state in a robust manner in the superconducting circuits.
The numerical results show that the fidelity can still maintain a high level in a decoherence environment.
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I. INTRODUCTION

Robust control of quantum states is one of the crucial top-
ics in quantum information processing (QIP) [1–8]. Through
controlling the external fields, the initial state of a quantum
system can be driven into the desired target state. During
this process, many requirements need to be satisfied. The first
one is to quickly accomplish quantum operations because the
coherence time of quantum systems is generally very short.
Once the operation time is sufficiently long, the advantages
of quantum computation would gradually be lost. The second
one is to perform quantum operations in a robust way. As
is well known, the infidelity of quantum logic gates needs
to be below the fault-tolerant threshold (10−4) to protect the
reliability of quantum computation [9]. However, quantum
systems always suffer from the harmful effect of external
noises, which may be caused by the imperfect knowledge of
quantum systems or the fluctuations of external fields, etc.
These external noises finally lead to a sharp decline in the
fidelity of quantum gates. In response, quantum control theory
is developed to tackle these problems.

Quantum control theory has been successfully applied in
single [10,11] and multibody systems [12,13]. At the same
time, this theory has made new progress in quantum state
preparations [14–20], quantum gate operations [21–32], and
quantum error corrections [33–38]. During the quantum con-
trol process, the primary mission is to design an appropriate
pulse shape of the control fields to drive the system evolution
as we expect. The traditional method is to employ the adia-
batic passage (AP) [39–45], which matches the initial (target)
state to one instantaneous eigenstate as an evolution path of
the system. The AP requests that the physical parameters must
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vary slowly enough so as to meet the adiabatic condition. It
is widely known that there are two relevant well-established
techniques: the chirped rapid adiabatic passage (CHIRAP)
[40–43] and the stimulated Raman adiabatic passage (STI-
RAP) [46–48]. The former proposes to apply a chirped pulse
to modulate the frequency detuning of the system. The slow
chirp rate ensures that the adiabatic condition is strictly sat-
isfied. Therefore, one can drive the system evolution along a
given eigenstate and suppress transitions to other eigenstates
[42]. The latter is one of the most popular methods for quan-
tum control in three-level systems and has since been widely
expanded to other fields [49]. In the STIRAP, the Stokes
pulse and the pump pulse are applied in a counterintuitive
order, and one can achieve a successful population transfer
between two states under the two-photon resonance condition
in three-level systems [49]. The main feature of AP is that the
robustness against parameter fluctuations could be achieved at
the expense of operation speed and accuracy. However, once
the adiabatic condition cannot be satisfied well, the accuracy
would be sharply dropped due to the imperfect adiabatic path.

To optimize the speed and accuracy of AP, an improved
and acclaimed technique named shortcut to adiabaticity (STA)
[50–52] has been developed. There are two common methods
in the STA technique: Lewis-Riesenfeld invariants [53] and
transitionless quantum driving [54–56]. The main idea of
STA is to design the pulse shape to canceling nonadiabatic
transitions through an additional Hamiltonian. Nevertheless, it
depends heavily on the precisely known physical parameters,
and strong fluctuations of parameters might make this method
inefficient. Recently, optimal control (OP) has become an-
other popular way to achieve high-fidelity quantum operations
[12,57–64]. One disadvantage of OP is that the pulse shape
is always intricate and nonanalytic because it is achieved by
using advanced mathematical algorithms. As a result, the de-
sign process only yields certain numerical solutions. In order
to take account of the robustness and accuracy of quantum
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control, one can turn to the composite pulses (CPs) technique,
where the physical parameters are flexible to design and the
shapes are readily implemented in experiments due to its
commonality.

The CPs technique was born in the field of nuclear mag-
netic resonance [65–68]. Over the past decade, CPs have
provided a lot of solutions in quantum computation [69–75]
due to their extremely high accuracy, robustness against er-
rors, and extraordinary flexibility [76]. Generally speaking,
the CPs technique is composed of a series of precise con-
stant pulses with different relative phases. These pulses are
usually imposed on external laser fields, electric fields, mag-
netic fields, or radio-frequency fields, etc. It is shown that
the phase-modulated composite pulses (PMCPs) can not only
improve the robustness against errors (broadband pulse), but
also enhance the sensitivity and selectivity of excitation (nar-
rowband pulse) [77]. Recently, the PMCPs have also been
designed to produce a rotation in the Bloch sphere [71],
where the errors resulting from the pulse area are gradually
compensated with the increase of the pulse number. Another
application of PMCPs is to implement the NOT gate, and
this scheme is robust against both offset uncertainties and
control field variations by a very small number of modulation
parameters [75].

However, when the system phase cannot be modulated or
the system does not carry phase information, PMCPs would
be invalid. In order to supplement the deficiency of com-
posite pulses, researchers turn their attention to some other
adjustable parameters. Therefore, the detuning-modulated
composite pulses (DMCPs) and the strength-modulated
composite pulses (SMCPs) have become two additional
promising methods. Recently, based on photonic integrated
circuits, Greener et al. applied DMCPs in the coupled op-
tical waveguide model to achieve complete light transfer
[78]. SMCPs are used to implement dynamically corrected
single-qubit gates on singlet-triplet qubits [79,80], where
qubit manipulations are handled by adjusting the electri-
cally controlled exchange coupling strength. Note that most
works [69–80] of CPs are based on two-level systems.
Recently, the CPs have been extended to the three-level
systems and have provided many creative works [81–87],
such as the implementation of high-fidelity composite quan-
tum gates [81,82] and the efficient detection of chiral
molecules [83]. It is worth mentioning that those works
[81–83] still focus on the phase modulation in three-level
systems.

In this paper, based on the composite pulses technique,
we develop a general SMCPs scheme for robust population
inversion in three-level systems. According to the Taylor
expansion, the final transition probability expression is re-
arranged into a series of error terms. With predetermined
phases and pulse area, these error terms could be effectively
eliminated from low order to high order by properly adjusting
coupling strengths. In addition, we investigate the influence
of waveform deformation on the transition probability. The
results show that slight deformation still allows the SMCPs to
work well, except for the heavily deformed case. In the end,
we further apply the current SMCPs scheme to prepare the
W state in the superconducting quantum interference device
(SQUID) model, and the numerical simulations demonstrate

FIG. 1. A �-type three-level system driven by two control fields
in the two-photon resonance regime.

that the SMCPs can still maintain a robust performance in a
decoherence environment.

The structure of this paper is organized as follows. In
Sec. II, we present the design procedure of the SMCPs in
the three-level system, which are directly derived from the
total composite propagator. In Sec. III, we illustrate how to
eliminate the effect of pulse area error by SMCPs with the
specific number of pulses. Here, the sequence of up to seven
pulses has been studied, and the longer sequence could also
be obtained in a similar way. Then, we analyze the impact
of the waveform deformation of CPs on the performance of
the transition probability and compare our scheme with other
composite pulses. In Sec. IV, we give the application of the
SMCPs scheme in robustly preparing the W state in the super-
conducting circuits. Finally, we give the conclusion in Sec. V.

