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We propose observable bounds for Gaussian illumination to maximize the signal-to-noise ratio, which
minimizes the discrimination error between the presence and absence of a low-reflectivity target using Gaussian
states. The observable bounds are achieved with mode-by-mode measurements. In the quantum regime using
a two-mode squeezed vacuum state, our observable receiver outperforms the other feasible receivers whereas
it cannot approach the quantum Chernoff bound. The corresponding observable cannot be implemented with
heterodyne detections due to the additional vacuum noise. In the classical regime using a thermal state, a receiver
implemented with a photon number difference measurement approaches its bound regardless of the signal mean
photon number, while it asymptotically approaches the classical bound in the limit of a huge idler mean photon

number.
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I. INTRODUCTION

Entanglement is a key element of quantum technologies,
such as quantum teleportation, quantum communication, and
quantum sensing. It takes advantage of the quantum correla-
tion that cannot be revealed in classical systems. Quantum
illumination (QI), which belongs to quantum sensing, takes
quantum advantage over classical illumination (CI), with no
output entanglement [1,2]. QI is used to discriminate the pres-
ence and absence of a low-reflectivity target using entangled
states that consist of signal and idler modes. To detect the
target, we send the signal mode towards the target while
maintaining the idler mode. Then the reflected signal mode is
measured together with the idler mode in a receiver. In contin-
uous variable systems, a typical entangled state is a two-mode
squeezed vacuum (TMSV) state which can be represented in

35 0/ e sl
where Ns is the mean photon number of the signal (or idler)
mode. The TMSV state is nearly optimal in QI [3-5]. CI
is used to detect the target using unentangled states, e.g.,
coherent or thermal states. QI was compared with CI un-
der a few measurement setups proposed in Refs. [6-13] and
implemented in Refs. [14-21]. To detect a long-distance tar-
get, it was studied on microwave QI [22] associated with
the preparation of microwave signal and optical idler mode
pairs. Even if optical entangled states are prepared, they can
be converted to micro-optical entangled states by frequency
conversion [23-25].

The performance of Gaussian illumination is quantified
with the error probability that is a sum of the miss probability
P(off|on) and false alarm probability P(on|off). Given a pos-
itive operator-valued measure, the error probability is lower
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bounded by the Helstrom bound (HB) and upper bounded by
the quantum Chernoff bound (QCB) [26-28] which is also up-
per bounded by the Bhattacharyya bound. It is not known how
to achieve the HB with implementable setups, but the QCB
can be achieved with feasible ones. A single-mode coherent
state attains its QCB by homodyne detection, and a TMSV
state approaches its QCB asymptotically by sum frequency
generation with feedforward [8]. Based on the QCB, QI using
the TMSYV state improves the error probability exponent by a
factor of 4 over CI using the coherent state [2].

Here, we consider a signal-to-noise ratio (SNR) under
mode-by-mode measurements. Initially we define that (0); =
R; is the mean value of an observable, A20; = (0?); — (OA)i2 is
its variance, i = on(1), off(0), and M is the number of modes.
By repeated measurements on many copies M >> 1, the sum
of the measurements approaches a Gaussian distribution and
subsequently it is applied to a decision threshold Ry,. Given
two Gaussian distributions with independent signal-idler
mode pairs (M >> 1), the total error probability is minimized
according to the decision threshold. Each error probabil-
ity is derived as follows: P(offlon) = erfc[ Ry MR\ 1" and

V2M AR,
P(onloff) = jerfc[YR=Ro] At Ry, = M—“WTAR’:;*R%;VRIAR“ the

total error probability is minimized as P$" = [P(off|on) +

P(on|off)] = %erfe[\/ SNR™)], where the complementary er-
+

ror function erfc[z] = %[1 -
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At 7> 1, erfc[z] <
ability is upper bounded by e SN where v/7SNR™ is
ignorable compared to SVRY Thus, minimizing the error

probability corresponds to maximizing the SNR which is ex-
plicitly given by

_2
% such that the minimum error prob-

M((O)on — (O)of)?
SNR™) = 1
2(VA2000 + VA2 00 M
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There are four known receivers, such as the phase conjugate
(PC) receiver, the optical parametric amplifier (OPA) receiver
[6], the double homodyne receiver [12], and the heterodyne
receiver on each mode [16]. We exclude the sum frequency
generation with feedfoward [8], which remains hard to imple-
ment due to its complicated structure requiring a sequence of
nonlinear processes.