II. THEORETICAL MODEL

In this section, we elaborate on the design procedure of the
general pulse waveform in a three-level system with �-type
structure. This system has been regarded as a paradigmatic
model in many branches of physics, including atomic and
molecular [88–90], quantum information science [91], and
some other fields [92–95]. The basic structure is shown in
Fig. 1, where |g〉 and | f 〉 are two ground states and |e〉 is the
excited state. There are two control fields that drive two tran-
sitions: |g〉 ↔ |e〉 and | f 〉 ↔ |e〉. Meanwhile, the transition
frequency of the three-level system and the carrier frequency
of the control fields satisfy the two-photon resonance condi-
tion [96]. Note that the direct transition between two ground
states is forbidden. In the interaction picture, the dynamics
of the system can be described by the following Hamiltonian
(h̄ = 1 hereafter):

H = �|e〉〈e| + 1
2 (�eiφ|g〉〈e| + λeiϕ | f 〉〈e| + H.c.), (1)

where � and φ (λ and ϕ) are the coupling strength and the
phase of the transition |g〉 ↔ |e〉 (| f 〉 ↔ |e〉), and � is the
single-photon detuning. When the detuning is much larger
than two coupling strengths (i.e., |�| � �, λ), the excited
state |e〉 could be adiabatically eliminated [97]. Then, the
three-level system would be reduced as an effective two-
level system. In the following, we study the system dynamics
including the excited state, and thus do not focus on this
situation.
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The propagator U of this three-level system satisfies the
following Schrödinger equation:

iU̇ = HU . (2)

When the Hamiltonian given by Eq. (1) is time independent,
the solution of this equation becomes U = exp(−iHT ), where
T is the time duration. It is instructive to adopt its matrix form
in the basis {|g〉, | f 〉, |e〉}, which reads

U (�) =

⎡
⎢⎢⎣

U11 U12 U13

U21 U22 U23

U31 U32 U33

⎤
⎥⎥⎦, (3)

where

U11 = cos2 � + e−iδ

(
cos

A

2
+ i�√

1 + �2
sin

A

2

)
sin2 �,

U22 = sin2 � + e−iδ

(
cos

A

2
+ i�√

1 + �2
sin

A

2

)
cos2 �,

U33 = e−iδ

(
cos

A

2
− i�√

1 + �2
sin

A

2

)
,

U12 = 1

2
e−iδei


(
cos

A

2
+ i�√

1 + �2
sin

A

2
− eiδ

)
sin 2�,

U21 = 1

2
e−iδe−i


(
cos

A

2
+ i�√

1 + �2
sin

A

2
− eiδ

)
sin 2�,

U13 = −e−i2δU ∗
31 = −ie−iδeiφ sin �√

1 + �2
sin

A

2
,

U23 = −e−i2δU ∗
32 = −ie−iδeiϕ cos �√

1 + �2
sin

A

2
.

Here, � = arctan (�/λ), δ = ∫ T
0 �/2 dt , the phase difference


 = φ − ϕ, and the expression of the total pulse area A is

A =
∫ T

0

√
�2 + λ2 + �2 dt . (4)

Obviously, when the pulse area A = 2π , two ground states
are decoupled from the excited state |e〉 so that we can only
concentrate on the subspace {|g〉, | f 〉}. Then, when the system
is initially in the ground state |g〉, the transition probability P
of the target state | f 〉 becomes

P = |U21|2 = cos2

(
π�

2
√

1 + �2

)
sin2 2�. (5)

It is easily found from Eq. (5) that the detuning � is required
to be zero in order to achieve complete population inversion
for the single pulse.

Then, one can see from Eq. (4) that two kinds of uncer-
tainties would cause the pulse area error when � = 0. The
first one is the coupling strength error, which may be caused
by the inhomogeneity of the control fields. Another one is
the inaccurate pulse duration, which may be limited to the
experiment condition or manual operation accuracy. Note that
tiny errors in the pulse area would have a significant effect
on population inversion. This can be demonstrated as follows.
Suppose that the pulse area error is represented by ε, and a
deviation in the original pulse area reads A = A(1 + ε). As a
result, the transition probability given by Eq. (5) is rewritten

FIG. 2. (a) Transition probability PN (ε) vs the pulse area error ε

under different pulses sequences. (b) Inversion error 1 − PN (ε) vs the
pulse area error ε. All �n come from Table I.

as

P(ε) = sin4 A(1 + ε)

4
sin2 2�. (6)

In order to study how the pulse area error makes an impact on
population inversion, the transition probability P(ε) given by
Eq. (6) is expanded as the Taylor series,

P(ε) = α0 + α1ε + α2ε
2 + O(ε3), (7)

where α j is the jth-order coefficient, j = 0, 1, 2, . . . . Actu-
ally, α0 is the transition probability in the absence of the pulse
area error. By setting the pulse area A = 2π (1 + ε), the first
three order coefficients are

α0 = sin2 2�, α1 = 0, α2 = − 1
2π2 sin2 2�. (8)

Notice that the first-order coefficient α1 is automatically elim-
inated because all odd-order coefficients contain the term
sin (A/2). Here, � = π/4 + kπ/2 is the indispensable con-
dition to achieve population inversion, i.e., α0 = 1. We can
observe from Eq. (8) that the second-order coefficient α2 has
the same monotony with α0 because they have the same term
sin2 2�. This means that the error would also reach maximum
if we achieve complete population inversion. In Figs. 2(a) and
2(b), the red solid curve represents P(ε) as a function of the
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TABLE I. Values of the coupling strength ratio to achieve popu-
lation inversion.

N 2 3 4 5 6 7

�1 0.3927 0.1944 0.0897 0.0477 0.0203 0.0137
�2 1.1781 0.7854 0.4688 0.2913 0.1508 0.1072
�3 1.3764 1.0613 0.7854 0.5004 0.3811
�4 1.4676 1.2795 0.9948 0.8233
�5 1.5231 1.3826 1.2459
�6 1.5431 1.4854
�7 1.5606

pulse area error ε, which shows that the transition probability
sharply drops near ε = 0. Hence, the single-pulse scheme
does not possess a robust manner against the pulse area error.

In order to solve this problem, next we put forward the
SMCPs scheme. The sequence is composed of multiple sin-
gle pulses, where only coupling strengths for each pulse are
different. For the compact expression, we label the Hamilto-
nian and the propagator of the nth pulse as Hn and Un(�n),
respectively. Then, the general form of the total propagator
for the N-pulses sequence can be written as

U (N ) =UN (�N )UN−1(�N−1) · · ·U2(�2)U1(�1). (9)

The detailed derivation of the total propagator U (N ) without
the pulse area error is presented in Appendix A. Note that the
transition probability of every state is associated with both
the detuning and the coupling strengths of each pulse. For
simplicity, we assume each pulse is in the resonant regime
(�n = 0) in the following.

The target of this work is to achieve robust population
inversion by SMCPs. Without loss of generality, we assume
the initial state is |ψi〉 = |g〉; then the target state becomes
|ψ f 〉 = | f 〉. Each pulse area is represented as 2π (1 + ε), and
we label PN (ε) as the transition probability of the state | f 〉 in
the N pulses sequence. Similar to the derivations in Eq. (7),
PN (ε) can be written in the following form by the Taylor
expansion:

PN (ε) = αN,0 + αN,1ε + αN,2ε
2 + · · · + O(εn), (10)

where αN, j is the jth-order coefficient in the N pulses se-
quence, and its expression can be deduced from the total
propagator given by Eq. (9).

Here, we do not intend to change the pulse area and phases
of this system, and thus the pulse area and phases are pre-
determined by constants during the evolution process. Note
that all odd-order coefficients αN, j ( j = 2n − 1) would vanish
if the pulse area of each pulse is equal to 2π , i.e., A1 = · · · =
AN = 2π . As a result, only even-order coefficients are left in
Eq. (10). By modulating the parameters �n (n = 1, . . . , N),
we demand that the zeroth-order coefficient be unity, which
ensures complete population inversion, and other even-order
coefficients vanish as many as possible. Note that according
to the expression �n = arctan (�n/λn), we can keep the cou-
pling strength λn unchanged and alter the coupling strength
�n to implement the modulation of �n. This means that we
only adjust one of the coupling strengths to achieve robust
population inversion in the three-level system.

To be specific, if the sequence is composed of N pulses, we
first solve N equations to obtain the solutions of �n, i.e.,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

αN,0 = 1,

αN,2 = 0,

· · ·
αN,2N−2 = 0.

(11)

Then, we calculate different coupling strengths �n of each
pulse according to the expression �n = λn tan �n. Conse-
quently, we have the composite pulses sequence to achieve
population inversion. In this situation, the transition probabil-
ity is accurate to the order of O(ε2N−2). Compared with the
single-pulse scheme, the transition probability in the SMCPs
scheme has a better robust manner against the pulse area error
ε since the high-order coefficients disappear. In other words,
eliminating more high-order coefficients in Eq. (10) could
further suppress the detrimental effect of the pulse area error.
When the composite pulses sequence is sufficiently short, the
analytical results are readily obtained by solving the corre-
sponding equations. However, the long pulse sequence would
increase the number of equations. As a result, it is difficult to
derive the analytical results. Instead, we provide the numerical
solutions for the long pulse sequence. In order to demonstrate
this issue in more detail, we exemplify the SMCPs scheme
with a specific number of pulses below.