In this paper we propose an observable bound for Gaussian
illumination, which maximizes the SNR with respect to mode-
by-mode measurements. In the quantum regime, we consider
a TMSV state which i 1s descrlbed with a4 x 4 covariance ma-
trix Vg1 = ([as a; aS a,] [aS a, as arl), where S (I) represents
the signal (idler) mode. In the classical regime, an input two-
mode state is prepared by impinging a coherent or thermal
state into a beam splitter, which is described with the first
moment and the covariance matrix. The input states interact
with a target which is represented by a low-reflectivity beam
splitter, where the thermal noise effect is simulated by im-
pinging a thermal state into the beam splitter. Since both input
states and interaction processes are in the Gaussian regime,
we describe the output state with the covariance matrix and
first moment.

II. OBSERVABLE BOUND FOR QI

In QI, the signal mode is reflected from a target with
reflectance « while the idler mode is kept ideally. The output
covariance matrix [6] that represents target-on is given by

A+l 0 0 C
0 Ng+1 C 0
0 c A4 o) )
c 0 0 N

where A = kNg + N, C = \/kNg(Ng + 1), and Np is the
mean photon number of thermal noise. When the target is
off, the covariance matrix becomes Vs1(0). The covariance
matrix Vgi(k) differs from the covariance matrix Vgsi(0) by
the correlation elements ((&;&} + agay)) and the mean photon
number of the signal mode ((&;&S)). Thus, we propose an
observable with a combination of the three elements and the

mean photon number of the idler mode (&;&1),

Vsi(x) =

A

Ops = 4} + sty + adas + pajay, 3)
where o and B are real values. The idler mode element
is not known for any effect on the performance, and the
other elements of the covariance matrix are useless due to
only increasing the variance in the SNR. Previously, the
PC receiver [6] measures the observable Opc = v(&gfl; +
asar) + /L(&I&‘T/ + &V&}L), where |p|> — |v|* =1 and ay is a
vacuum state operator. The OPA receiver [6] measures the ob-
servable Oopa = /G(G — 1)(a5a; + asay) + (G — Dasag +
G&,&,, where G > 1 is a gain of the OPA. The double ho-
modyne (DH) recelver [12] measures the observable Opy =
(X2 + P?) = —(aia) + asay) + asay, + ajay. Since the corre-
lation elements had a fixed relation with the other elements in
the previous receivers, it is worthwhile to investigate a general
relation between the correlation elements and the other ones.
Note that the OPA and double homodyne receivers include the
vacuum noise as (&S&E) =1+ (&;&Q but Eq. (3) does not.

Here, we consider QI under not only constant thermal noise
but also nonconstant thermal noise that corresponds to the
passive signature case [29]. In a tabletop experiment, it is
natural to think about the nonconstant thermal noise since a
thermal noise is injected into a beam splitter that represents a
target. When we put the initial mean value of the thermal noise
being constant without any relation with the beam-splitting
parameter, the output thermal noise is related to the beam-
splitting parameter after the interaction with the beam splitter,
resulting in nonconstant thermal noise.

A. Constant thermal noise

Equation (3) is optimized by maximizing the SNR of
Eq. (1), such that we call it the bound observable,

Ova = &5} + asay — |Blajay. ©))
and the SNR,
2MC?
SNRM) = O
[V/A20, + m(x) + /A20) + m(0))2
where  A20, = (A+ )(Ns + 1) +2C> + ANg, m(k) =

|BI>Ng(Ng + 1) — 2|B|C(2Ns + 1. A?0, is a variance of
a nearly bound observable, Og = a}a, + asa;, when a
target is on. Since the element (asag) measures the mean
photon number which is constituted with a small amount of
the reflected signal and a large amount of the transmitted
thermal noise, it increases the variance dominantly rather
than the mean value. However, the element (a}&l) measures
only the idler mode so that it can help reduce the variance.
Thus, the value of o goes to zero and the B survives with
variance contribution m(k). We present an analytic formula
of |B| with a plot in Appendix A. When Ns is much smaller
than Np, we can also ignore the |8], resulting in a nearly
bound observable as Og = &;&}L + asa; which measures
only the off-diagonal elements. By taking the nearly bound
observable, we obtain the SNR,