III. STRENGTH-MODULATED COMPOSITE PULSES
SCHEME

In this section, we study how to design the SMCPs to
achieve robust population inversion when the pulse area and
phases remain unchanged. For simplicity, we uniformly set
An = 2π , φn = π/2, ϕn = 0, and assume the system always
works in the resonance regime (i.e., �n = 0). Note that �n

are only the adjustable parameters.

A. Two pulses

The propagator in the two-pulses sequence can be
expressed by

U (2) = U2(�2)U1(�1). (12)

According to the propagator U (2) given by Eq. (12), the tran-
sition probability P2(ε) of the state | f 〉 is

P2(ε) = 1

4

{
sin2πε[cos�1sin�2+cos�2(2 sin�1+sin�2)]

−2 cos4

(
πε

2

)
sin 2(�1−�2)

}2

. (13)

The detailed derivation process is given in Appendix B. By
the Taylor expansion, P2(ε) can be regrouped as

P2(ε) = α2,0 + α2,2ε
2 + O(ε4), (14)

where the expressions of the first two coefficients read

α2,0 = sin2[2(�1 − �2)],

α2,2 = π2 sin 2(�2 − �1)
[

sin 2(�1 − �2)

+ 2 cos �2 sin �1 + 1
2 sin 2�1 + 1

2 sin �2
]
.
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In the two-pulses sequence, we need to simultaneously
solve the following equations:{

α2,0 = 1,

α2,2 = 0.

(15)

(16)

After some calculations, one solution of Eqs. (15) and (16)
can be written as

�1 = mπ + π

8
, �2 = lπ + 3π

8
, (17)

where m and l are arbitrary integers. By this choice of �1 and
�2, the transition probability is accurate to the fourth order in
the pulse area error ε,

P2(ε) = 1 + O(ε4). (18)

The gray solid curve in Fig. 2(a) represents the relation be-
tween the transition probability and the pulse area error when
�1 = π/8 and �2 = 3π/8. The result shows that the tran-
sition probability appears as a small flat top profile against
the pulse area error in the two-pulses sequence. Correspond-
ingly, the gray solid curve in Fig. 2(b) demonstrates that the
inversion error in the two-pulses sequence is much lower than
that in the single pulse under the same condition. Obviously,
the two-pulses sequence has a better fault tolerance than the
single pulse in the error-prone environment.

Note that the above designed sequence can also used for
implementing a NOT gate with a well-defined phase. Although
the phases are inessential for population inversion, they play
a very important role when achieving a quantum gate because
different phases would determine different types of quantum
gates. For our objective, by the group of solution �1 = π/8
and �2 = 3π/8 and the phase difference 
n = π/2, the final
propagator in the basis {|g〉, | f 〉} becomes (up to a global
phase)

U (2) =
[

0 1

1 0

]
,

which is actually the X gate. However, when the phase dif-
ference is chosen as 
n = π , the final propagator would
become

U (2) =
[

0 −i

i 0

]
,

which is the Y gate; see Appendix B for details.
Furthermore, this current sequence is readily extended to

yield an arbitrary rotation gate. The general form of an arbi-
trary rotation gate in the basis {|g〉, | f 〉} is [9]

R̂ =
[

cos (θ/2)eiβ ′
sin (θ/2)eiβ

− sin (θ/2)e−iβ cos (θ/2)e−iβ ′

]
,

where θ is the rotation angle (0 � θ � π ), and β and β ′
are relative phases. To implement this rotation gate, Eq. (15)
needs to be modified as α2,0 = sin2 (θ/2), and then we
properly adjust the phases of the coupling strengths. As an
example, to implement the Hadamard gate by the two-pulses
sequence, we first need to obtain a maximum superposition
state of |g〉 and | f 〉, and the equations read

{
α2,0 = 1/2,

α2,2 = 0.

One group of the solutions is �1 = 0.1047 and �2 = 0.4974.
Then, we need to choose two proper phases φn = ϕn, and
obtain the Hadamard gate

H = 1√
2

[
1 1

−1 1

]
.

Note that different from the previous work [81] for the
Hadamard gate in the three-level system, the total pulse area of
the current sequence can be 4π , while it is 6π for the sequence
H6 in Ref. [81]. This flexibility of the sequence length benefits
from the current sequence starting straight from the three-level
system rather than nesting the existing sequence.

B. Three pulses

The three-pulses sequence produce the following
propagator:

U (3) = U3(�3)U2(�2)U1(�1). (19)

Thus, the exact expression of the transition probability P3(ε)
can be written as

P3(ε) = {sin 2�3(sin 2�1 sin 2�2 − 2 sin �1 sin �2 sin πε sin 2πε) + 8 cos2 �1[cos �2 sin �3 cos(�2 − �3)

+ sin �2 cos �3 sin2 πε] + 4 sin2 �3[sin 2�1 sin2 �2 + 2 sin �1 cos �2 sin2 πε]

− 4 sin2 πε(sin 2�1 cos �2 cos �3 − 4 sin �1 sin �2 sin 2�3) − cos πε{sin 2�1 + sin 2(�1 − �2) + sin 2(�1 − �3)

− 3 sin 2(�1 − �2 + �3) + 4 sin �2 cos �3 cos(�2 − �3) + 8 sin �1 cos �3 sin2 πε[cos(�1 − �2)

+ cos �2 cos �3 + 1]} − cos2 πε[sin 2�1 + sin 2�2 + sin 2�3 − sin 2(�1 − �2) − sin 2(�1 − �3)

− sin 2(�2 − �3) − 3 sin 2(�1 − �2 + �3)] + 8 cos3 πε sin �1 cos �3 cos(�1 − �2) cos(�2 − �3)}2.

Similarly, through the Taylor expansion, the transition probability P3(ε) can be expanded as

P3(ε) = α3,0 + α3,2ε
2 + α3,4ε

4 + O(ε6). (20)
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Since only three parameters {�1,�2,�3} are contained in the three-pulses sequence, it is sufficient to extend Eq. (10) to the
fourth-order term. The expressions of the first three coefficients are

α3,0 = sin2 2(�1 − �2 + �3),

α3,2 = −π2

2
sin 2(�1 − �2 + �3){sin 2(�1 − �2) + 2 cos (�1 − �2) sin (�1 + �2 − 2�3) + 3 sin 2(�1 − �2 + �3)

+ 4 sin �1 cos (�2 − 2�3) + 4 cos �3[sin (2�1 − �2) + sin �1]},

α3,4 = π4

48
{48[sin �1 cos(�2 − 2�3) + sin(2�1 − �2) cos �3 + sin �1 cos �3 + cos(�1 − �2) sin(�1 − �3) cos(�2 − �3)

+ 51 sin2 2(�1 − �2 + �3)]2 + 2 sin 2(�1 − �2 + �3)[64 sin �1 cos(�2 − 2�3) + 4 cos �3[16 sin(2�1 − �2)

+ 19 sin �1 + 3 sin �2] + 64 cos(�1 − �2) sin(�1 − �3) cos(�2 − �3) + 12 sin �1 cos �2 + 3(sin 2�1

+ sin 2�2 + sin 2�3)]}. (21)

Therefore, in the three-pulses sequence, the solutions need
to simultaneously satisfy the following equations:⎧⎪⎨

⎪⎩
α3,0 = 1,

α3,2 = 0,

α3,4 = 0.

(22)

(23)

(24)

Here, the solution of Eq. (22) can be written as �1 − �2 +
�3 = π/4 + mπ/2, where m is an arbitrary integer. However,
it is difficult to derive analytical formulas for Eqs. (23) and
(24). Instead, we employ the numerical method to obtain the
solutions of Eqs. (22)–(24). One numerical solution is pre-
sented in Table I. We figure out the profile of the transition
probability P3(ε) by the blue dashed curves in Figs. 2(a) and
2(b). Clearly, the three-pulses sequence produces a wider top
platform than the two-pulses sequence because the fourth-
order coefficient α34 vanishes. In this situation, the transition
probability is accurate to the sixth order in the pulse area
error ε,

P3(ε) = 1 + O(ε6). (25)

C. More than three pulses

Next, we briefly present the multiple-pulses design pro-
cedure. The derivations of the sequence with larger pulse
numbers are similar to the two- (three)-pulses sequence. At
first, the total propagator of the N-pulses sequence is

U (N ) = UN (�N )UN−1(�N−1) . . .U1(�1). (26)

In the N-pulses sequence, the transition probability could be
expanded to the (2N )th order by the Taylor expansion

PN (ε) = αN,0 + αN,2ε
2 + αN,4ε

4 + · · · + O(ε2N ). (27)

It is not hard to find that the zeroth coefficient αN,0 can be
expressed by (see Appendix A for details)

αN,0 = sin2

[
2

N∑
k=1

(−1)k+1�k

]
. (28)

Therefore, the solution of the equation αN,0 = 1 can be written
as

N∑
k=1

(−1)k+1�k = π

4
+ mπ

2
,

where m is an arbitrary integer.
Then, the remaining (N − 1) equations to be solved come

from Eqs. (11). In this situation, the maximum transition prob-
ability is accurate to the (2N )th order in the pulse area error
ε,

PN (ε) = 1 + O(ε2N ). (29)

We present some numerical solutions of �n in Table I, and
plot in Figs. 2(a) and 2(b) the performance of the maximum
transition probability produced by the four pulses to the seven
pulses. As expected, the more pulses we apply, the broader
region of the high fidelity against the pulse area error we will
get. For example, the inversion error 1 − PN (ε) still remains
below 10−4 even though the pulse area error reaches 0.328 in
the seven-pulses sequence.

D. The influence of waveform deformation

In the ideal situation, the waveform of CPs is the perfect
square wave. Unfortunately, the limitations of experimental
conditions would produce imperfect pulse shapes in practice.
The main problem is the waveform deformation, which usu-
ally takes place at the moment of the square wave switching,
reflected in the strength jump delay, i.e., the rise and fall edges.
As a result, the quantum system is approximately driven by
a time-dependent pulse instead of constant pulses sequence.
Here, taking the three-pulses sequence for example, we study
this issue by designing a function to simulate the imperfect
square pulse waveform, and the expression of the coupling
strength is

�(t ) =
{
�2 − �2−�1

1+eτ (t−t1 ) , t � T +t1−t3
2 ,

�3 − �3−�2

1+eτ (t−t1−t2 ) ,
T +t1−t3

2 < t � T,
(30)

where τ is called the waveform deformation parameter and
tn = 2π/

√
�2

n + λ2
n, n = 1, 2, 3.

It is easily found from Eq. (30) that one can control
the width of the rising and falling edges by adjusting the
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(a)

(b)

FIG. 3. (a) The waveform of the coupling strength �(t ) with
different deformation degree in the three-pulses sequence. (b) The
maximum transition probability P3(ε) vs the deformation parameter
τ and the pulse area error ε. All �n come from Table I.

dimensionless parameter τ . When the value of τ is larger,
the sequence given by Eq. (30) is much closer to the constant
pulses sequence. For example, it is shown by the red solid
curve in Fig. 3(a) that the deformation degree of the square
wave is already negligible when τ = 100. When τ → +∞,
Eq. (30) describes the perfect square wave. However, when
the value of τ is sufficiently small, the waveform described
by Eq. (30) is quite different from the perfect square wave,
as shown by the blue dotted curve in Fig. 3(a). We plot
in Fig. 3(b) the transition probability as a function of the
pulse area error and the waveform deformation. The results
demonstrate that a slight waveform deformation has little in-
fluence on our scheme since the width of the high transition
probability region almost remains unchanged when τ > 10.
A noticeable change appears in the transition probability only
when the waveform deformation is very severe. However, the
transition probability still maintains at a high level. Hence, our
scheme is also robust against the waveform deformation.

E. Comparison with other composite pulses

In this section, we make a brief comparison of our CPs se-
quence with some previous works. First, most previous works
[68,71–73,81] are based on phase modulation, in which the
phase is a time-dependent variable parameter. Different from
the phase modulation, here we propose a distinct modulation
method: coupling strength modulation, where all phases of
the system remain unchanged during the evolution process.

Second, the detuning modulation is equivalent to the strength
modulation, in principle, since two categories of the Hamilto-
nian can be associated through a rotation transformation [98].

The common starting point of the current sequence and
the sequence in Ref. [81] is to provide robustness against
the pulse area error in the three-level system. With the same
total pulse area, the robustness of our composite sequence
agrees with that of the composite sequence in Ref. [81].
However, there are some differences between them. At first,
the structure of the sequences is distinct. We have only three
pulses, while there are six pulses in Ref. [81] with the same
pulse area. From the perspective of the waveform, our se-
quence is a simpler one because it contains fewer pulse jumps.
Furthermore, the design procedures are quite different. The
sequence in Ref. [81] is constructed by the combination of
a preexisting CPs sequence in two-level systems [72], ig-
noring the dynamics of the excited state. Here, we consider
the dynamics of all states in the three-level system, and di-
rectly design the composite pulses sequence according to
the propagator. Finally, the application systems are different
since we use strength modulation here, while the sequence
in Ref. [81] relies on phase modulation. To be specific, one
could adopt the phase modulation in some systems with easily
adjustable phases (e.g., the trapped ions system [70]) while
the strength modulation could be conveniently applied in sys-
tems with uncontrollable phases (e.g., the integrated photonic
circuits [99]).

For the strength modulation, the difference between the
two-level system and the three-level system is mainly em-
bodied in the number of modulation parameters. There are
two adjustable coupling strengths in the three-level system,
while there is only single coupling strength in the two-level
system. When the pulse area is fixed, one cannot eliminate the
error by only modulating the coupling strength in a two-level
system [71]. In order to make this strength modulation valid,
one must also modulate the pulse area, as done in Ref. [80].
However, this situation is quite different in the three-level
system. Without a change in the pulse area, we can modulate
the ratio of two coupling strengths to effectively eliminate the
systematic errors.

Moreover, the SMCPs in Ref. [80] focuses on altering the
exchange coupling to achieve robust quantum control in the
singlet-triplet qubit. This kind of pulse sequence needs to nest
amounts of short pulses. Hence, the pulse length would be
long and may not maintain a high-fidelity performance in the
decoherence environment. In our scheme, the pulse length can
be appropriately chosen to equilibrate between pulse duration
and robustness. On the other hand, the SMCPs in Ref. [85] are
designed for suppressing leakage in the three-level system.
This scheme [85] is required to simultaneously include two
modulation parameters, including the on-site potentials and
the tunneling coupling. In the current scheme, only one of the
coupling strengths is sufficient to be modulated to implement
robust quantum control, while another coupling strength re-
mains unchanged during the evolution process.

IV. ILLUSTRATIVE EXAMPLE

In this section, we mainly illustrate the applications of the
current SMCPs sequence for concrete physical models. This
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current sequence is suitable for some systems where the phase
is hardly to be modulated. For example, in integrated photonic
circuits [99], since the coupling parameters between different
waveguides are real valued, the traditional phase modulation
CPs is unapplicable. During the light transportation process
from one waveguide to another, one can alter the spatial
distance between waveguides, which is recognized as one
kind of strength modulation between different waveguides.
And the amount of light coupling from one waveguide to the
other can be tuned by lithographically adjusting their width
[99]. Thus, one can adopt strength modulation CPs to achieve
robust light transportation between different waveguides in
integrated photonic circuits [78].

The current sequence is also feasible for the system where
the strength parameters are conveniently modulated. For in-
stance, in the system consisting of multiple quantum dots
[100], there are two strength parameters involved in the con-
trol of quantum dots at the same time. One is the chemical
potential of quantum dots, which is used for modulating the
detuning. The other is the tunneling barrier between adja-
cent quantum dots, which alters the coupling of quantum
dots. Note that both strength parameters can be appropri-
ately controlled by adjusting gate voltages, taking advantage
of short-range interaction and electrical controllability [100].
Therefore, a proper value of the gate voltage would make two
quantum dots couple efficiently and produce a time-dependent
exchange. So it is convenient for employing the strength mod-
ulation in this system.

In the superconducting circuits system [101], both the
strength modulation and the phase modulation can be used to
achieve robust quantum control by modulating the interaction
of external fields. When considering the weak dephasing in
this system, the phase modulation method [76] is less robust
against the phase noise than the strength modulation method.
Thus, systematic errors may not be effectively eliminated due
to the dephasing, and this problem can be elegantly circum-
vented by the current SMCPs sequence. In the following, we
choose this system to illustrate how to achieve robust quantum
control by our SMCPs sequence.