SNRY) — 2MC? )
" /A0, + /A20, 12

In Fig. 1, we observe that the SNR of Eq. (6) is over-
lapped with the SNR of Eq. (5). Quantitatively, the bound
observable receiver exhibits approximately 3% higher SNR
than the nearly bound observable receiver. It outperforms the
SNRs of other observable receivers, such as PC, OPA, and
double homodyne receivers, while beating the coherent-state
QCB. Analytic formulas of the other receivers are given in
Appendix A. At a low input power Ny < 0.01, the PC re-
ceiver is also overlapped with the bound and nearly bound
observable receivers, as shown in the inset of Fig. 1. In the
limit of Ns,x < 1 and Np > 1, the SNR(SI}I) asymptotically

(6)

approaches A% and its error probability becomes P =
_MKNg
%erfc[ M"Nﬁ] s . With increasing Ng, however, the

SNR dlfference between the bound observable receiver and
the coherent-state bound increases by more than twice the
SNR difference between the PC receiver and the coherent-
state bound, as shown in Fig. 2. At Ny = 7, the SNR difference
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FIG. 1. SNR for QI as a function of Ny at k = 0.01, Nz = 30,
M = 107 under constant thermal noise: coherent-state bound (Coh),
receivers with observable bound (OB), nearly observable bound
(OB), PC, OPA, and double homodyne (DH).

for the bound observable receiver is about 376 whereas the
SNR difference for the PC receiver is about 185.

B. Nonconstant thermal noise

In the above, we simulated the thermal noise Np by in-
jecting a thermal state with mean photon number Ng/(1 — «)
into a beam splitter with reflectance «, leading to the thermal
noise that is independent of a target reflectance. We can raise
a question regarding if we designate the thermal mean photon
number as not Ng/(1 — «) but Np which is natural in experi-
ments. Thus, the thermal contribution depends on the target
reflectance as (1 — x)Np. Since the thermal noise contains
the target information as xNp which is not ignorable, there-
fore, the bound observable should include the last component
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FIG. 2. SNR difference as a function of Ng at « = 0.01, Nz = 30,
M = 107 under constant thermal noise: between the bound observ-
able receiver and coherent-state bound (purple dashed curve), and
between the PC receiver and the coherent-state bound (black solid
curve).

6000 OPA //,
------ PC L
5000 7 BH /:'::‘
4000 Near OB L
= 3000} — S L
n OB /:::_1,« .
2000 ’,,’::,I' _
L3P -
1000 ’,4,’-" - —
0
0 1 2 4 5 5 -
Ns
1408 oo ":""_'":"_'
120 —
v 100
= 80
“ 60
40
20

0.000 0.002 0.004 0.006 0.008 0.010
Ns

FIG. 3. SNR for QI as a function of Ny at x = 0.01, Nz = 30,

M = 107 under nonconstant thermal noise: coherent-state bound, re-

ceivers with observable bound (OB), nearly observable bound (OB),
PC, OPA, and double homodyne (DH).

(&;&5) of Eq. (3). The corresponding SNR is given by
M[2C — ak(Np — Ns)I*

SNRM) — NG))
N2/ A2O,, + (k) + /A20q,, + 1(0)]
where  A?0,, =2C?>4+BNs+ (B+ 1)(Ns + 1), Il(k) =

a’B(B+ 1)+ B>Ng(Ng + 1) + 2aC(2B + 1) + 2BC(2Ng +
1)+ 2aBC?, and B = kNg + (1 — k)Np. A%O,, is a variance
of the observable, Og = &;&} + aga;, when a target is on.
We numerically obtain negative values of « and 8 whose
details are plotted in Appendix B. In Fig. 3, we compare all
the receivers under nonconstant thermal noise. The SNR of
Eq. (7) outperforms all the other receivers. At a low input
power Ng < 0.01, the double homodyne receiver is close
to the bound one, as shown in the inset of Fig. 3. In the
limit of Ny — 0, the SNR of Eq. (7) converges to a nonzero
value because the transmitted thermal noise contains the
target information that is measured with (&E&s). This also
applies to the results of the double homodyne receiver and the
coherent-state bound.