The superconducting quantum interference devices
(SQUIDs) are elementary components in superconducting
circuits [102–107], and the energy level of the SQUID qubits
can be easily modulated by changing the local bias fields
[101]. As shown in Fig. 4(a), the Hamiltonian of each SQUID
qubit has the following form [103,104]:

HSQUID = Q2

2C
+ (� − �x )2

2L
− EJ cos

(
2π

�

�0

)
, (31)

where C is the junction capacitance, L is the loop inductance,
Q is the total charge on the capacitor, � is the magnetic
flux through the loop, �x is the external flux applied to the
loop, �0 = h/2e is the flux quantum, and EJ = Ic�0/2π is
the Josephson energy with Ic being the critical current of the
junction.

Consider the system of four SQUID qubits coupled to a
single-mode microwave cavity field, as shown in Fig. 4(b).
Every SQUID qubit has a three-level structure with three
states {|0〉s, |1〉s, |e〉s} (s = 1, 2, 3, 4), as shown in Fig. 4(c),
where |0〉s and |1〉s are two ground states and |e〉s is the excited

Magnetic field

( , )

Ω

〉|0

〉|

〉|1

Magnetic field

(b)

(a) (c)

FIG. 4. (a) Schematic diagram of the SQUID qubit. (b) Four
SQUID qubits coupled to a single-mode cavity field. (c) The energy-
level configuration of every SQUID qubit.

state. The ground state |0〉s resonantly couples to the excited
state |e〉s by the cavity field with the constant strength gs.
The classical field resonantly drives the transition between the
states |1〉s and |e〉s with the coupling strength �s. The general
forms of coupling strength �s and the coupling constant gs are
given by [103,104]

�s = 1

2Lsh̄
〈1|�|e〉s

∫
Ss

Bs
μw(r, t ) · dS, (32)

gs = 1

Ls

√
ωc

2μ0 h̄
〈0|�|e〉s

∫
Ss

Bs
c(r) · dS, (33)

where Ss is the surface surrounded by the ring of the sth
SQUID, Ls is the loop inductance of the sth SQUID, ωc

is the angular frequency of the cavity, and μ0 is magnetic
permeability in a vacuum. Bs

c(r) is the magnetic component of
the normal cavity mode. Bs

μw(r, t ) is the magnetic component
of the classical field.

From Eqs. (32) and (33), one finds that the coupling
strength �s and the coupling constant gs can be controlled
by the microwave magnetic components Bs

μw(r, t ) and the
magnetic component Bs

c(r) of the normal cavity mode, re-
spectively. Due to the spatial inhomogeneity of the magnetic
fields, there may exist uncertainty in �s and gs. On the other
hand, the distorted pulse shape or inexact evolution time could
also produce uncertainty in the pulse area. Consequently,
the quantum operations would lose accuracy in this system.
To eliminate those uncertainties, we can employ the SMCPs
scheme to prepare the W state with high fidelity, which is actu-
ally to control the microwave magnetic components Bs

μw(r, t ),
in practice. In the following, we adopt η1 and η2 to represent
the uncertainties from Bs

μw(r, t ) and Bs
c(r), respectively. The

Hamiltonian of the whole system in the interaction picture is
(h̄ = 1) [105]

HI = Hm + Hc, (34)

Hm = 1

2

4∑
s=1

[�s(1 + η1)|e〉s〈1| + H.c.], (35)

Hc = 1

2

4∑
s=1

[gs(1 + η2)|e〉s〈0|â + H.c.], (36)

042414-8



ROBUST POPULATION INVERSION IN THREE-LEVEL … PHYSICAL REVIEW A 105, 042414 (2022)

where â is the annihilation operator of the cavity field. Hc (Hm)
describes the interaction between the cavity (classical) fields
and the SQUID qubits.

Note that the excited number is a conserved quantity
in this system because the excited number operator N̂e =∑

s(|e〉s〈e| + |1〉s〈1|) + â†â satisfies [N̂e, HI ] = 0. Therefore,
we can restrict the system dynamics in the single excited
subspace, namely, 〈ψ (t )|N̂e|ψ (t )〉 = 1, where |ψ (t )〉 is the
evolution state of the system. The bases of the single excited
subspace are

|ψ1〉 = |0〉1|0〉2|0〉3|1〉4|0〉c, |ψ2〉 = |0〉1|0〉2|0〉3|e〉4|0〉c,

|ψ3〉 = |0〉1|0〉2|0〉3|0〉4|1〉c, |ψ4〉 = |e〉1|0〉2|0〉3|0〉4|0〉c,

|ψ5〉 = |0〉1|e〉2|0〉3|0〉4|0〉c, |ψ6〉 = |0〉1|0〉2|e〉3|0〉4|0〉c,

|ψ7〉 = |1〉1|0〉2|0〉3|0〉4|0〉c, |ψ8〉 = |0〉1|1〉2|0〉3|0〉4|0〉c,

|ψ9〉 = |0〉1|0〉2|1〉3|0〉4|0〉c.

For simplicity, we set g1 = g2 = g3 = g, g4 = √
3g. This

could be realized by properly adjusting the parameters of the
SQUIDs, such as Ls or Ss. Then, we rewrite the Hamiltonian
Hc given by Eq. (36) in this set of basis, i.e.,

Hc =g(1 + η2)(|ψ4〉 + |ψ5〉 + |ψ6〉)〈ψ3|
+

√
3g(1 + η2)|ψ2〉〈ψ3| + H.c.,

(37)

and the eigenstates of the Hamiltonian Hc are

|φ1〉 = − 1√
2

[
|ψ2〉 − 1√

3
(|ψ4〉 + |ψ5〉 + |ψ6〉)

]
, (38)

|φ2〉 = 1

2

[
|ψ2〉 +

√
2|ψ3〉 + 1√

3
(|ψ4〉 + |ψ5〉 + |ψ6〉)

]
,

(39)

|φ3〉 = 1

2

[
|ψ2〉 −

√
2|ψ3〉 + 1√

3
(|ψ4〉 + |ψ5〉 + |ψ6〉)

]
,

(40)

with the corresponding eigenvalues E1 = 0, E2 = √
6g, and

E3 = −√
6g. Remarkably, |φ1〉 is the dark state of this system.

Next, we set �1 = �2 = �3 = √
2�a and �4 = √

2�b, and
the Hamiltonian HI of the whole system given by Eq. (34) can
be rearranged into a new form,

H ′
I = H ′

c + H ′
m, (41)

H ′
c =

3∑
i=1

Ei|φi〉〈φi|, (42)

H ′
m = �a√

2
(1 + η1)(|φ2〉 + |φ3〉)〈ψ1| + �a(1 + η1)|φ1〉〈ψ1|

+ �b√
2

(1 + η1)(|φ2〉 + |φ3〉)〈ψ f | + �b(1 + η1)|φ1〉〈ψ f |

+ H.c., (43)

where |ψ f 〉 = (|ψ7〉 + |ψ8〉 + |ψ9〉)/
√

3. Finally, we perform
the unitary transformation U = e−iH ′

ct on this system, and the
Hamiltonian H ′

I given by Eq. (41) can be rewritten as

H ′′
I = �a√

2
(1 + η1)(ei

√
6gt |φ2〉 + e−i

√
6gt |φ3〉)〈ψ1|

| 1⟩ | 1⟩

| 3⟩

| 2⟩

| ⟩
Ω Ω

FIG. 5. Schematic diagram of transition paths for the Hamilto-
nian H ′′

I given by Eq. (44).

+ �b√
2

(1 + η1)(ei
√

6gt |φ2〉 + e−i
√

6gt |φ3〉)〈ψ f |

+�a(1 + η1)|φ1〉〈ψ1| + �b(1 + η1)|φ1〉〈ψ f |
+ H.c. (44)

Figure 5 shows the transition paths for the system governed
by the Hamiltonian H ′′

I . When the system parameters satisfy
the condition �a,b � g, the high-frequency oscillation terms
e±i

√
6gt can be safely ignored. Then, both the transition paths

|ψ1〉 ↔ |φ2〉 ↔ |ψ f 〉 and |ψ1〉 ↔ |φ3〉 ↔ |ψ f 〉 are effectively
suppressed, and only the transition path |ψ1〉 ↔ |φ1〉 ↔ |ψ f 〉
is feasible. As a result, the whole system is simplified into a
�-type physical model, and the effective Hamiltonian, in the
basis {|ψ1〉, |ψ f 〉, |φ1〉}, reads [105]

He = (1 + η1)

⎡
⎢⎣

0 0 −�a

0 0 �b

−�a �b 0

⎤
⎥⎦, (45)

where

|ψ f 〉 = 1√
3

(|1〉1|0〉2|0〉3 + |0〉1|1〉2|0〉3 + |0〉1|0〉2|1〉3)

⊗ |0〉4|0〉c

is the W state. Therefore, the SMCPs scheme studied in
Sec. III can be directly employed to the effective Hamiltonian
given by Eq. (45) to prepare the W state |ψ f 〉. Moreover, we
can expect that the influence caused by the uncertainty of
the cavity field can be negligible during the evolution process
because η2 does not appear in the effective Hamiltonian given
by Eq. (45).

In Figs. 6(a)–6(d), we plot the fidelity of the W state
as a function of the uncertainties η1 and η2 with different
pulses sequence, where we set �max = max{�na,�nb} and
g/�max = 7. The numerical results verify that the uncertainty
of the coupling constant g has a negligible effect on the fi-
nal fidelity, since the fidelity almost remains unchanged with
the increase of η2. Note that the fidelity obviously changes
when η2 < −0.5. This is because the condition g � �a,b

is no longer satisfied very well. As a result, the effective
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FIG. 6. The fidelity F of the W state vs two kinds of uncertainties
η1 and η2 in the (a) two-pulses, (b) three-pulses, (c) four-pulses, and
(d) five-pulses sequence. g/�max = 7. τ = 103. All �n come from
Table I.

Hamiltonian given by Eq. (45) is invalid in this regime. On the
other hand, the fidelity is also robust against the uncertainty of
the coupling strength of the classical fields since the fidelity
still keeps a relatively high value even though η1 = ±0.2.
Thus, we can achieve the W state in a robust way even
when there are existing uncertainties in the superconducting
circuits.

Next, we turn to study the influence of waveform deforma-
tion on the fidelity of the W state. We take the three-pulses
sequence as an example, and plot in Fig. 7 the infidelity as a
function of the pulse area error and the waveform deforma-
tion. An inspection of Fig. 7 demonstrates that the scheme
is insensitive to waveform deformation, even in the case of
severe deformation, because the W state still maintains a high
fidelity in the region τ > 3. Hence, our scheme can resist the

FIG. 7. The infidelity 1 − F of the W state vs the uncertainty η1

and the deformation parameter τ in the three-pulses scheme, where
g/�max = 15. The green dotted curve, the yellow dashed curve, the
pink dot-dashed curve, and the white solid curve correspond to the
infidelity 1 − F = 10−4, 10−3, 10−2, and 10−1. All �n come from
Table I.

(a) (b)

(c) (d)

FIG. 8. The fidelity of the W state vs (a) γ /g and κ/g, (b) γ /g
and γ φ/g, and (c) γ φ/g and κ/g in the three-pulses scheme. Here, the
green dotted line, the yellow dashed line, the pink dot-dashed line,
and the white solid line correspond to the final fidelity F = 0.99,
0.97, 0.95, and 0.90. (d) The population evolution of the states |φk〉,
|ψ1〉, and |ψ f 〉 in the three-pulses scheme, where the initial state is
|ψ1〉. g/�max = 7 and τ = 103. All �n come from Table I.

imperfection of input waveform and thus give more flexibility
in terms of input waveform conditions.

Until now, we have not investigated the influence of de-
coherence on the fidelity of the W state. When considering
the decoherence induced by the cavity decay, the spontaneous
emission, and the dephasing, the evolution of this system can
be governed by the Lindblad master equation,

ρ̇ = i[ρ, HI ] + L(
√

κ â)ρ +
1∑

l=0

4∑
s=1

[
L
(
σ̂ s

le

)
ρ + L

(
σ̂ s

ee,ll

)
ρ
]
,

(46)

where σ̂ s
le = √

γls|l〉s〈e|, σ̂ s
ee,ll =

√
γ

φ

ls/2(|e〉s〈e| − |l〉s〈l|),
and the general form of the superoperator is

L(ô)ρ = ôρô† − 1
2 (ô†ôρ + ρô†ô). (47)

Here, ô denotes the standard Lindblad operator, κ is the decay
rate of the cavity field, and γls (γ φ

ls ) represent the dissipation
(dephasing) rate from the excited state |e〉 to the ground state
|l〉.

Figures 8(a)–8(c) demonstrate the relationship between
the fidelity of the W state and the decoherence parameters
{γ , γ φ, κ}, where we set γls = γ and γ

φ

ls = γ φ for simplicity.
According to Fig. 8(a) and Fig. 8(c), the fidelity of the W
state is hardly affected by the cavity decay. Physically, it is
due to the fact that the single-photon state of the cavity field
is almost decoupling during the system evolution. We can
observe from Fig. 8(a) and Fig. 8(b) that the spontaneous
emission of the SQUID qubits has a slight influence on the
fidelity of the W state. The reason is as follows. Although |φk〉
(k = 1, 2, 3) contain the excited states of the SQUID qubits,
as given by Eqs. (38)–(40), they are almost negligible in the
evolution process when satisfying the condition �a,b � g.
This can be verified by Fig. 8(d), which demonstrates that the
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(a) (b)

FIG. 9. (a) The final fidelity of the W state and (b) the benchmark
width Wb vs different pulse number N . Here we set the benchmark
value Fb = 0.98 and γp = γ . All �n come from Table I. Other
parameters are κ/g = 0.01, g/�max = 20, and τ = 103.

population of the state |φk〉 (k = 1, 2, 3) is suppressed within
an extremely small range during the system evolution. As a
result, the current scheme can maintain a high fidelity even
when the dissipation rate of the excited state is large.

It is inevitable that the increase of the CPs sequence would
prolong the total interaction time and impact the final fidelity
under the decoherence environment. In the following, we
study this issue. Figure 9(a) shows the results obtained by
various pulse lengths under different decoherence environ-
ments. In the ideal situation, i.e., γ /g = 0, the final fidelity
almost remains unchanged as the pulse number increases.
When considering the decoherence caused by the atomic
spontaneous emission and dephasing, e.g., γ /g = 2 × 10−5,
the final fidelity decreases slightly over an increasing number
of pulses. The reason is that a long pulse sequence takes a
long interaction time so that the decoherence becomes the
main factor in reducing the final fidelity. Hence, to obtain a
relatively high fidelity in the decoherence environment, we
cannot choose an overlong pulse sequence.

To quantify the robustness under the decoherence environ-
ment, we define a benchmark width

Wb = η1,max − η1,min, (48)

where η1,max(min) is the positive (negative) maximum uncer-
tainty in the coupling strength �s to make the final fidelity
reach a benchmark value Fb. Remarkably, this benchmark
width can characterize the robustness against uncertainty pro-
vided by different pulse sequences. Figure 9(b) reveals the
benchmark widths achieved by different pulse sequences un-
der different decoherence environments. On the one hand, we
can find that the too short pulse sequence cannot obtain a re-
markable benchmark width (e.g., Wb = 0.3828 for N = 2 and
γ /g = 2 × 10−5). On the other hand, the benchmark width
becomes wider along with the pulse number increasing, and
the increment of Wb becomes gradually limited when the pulse
number is large. In other words, when the system suffers
from a serious decoherence, we cannot obtain considerable
robustness for an overlong sequence (e.g., Wb = 0.6899 for
N = 6 and γ /g = 5 × 10−5). From this point of view, to
obtain excellent robustness, both a too short pulse sequence

and an overlong pulse sequence should not be considered
preferentially.

Therefore, we need to choose a moderate pulse length to
seek an optimal tradeoff between the final fidelity and robust-
ness (fault tolerance). In recent experiments [101,108–112],
the following parameters are feasible: γ = γ φ ∼ 10 kHz and
κ ∼ 625 kHz. The coupling constant g could reach 600 MHz
[113], and thus γ /g ∼ 1.6667 × 10−5. According to these
parameters, the final fidelity of the W state can reach 0.9955
by the four-pulses sequence, while the benchmark width is
Wb = 0.7307 for Fb = 0.98. As a result, our scheme still re-
tains good performance in a decoherence environment.