C. Measurement setup

In Fig. 4, we consider if it is possible to implement the
bound observable as well as the nearly bound one, in terms of
linear optics and heterodyne detection (HTD) that performs
homodyne detection (HD) on each mode after dividing a
signal by a 50 : 50 beam splitter. HD measures a quadrature
operator as follows: A signal and a local oscillator (LO) are
impinged on a 50 : 50 beam splitter, and then we measure
the intensity difference between the output ports. Thus, we
obtain the mean value of a quadrature operator as (i1, — i) =
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FIG. 4. Measurement setups for QI: (a) HTD, and (b) coinci-
dence HTDs after combining the reflected and idler modes. BS
represents a 50 : 50 beam splitter. ¢ is a phase shifter. LO means
a local oscillator. When we perform the HTD, the reverse arrow (red
color) indicates how to derive an observable including vacuum noise.
It includes the following observables, XX, BB, )?Cz( 4 and PL( e

laz|(X(9)) = |aL|(M) The phase (or amplitude) of
the LO controls ¢ (or oz). At ¢ =0 (or 7 /2), the quadrature
operator corresponds to the position X (or momentum P)
operator. Both position and momentum operators on the signal
can be measured by the HTD with additional vacuum noise.
However, in the double HTD (dHTD) after the 50 : 50
beam splitter, the additional vacuum noise produces a large
variance so that we cannot take quantum advantage over
the classical bound. Let us consider the case of the nearly
bound observable Og; = &;&; + asa; which is almost over-
lapped with the case of the bound observable. In Fig. 5(a),
we show that the TMSV state with double HTD cannot
beat the performance of the coherent state with HD because
additional vacuum noise produces more errors than the infor-
mation that we get by the double HTD. If we directly measure
the observable Og; = &§&; + aga; by performing HTD on
the reflected and idler modes separately, the performance is
still below the performance of the coherent state with HD,

6000} .- H'l? I:)separatelyl
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4000l — HTD 50:50 BS

Z 3000 .
2000 ‘
1000

100
80
60
40
20
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FIG. 5. QI bound by dHTD under constant thermal noise:
(a) SNR as a function of Ng at « = 0.01, Ny =30, M =107,
and (b) SNR difference between the coherent state with HD and
TMSV state with HTD separately. The coherent state outperforms
the TMSV state under the HD and HTD. Coh & HD represents a
coherent state with homodyne detection. OB represents observable
bound.

as shown in Fig. 5(b). Moreover, if we directly measure
an observable Oyp = Xz (6)X;(¢) (optimized at 6 + ¢ = nm,
n=20,1,2,...) by performing HD on the reflected and idler
modes separately, the performance is getting worse than the
performance by the double HTD after the 50 : 50 beam splitter
with increasing Ng. More information is given in Appendix C.

III. OBSERVABLE BOUND FOR CI

In CI, a single-mode coherent state asymptotically attains
its QCB by performing homodyne detection [2], but it is not
known if a classically correlated thermal state can approach
its QCB under mode-by-mode measurements and how far it is
from the coherent-state QCB. Instead of a single-mode input
state, we consider a two-mode input state which is produced
by impinging a thermal state into a beam splitter, resulting
in a classically correlated thermal (CCT) state. The output
covariance matrix that represents target-on is given by

B+1 D 0 0
D N41 0 0
0 o B D ®)
0 0O D N

where B = kNg + Ng, D = +/k NgN;. Ng (N;) is the mean
photon number of the signal (idler) mode that is controlled by
the beam-splitting ratio. The off-diagonal element D produces
a classical correlation. When the target is off, the covariance

Csi(k) =
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FIG. 6. For Nz = 30, M = 107, (a) SNR for CI as a function of
target reflectance «; CCT state by QCB (blue) and by O (black)
at Ny = N; =1 (solid lines) and Ng = 1, N; =2 (dashed lines).
(b) SNR for CI as a function of Ny at x = 0.01; CCT states at Ny =
N; by QCB (blue curve) and O, (black curve) that are overlapped.
Coherent state by QCB is described with the red dotted-dashed lines.

matrix becomes Cs;(0). By comparing the covariance matri-
ces of the target-on and target-off, we propose an observable
Oott = a5a1 + a,as, consisting of off-diagonal elements. The
corresponding SNR is given by
SNRt(}llu) _ ZMKNSNI -, (9)
[\/4-KN5N1 +kNs+y+ ﬁ]

where y = Ny + Np(1 4+ 2N;). The SNR with the observable
attains the QCB, as shown in Fig. 6. Under a fixed Ng, the
amount of the classical correlation is proportional to Ny, re-
sulting in an enhanced SNR. However, it cannot beat the
coherent-state QCB. Replacing the thermal state by a coherent
state, we also obtain SNR%I) by removing the term 4k NgN; in
the denominator of Eq. (9). But the coherent state with the
observable cannot attain its QCB. In Fig. 6, the coherent state
with HD shows a higher SNR than the thermal state. The ten-
dencies are maintained regardless of constant or nonconstant
thern(lal) noise. In the limit of Ng, k& << 1 and NB, N; > 1, the
SNR

_ MkNg
bility becomes P = lerfc[ MKNS] < e ™ | resulting in a

coherent-state QCB.