V. CONCLUSION

In summary, we have put forward the SMCPs scheme to
achieve robust population inversion in a three-level system.
The transition probability is directly derived from a total prop-
agator, and we mainly focus on reducing the influence caused
by the pulse area error on the transition probability. By means
of the Taylor expansion, we nullify the first few error terms
in the transition probability through designing the values of
the coupling strengths. We have given the analytical expres-
sions of the coupling strengths in the two-pulses sequence.
For the three- and more-than-three-pulses (up to seven-pulses)
sequence, we present a set of optimal parameters by numerical
methods. These results indicate that the robust manner against
the pulse area error can be much better as the pulse number
increases. Our scheme provides a feasibility extension of a
longer sequence. Meanwhile, this scheme provides a flexible
choice to design pulse length in a desirable manner for achiev-
ing high robustness against errors and an appropriate total
operating time. Moreover, the pulse sequence interfered by
waveform deformation is still valid to achieve high transition
probability. This property is very useful for the resistance of
pulse jump delay. As a result, our SMCPs scheme is robust
against the pulse area error and waveform deformations.

Then, we have extended this SMCPs scheme to prepare
the W state with high fidelity in the superconducting circuits,
where four SQUID qubits are coupled with the cavity field
and classical fields. The SMCPs that we design can effec-
tively compensate for the adverse impact caused by waveform
deformations and uncertainties in coupling strengths. Further-
more, we also discuss the feasibility and the robustness of
this scheme in a decoherence environment. The simulation
results show that our scheme can obtain a good performance
against the impact of the cavity decay and the spontaneous
emission, and we need to select a moderate pulse length to
achieve robust and accurate quantum control. We hope that
this scheme will provide robust control for more physical
models in the future.
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APPENDIX A: DERIVATION OF THE PROPAGATOR FOR
THE N-PULSES SEQUENCE IN THE TWO-PHOTON

RESONANCE REGIME

In this Appendix, we deduce the expression of the prop-
agator without errors when the three-level system works in
the two-photon resonance regime, where all parameters are
time independent. The general form of a three-level system
Hamiltonian for the nth pulse is given by

Hn = �n|e〉〈e| + 1
2 (�neiφn |g〉〈e| + λneiϕn | f 〉〈e| + H.c.),

(A1)
where �n and φn (λn and ϕn) are the coupling strength and the
phase of the transition |g〉 ↔ |e〉 (| f 〉 ↔ |e〉), and �n is the
single-photon detuning. In this case, the propagator becomes
Un(�n) = exp (−iHnTn), where Tn is the pulse duration and

�n = arctan(�n/λn). By selecting the pulse duration Tn =
2π/

√
�2

n + λ2
n + �2

n, two ground states are decoupled from
the excited state |e〉 so that we only focus on the subspace
{|g〉, | f 〉}. Thus, the matrix form of the propagator Un(�n) in
the basis {|g〉, | f 〉} reads

Un(�n) = cos xn

[
cos 2�n + i tan xn −ei
n sin 2�n

−e−i
n sin 2�n − cos 2�n + i tan xn

]
,

(A2)

where the global phase is neglected, and

xn = π�n

2
√

1 + �2
n

, 
n = φn − ϕn.

Note that the total propagator for the composite pulses
sequence could be obtained by nesting the propagator Un(�n)
in order. We first start from the two-pulses sequence, and the
propagator comes into

U (2) = U2(�2)U1(�1)

= cos x1 cos x2

[
cos 2�2 + i tan x2 −ei
 sin 2�2

−e−i
 sin 2�2 − cos 2�2 + i tan x2

][
cos 2�1 + i tan x1 −ei
 sin 2�1

−e−i
 sin 2�1 − cos 2�1 + i tan x1

]

= cos x1 cos x2

[
cos 2(�1 − �2) + g2

[− sin 2(�1 − �2) + h2
]
ei
[

sin 2(�1 − �2) − h∗
2

]
e−i
 − cos 2(�1 − �2) + g∗

2

]
,

with

g2 = − tan x1 tan x2 + i(tan x1 cos 2�2 + tan x2 cos 2�1),

h2 = −i(tan x1 sin 2�2 + tan x2 sin 2�1),

where g2 and h2 are defined as functions associated with the parameters {x1, x2,�1,�2}. Similarly, the propagator of the three-
pulses sequence is

U (3) = U3(�2)U2(�2)U1(�1)

=
(

3∏
n=1

cos xn

){
cos 2(�1 − �2 + �3) + g3 [− sin 2(�1 − �2 + �3) + h3]ei


[− sin 2(�1 − �2 + �3) + h∗
3]e−i
 − cos 2(�1 − �2 + �3) − g∗

3

}
,

where

g3 = −(tan x1 tan x2 cos 2�3 + tan x1 tan x3 cos 2�2 + tan x2 tan x3 cos 2�1)

+i
[

tan x1 cos 2(�2 − �3) + tan x2 cos 2(�1 − �3) + tan x3 cos 2(�1 − �2) − tan x1 tan x2 tan x3
]
,

h3 = (tan x1 tan x2 sin 2�3 + tan x1 tan x3 sin 2�2 + tan x2 tan x3 sin 2�1)

−i
[

tan x1 sin 2(�2 − �3) + tan x2 sin 2(�1 − �3) + tan x3 sin 2(�1 − �2)
]
.

Following the above rules, the propagator of the N-pulses sequence could be obtained and reads

U (N ) = UN (�N )UN−1(�N−1) · · ·U1(�1)

=
(

N∏
n=1

cos xn

)[
cos 2�N + i tan xN −ei
 sin 2�N

−e−i
 sin 2�N − cos 2�N + i tan xN

]
· · ·
[

cos 2�1 + i tan x1 −ei
 sin 2�1

−e−i
 sin 2�1 − cos 2�1 + i tan x1

]

=
(

N∏
n=1

cos xn

){
cos
(
2
∑N

n=1(−1)n+1�n
)+ gN

[− sin
(
2
∑N

n=1(−1)n+1�n
)+ hN

]
ei


(−1)N
[

sin
(
2
∑N

n=1(−1)n+1�n
)− h∗

N

]
e−i
 (−1)N

[
cos
(
2
∑N

n=1(−1)n+1�n
)+ g∗

N

]}, (A3)
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where

gN =
N−1∑
a=1

[
N∏

1� j1�···� ja�N

(i tan x jl )

]
cos

⎡
⎢⎢⎢⎣

N∑
1� j′1�···� j′N−a�N

jl �= j′m

(−1)(m+1)(2� j′m )

⎤
⎥⎥⎥⎦+

N∏
n=1

(i tan xn),

hN = −
N−1∑
a=1

[
N∏

1� j1�···� ja�N

(i tan x jl )

]
sin

⎡
⎢⎢⎢⎣

N∑
1� j′1�···� j′N−a�N

jl �= j′m

(−1)(m+1)(2� j′m )

⎤
⎥⎥⎥⎦.

We observe from Eq. (A3) that the transition probability of the target state | f 〉 is concurrently controlled by the coupling
strengths and detuning. When the system is always in the resonance regime (�n = 0), it is easily found that cos xn = 1, gN = 0,
and hN = 0. Then, the final propagator in the absence of errors becomes very concise, which reads

U (N ) =
{

cos
[
2
∑N

n=1(−1)n+1�n
] − sin

[
2
∑N

n=1(−1)n+1�n
]
ei


(−1)N sin
[
2
∑N

n=1(−1)n+1�n
]
e−i
 (−1)N cos

[
2
∑N

n=1(−1)n+1�n
]}.

As a result, the expression of the transition probability of the
target state | f 〉 is

PN = |U21|2 = sin2

[
2

N∑
n=1

(−1)n+1�n

]
,

which is Eq. (32) in the main text. In order to achieve com-
plete population inversion, the ratio of coupling strength for
each pulse, obtained by solving the equation PN = 1, must be
satisfied, and the solution is

N∑
n=1

(−1)n+1�n = π

4
+ mπ

2
, (A4)

where m is an arbitrary integer. This is the first condition that
�n should be satisfied.