A. Measurement setup

The off-diagonal elements represent the bound observable.
It is implemented by a photon number difference measure-
ment (PNDM) after interfering the reflected and idler modes
by a 50 : 50 beam splitter. The PNDM observable is described

with ¢&fé — c?"ﬁ, and it is inversely transformed to &;&1 +
&;&s by the 50 : 50 beam splitter. Given a general beam-
splitting transformation of &' — ra} —ie~¥ra} and d¥ —

ta1 — et raS, the transformed observable is derived as

éfe—did —» > —r )(asas — a,a,)

—2rt[(agay + ajas) sing — i(aa; — ajas) cosgl. (10)

At t—r—\% and 9 =Q2n+1DZ (1=0,1,2,...), the

transformed observable becomes :I:(&;&, + &;&g). The phase
component ¢ includes a phase shifter in one arm that plays
the role of a path-length difference. In the limit of N; >> 1, the
PNDM converges to homodyne detection as (aa; 4 a}as) —
V2N; (X5(¢)). It is the same as CI using a single-mode coher-
ent state with homodyne detection.

Moreover, we may consider the observable Ot = &;&1 +
&;&S = X¢X; + PP, by performing HTD on the reflected
and idler modes separately. After including the vacuum

noise, the corresponding mean and variance are given
by
<00ff,v) = %(Oofﬂv
A?Ocfr,y = HA*Ootr + 2 + (s + 1)1 (11)

We obtain that the performance of the HTD is below the
performance of the bound observable. If we consider an ob-
servable Oyp = Xz(0)X;(¢) (optimized at ¢ — 6 = nw, n =
0,1,2,...) by performing HD on the reflected and idler
modes separately, the performance is even worse than the
performance of the HTD.

IV. DISCUSSION

In Gaussian illumination, we proposed bound observables
with feasible measurement setups to maximize the SNR
under constant and nonconstant thermal noises. Using the
bound observables under the condition of Ng,k < 1 and
Np > 1, we showed that QI using entangled states cannot
attain its QCB but CI using classically correlated states can
attain its QCB. In QI, the SNR using the bound observ-
able outperforms the SNRs using other observables for any
number of Ny, N, k. However, the bound observable mea-
surement cannot be achieved by using linear optics with
heterodyne detection due to the additional vacuum noise. In
CI, the measurement setup consists of PNDM after combin-
ing the reflected and idler modes by a 50 : 50 beam splitter.
The SNR using the bound observable can asymptotically
approach the coherent-state QCB, while the SNR with a clas-
sically correlated thermal state cannot beat the SNR with a
coherent state.

Since the observables we considered do not include col-
lective measurements, the receivers with the observables do
not always approach the QCBs. Note that, in the limit of
Ns < 1, QI using our receiver asymptotically improves the
error probability exponent by a factor of 2 over the classi-
cal state QCB. It guarantees a half exponent of the TMSV
state QCB by measuring the elements of the output covari-
ance matrix. Since our bound observables belong to a class
of local operations assisted with classical communication

042412-5
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FIG. 7. Optimal value of |B| of Eq. (5) as a function of Ny at
k = 0.01, Ny = 30, M = 107 under constant thermal noise.

[30,31], it cannot approach the QCB that requires collective
protocols [8]. However, CI using our receiver asymptoti-
cally approaches the classical bound in the limit of Ny < 1
and N; > 1.

In QI, we could not measure the bound observable with
linear optics, HD, and HTD. As a further work, it remains an
open question of how the bound observable can be experimen-
tally measured with nonlinear systems.
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APPENDIX A: SNR UNDER CONSTANT THERMAL NOISE

For the SNR of Eq. (5) using the bound observ-

able, we derive the corresponding optimal relation |B| =
(A+2Ns)

Tl = I =N £ D), where f =14 Ns +

Ngp + 2NsNp. It is shown in Fig. 7, which corresponds to the
values of |B| in Fig. 1. With increasing N, the value of |B|
converges to /k.