APPENDIX B: DETAILED DERIVATION PROCESS IN THE
TWO-PULSES SEQUENCE

In this Appendix, we present the detailed derivation pro-
cess of the coupling strengths in the two-pulses sequence.
When � = 0, according to Eq. (3) in the main text, the total
propagator in the basis {|g〉, | f 〉, |e〉} is given by

U (2) = U2(A2,�2, φ2, ϕ2)U1(A1,�1, φ1, ϕ1)

=

⎡
⎢⎢⎢⎢⎣

cos2 �2 + sin2 �2 cos
A2

2
−ei
2 sin2 A2

4
sin 2�2 −ieiφ2 sin �2 sin

A2

2
−e−i
2 sin2 A2

4
sin 2�2 sin2 �2 + cos2 �2 cos

A2

2
−ieiϕ2 cos �2 sin

A2

2
−ie−iφ2 sin �2 sin

A2

2
−ie−iϕ2 cos �2 sin

A2

2
cos

A2

2

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

cos2 �1 + sin2 �1 cos
A1

2
−ei
1 sin2 A1

4
sin 2�1 −ieiφ1 sin �1 sin

A1

2
−e−i
1 sin2 A1

4
sin 2�1 sin2 �1 + cos2 �1 cos

A1

2
−ieiϕ1 cos �1 sin

A1

2
−ie−iφ1 sin �1 sin

A1

2
−ie−iϕ1 cos �1 sin

A1

2
cos

A1

2

⎤
⎥⎥⎥⎥⎦

=
⎡
⎣U (2)

11 U (2)
12 U (2)

13
U (2)

21 U (2)
22 U (2)

23
U (2)

31 U (2)
32 U (2)

33

⎤
⎦. (B1)

When the system is in the ground state |g〉, the time evolution of the system state reads |ψ (t )〉 = U (2)
11 |g〉 + U (2)

21 | f 〉 + U (2)
31 |e〉.

Consider the error ε occurring in the pulse area: Ãn = An(1 + ε), n = 1, 2. The transition amplitude of the state | f 〉 can be
rewritten as

U (2)
21 (ε) = −e−i
1 sin2 Ã1

4
sin 2�1

(
sin2 �2 + cos

Ã2

2
cos2 �2

)
− e−i
2 sin2 Ã2

4
sin 2�2

(
cos2 �1 + cos

Ã1

2
sin2 �1

)

−e−i(φ1−ϕ2 ) sin �1 cos �2 sin
Ã1

2
sin

Ã2

2
, (B2)

where 
n = φn − ϕn.
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The transition probability of the state | f 〉 is equal to the modular squaring of the probability amplitude, i.e., |U (2)
21 |2. Hence,

the transition probability carries the erroneous pulse area Ãn as

P2(ε) = sin2 �1 cos2 �2 sin2 Ã1

2
sin2 Ã2

2
+ 8

[
cos2 �2 sin �1 sin �2 sin3 Ã2

4
sin

Ã1

2
cos

Ã2

4
cos(φ1 − φ2) cos 2�1 sin2 Ã1

4

+ cos2 Ã1

4
+ sin2 �1 cos �1 cos �2 sin3 Ã1

4
cos

Ã1

4
sin

Ã2

2
cos(ϕ1 − ϕ2) cos2 �2 cos

Ã2

2
+ sin2 �2

]

+ sin2 2�1 sin4 Ã1

4

[
cos2 �2 cos

Ã2

2
+ sin2 �2

]2

+ sin2 2�2 sin4 Ã2

4

[
sin2 �1 cos

Ã1

2
+ cos2 �1

]2

+ 2 sin 2�1 sin 2�2 sin2 Ã1

4
sin2 Ã2

4

[
cos 2�1 sin2 Ã1

4
+ cos2 Ã1

4

][
cos2 �2 cos

Ã2

2
+ sin2 �2

]
cos �1, (B3)

where �1 = 
1 − 
2. After substituting the pulse area A1 = A2 = 2π into Eq. (B3), we have

P2(ε) = sin2 �1 cos2 �2 sin4 πε + cos4 πε

2
[sin2 2�1(sin2 �2 − cos2 �2 cos πε)2 + sin2 2�2(cos2 �1 − sin2 �1 cos πε)2]

+2 sin 2�1 sin 2�2 cos4 πε

2

(
cos 2�1 cos2 πε

2
+ sin2 πε

2

)
(sin2 �2 − cos2 �2 cos πε) cos �1

+4 sin2 πε cos2 πε

2

[
sin �1 sin �2 cos2 �2 cos(φ1 − φ2)

(
cos 2�1 cos2 πε

2
+ sin2 πε

2

)

+ cos �1 cos �2 sin2 �1 cos(ϕ1 − ϕ2)(sin2 �2 − cos2 �2 cos πε)

]
. (B4)

Then, by the Taylor expansion, P2(ε) could be written as the following form (up to the second-order term):

P2(ε) = α2,0 + α2,2ε
2 + O(ε4). (B5)

Here, the zero order is the precise transition probability, and the goal of designing the composite pulses sequence is to eliminate
as many of the high-order coefficients as possible. Note that all odd-order coefficients are eliminated due to the choice of
A1 = A2 = 2π . The expressions of the zeroth-order and the second-order coefficients are

α2,0 = 1
2 (1 − cos 4�1 cos 4�2 − cos �1 sin 4�1 sin 4�2), (B6)

α2,2 = π2

4
[sin 4�1(sin 2�2 + 2 sin 4�2) − sin 2�1 sin 4�2] cos �1 + π2

2
(cos 4�1 cos 4�2 − sin2 2�1 cos 2�2

+ cos 2�1 sin2 2�2 − 1) + 2π2[sin �2 cos2 �2(sin 3�1 − sin �1) cos(φ1 − φ2)

− sin2 �1 cos �1(cos �2 + cos 3�2) cos(ϕ1 − ϕ2)]. (B7)

In the two-pulses sequence, there are only two parameters, �1 and �2. So, only two equations can be satisfied, i.e.,{
α2,0 = 1,

α2,2 = 0.

(B8)

(B9)

Note that the expression given by Eq. (B6) can be rearranged by α2,0 = 1/2[1 − A cos (4�1 − β )], where A =√
cos2 4�2 + cos2 �1 sin2 4�2. Remarkably, the following inequality is always satisfied:

A =
√

cos2 4�2 + cos2 �1 sin2 4�2

�
√

cos2 4�2 + sin2 4�2 = 1. (B10)

Only when �1 = mπ could there be an equality, where m is an arbitrary integer. In other words, the equation α2,0 = 1 has real
solutions if and only if �1 = mπ . For simplicity, we set �1 = 0 in the main text, and Eqs. (B8) and (B9) become{

sin2 2(�1 − �2) = 1,

π2 sin 2(�2 − �1)[sin 2(�1 − �2) + cos �2(2 sin �1 + sin �2) + sin �1 cos �1] = 0.

(B11)

(B12)
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One solution of Eqs. (B11) and (B12) can be written as

�1 = mπ + π

8
, �2 = mπ + 3π

8
, (B13)

where m is an arbitrary integer. With this group of solutions,
the final propagator without errors becomes (in the basis
{|g〉, | f 〉, |e〉})

U (2) = i

⎡
⎢⎢⎣

0 1 0

1 0 0

0 0 −i

⎤
⎥⎥⎦. (B14)

This propagator is recognized as an X gate with the global
phase factor i. For the initial state of the system |ψi〉 = |g〉,
the final state would become |ψ f 〉 = i| f 〉. Similarly, when the
phase difference 
 = 0, by this group of solutions, we could

also obtain a Y gate,

U (2) = i

⎡
⎢⎢⎣

0 −i 0

i 0 0

0 0 −i

⎤
⎥⎥⎦, (B15)

with the same global phase factor. For the initial state of the
system |ψi〉 = |g〉, the final state would become |ψ f 〉 = −| f 〉.
Note that both the X gate and the Y gate could achieve the pop-
ulation inversion, and the phase π/2 (π ) of the final state for

 = π/2 (
 = 0) is the global phase, which can be ignored.
As a result, the transition probability of the state | f 〉 is only
associated with its amplitude, and the Taylor series is

P2(ε) = 1 + O(ε4),

which is accurate to the fourth order in the pulse area error ε.
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