From the observables considered in Sec. II, we analytically
derive the SNRs of three different receivers under constant
thermal noise after the target interaction. For the PC receiver,
the SNR is given by

2MC*?
[/A%0, + B Ng + /8200 + NP

. (AD)

SNRUY =

which is always smaller than the SNR of Eq. (6). The param-
eters are designated as u = V2andv =1 [6].
For the OPA receiver, the SNR is given by

2
o Gl G iy
SNROD = , (A2)
O VA0, + ) + A200 + g(O)P
where qlc) = LAA+ 1) + ZENs(Ns + 1) +

Ze=1(G = DA +2) + G@Ns + D] +2C% The gain

is implementable as G — 1 =7.4 x 1075 [15]. Since the
additional denominator terms g(«x) and ¢(0) are much larger

-0.1

-0.2
-0.3

aopt

-04

FIG. 8. Optimal values of o and § of Eq. (7) as a function of Ng
at k = 0.01, Ny = 30, M = 107 under nonconstant thermal noise.

than the additional numerator term ,/ %KTNY, the SNR with
the OPA is always smaller than the SNR of Eq. (6).
For the double homodyne (DH) receiver, the SNR is given

by

IM(C — Ds)?
SNRU) = ( ) 5. (A3)
[V/A2O, + pic) + /A20, + p(0)]
where plk) = A 4+ 1) + Ng(Ns 4+ 1) + 2C* — 4C(A +

Ng + 1). Since all the additional terms diminish the SNR, the
SNR with the DH is always smaller than the SNR of Eq. (6).

APPENDIX B: SNR UNDER NONCONSTANT
THERMAL NOISE

Initially, we assign the thermal mean photon number as
Np which is natural in experiments. After the target interac-
tion, the transmitted thermal noise becomes (1 — x)Np, and
then the matrix element A is transformed as xNg + Np —
kNs 4 (1 — k)Ng. For the SNR of Eq. (7) using the bound
observable, we obtain the values of & and B numerically, as
shown in Fig. 8. At Ny = 0.01, the o and B correspond to
—0.54 and —9.08, respectively. In Egs. (A2) and (A3), due
to the observable shapes, a component of the numerator is
transformed as kN5 /2 — «(Ng — Np)/2.

APPENDIX C: MEASUREMENT SETUP USING DOUBLE
HETERODYNE DETECTION

After combining the reflected and idler modes by a 50 : 50
beam splitter, &} — %(6T +d")and a; — \/%(df — &M, we

042412-6
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obtain the output observable

Mips(ct, ) = %[(“ Py 1)025 s

+<a erﬂ _ 1)()23 + B2~ (a+p)
+ (e — BYXXy + PP, (C)

which demands coincidence measurements on the posi-
tion and momentum operators, together with the square
of each operator. The mean value of a square quadra-
ture operator is obtained by calculating the squared
outcomes of HD, (X%(¢)) = ffooo dxx*P(x, ¢), where the
marginal distribution P(x,¢) is obtained by repeated
measurements.

However, it is unavoidable to produce additional vac-
uum noise after the HTD. Let us see the observable
Mp(0,0) = 1[(X} — P?) — (X2 — P?)] that corresponds to
the nearly bound observable. As shown in Fig. 4(a), an ad-
ditional vacuum noise is included into the observable by
the transformation of Xd(c) — \%(Xd(c) —I—Xd(c),v) and f’d(c) —

%(Pd(c) — Pyy)w), where Xy)» and Py, belong to the

vacuum noise. Although we measure X7, and P} by hetero-
dyne detection on the output signal mode, due to the vacuum

noise, the observable is transformed into
Mips (0, 0) = §[Mipes(0,0) + 5 (X7, — B ) —3(X2, — B2)
+ (}?d}zd,v + pdﬁd,v) + (Xc}?c,v + pcﬁc,v)]’
(€2)

which is applied to the output ¢ and d modes, as shown in
Fig. 4(b). Then, the mean and variance of Eq. (C2) are given
by

(Mprs,5(0, 0)) = 1 (M50, 0),
A*Mips (0, 0) = H[A*Mp(0,0) + 1 + (A + 2g)].  (C3)

The output variance of Eq. (6) is enlarged as A20, +
4[1 4+ Np + (1 4+ k)Ns], which is close to the output vari-
ance of the bound observable including the vacuum
noise.

On thelother hand, we directly measure the observable
Og = &}&; + asay by performing HTD on the reflected and
idler modes separately. After including the vacuum noise, the
corresponding mean and variance are given by

(Ost.) = 3(Os1),
A?Os1y = SIA*Os1 + 1 + (fis + )] (C4)

The corresponding output variance is A20, + [1 + Np +
(1 4 «)Ns].
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