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Generation of multiple entangled fields via mechanical oscillator displacement
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We present a convenient and efficient scheme to generate multipartite continuous-variable entanglement via
mechanical oscillator displacement induced by two strong input pump fields in a conventional single-cavity
optomechanical system. It is shown that multipartite entanglement among the outputs of the two pump fields and
any number of relatively weak probe fields can be realized and optimized when the two pump fields with suitable
amplitude ratio and relative initial phase are, respectively, tuned to the red and blue mechanical sidebands of a
single-cavity mode and each probe field is red detuned by the mechanical frequency with respect to a different
neighboring cavity mode. This method can, in principle, be extended to flexibly and conveniently generate an
arbitrary number of nondegenerate bright entangled fields by using only coherent laser fields, and may find
promising applications in realistic quantum communication and networks.
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I. INTRODUCTION

Generation of multipartite continuous-variable (CV) entan-
glement plays an essential role in quantum communication
and networks [1,2]. The traditionally employed method for
producing multiple entangled light fields is to use polarizing
beam splitters (PBSs) to mix the squeezed fields generated
through parametric down-conversion processes in nonlinear
optical crystals [3–6], and the generation of multipartite CV
entanglement by using squeezed fields multiplexed in both
the time (up to 10 000 or even 1 000 000 entangled modes)
[7–9] and frequency (up to 60 entangled modes) [10] domains
has been experimentally realized; however, such produced
entangled multiple fields normally have large bandwidth and
suffer from short correlation time, thus limiting their poten-
tial applications in quantum memory and quantum networks
[2]. As is well known, realistic quantum networks would be
composed of many quantum nodes and channels, where at
the quantum nodes, multiple nondegenerate bright entangled
fields are quite necessary for connecting different physical
systems, and the atomic ensembles [11–17] or mechanical
oscillators [18–33] with long coherence time provide poten-
tial matter media for storage and manipulation of quantum
information. Therefore, how to conveniently and efficiently
produce a high degree of light-light, light-matter, and matter-
matter multipartite entanglement remains a challenging task
in the process of realizing realistic quantum communication
and networks.

To compare with the atomic system, the optomechanical
system can, in principle, couple to light fields with any desired
frequencies for producing multiple entangled fields (e.g., the
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generation of bipartite entanglement between microwave pho-
tons and optical photons [19]), thereby avoiding the enquire
of particular frequencies corresponding to naturally existing
atomic resonances in the atomic system; moreover, the op-
tomechanical system can also be employed to test quantum
features of macroscopic mechanical objects, which would
be beneficial to investigating directly the fundamentals of
quantum mechanics and the limitations of quantum-based
measurements [20]. Many schemes have been proposed for
generating entanglements between a cavity field mode and
a mechanical mode, and between two or more cavity field
modes as well as mechanical modes, such as driving one
single sideband or two sidebands of a single-cavity mode,
and two or more independent cavity modes with one or more
laser fields [21–28]. In addition, several kinds of driving
methods, such as squeezed input laser fields [29,30], classical
feedback based on the processing of outcomes [31,32], and
time-periodically modulated coherent driving fields [33], have
been utilized to dramatically improve the degree of quantum
squeezing and entanglement in the optomechanical system.

The strong interactions between laser fields and ma-
terial media can result in many special effects, such as
electromagnetically induced transparency (EIT) [34–36],
electromagnetically induced entanglement (EIE) [37,38], and
electromagnetically induced squeezing (EIS) [39,40] in the
atomic system, where the common physical mechanism is
the atomic coherence induced by laser fields. Recently, the
optomechanical analogs of EIT, EIE, and EIS, that is, optome-
chanically induced transparency, entanglement, and squeezing
(OMIT [41–43], OMIE [44], and OMIS [45–47]), have also
been extensively studied, where the physical origin of these
peculiar effects is mechanical oscillator displacement, which
plays a role similar to the atomic coherence for EIT, EIE, and
EIS in the atomic system.
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FIG. 1. (a) The considered conventional single-cavity optomechanical system with a movable mirror (MM) driven by two strong input
pump 1 and 2 fields with frequencies ωl1 and ωl2 and any number of relatively weak input probe fields 1, 2, …, n with frequencies ωp1,p2,...,pn

and their corresponding outputs. (b) The relevant frequencies of the cavity fields as well as the input pump and probe fields, where the input
pump 1 (2) field is red (blue) detuned by the mechanical oscillation frequency ωm to the cavity field mode 0 with frequency ωc0, and the input
probe fields 1, 2, …, n are tuned to the red mechanical sidebands of the neighboring cavity modes with frequencies ωc1,c2,...,cn.

Motivated by the proposal of generating multipartite CV
entanglement via atomic spin coherence created by the strong
on-resonant coupling and probe fields in the �-type EIT-
configuration atomic system [16], in this study, we present a
convenient and efficient scheme to generate an arbitrary num-
ber of nondegenerate bright entangled fields via mechanical
oscillator displacement induced by two strong input pump
fields in the conventional single-cavity optomechanical sys-
tem. The two strong pump fields with suitable amplitude ratio
and relative initial phase are tuned, respectively, to the red
and blue mechanical sidebands of a single-cavity mode to
produce mechanical oscillator displacement, which acts as a
quantum entanglement mediator, realizing, in principle, mul-
tipartite entanglement among the outputs of the two strong
pump fields and any number of relatively weak probe fields
with each probe field red detuned by the mechanical frequency
to a different neighboring cavity mode. This scheme provides
an efficient and convenient way to generate multiple nonde-
generate bright entangled light beams by using only coherent
laser fields, and may bring great facility in realistic quantum
communication and networks. Note that the present scenario
is quite distinct as compared to that in Refs. [21,24–27], where
in Refs. [24–27] two cavities driven by two strong external
blue- and red-detuned microwave or laser fields interacting
with a common mechanical system are employed, and only bi-
partite (tripartite) entanglement between the two output fields
(among the two output fields and mechanical oscillator) is ob-
tained in the dual-cavity optomechanical system; in Ref. [21],
only the effect of the coupling parameters of the cavity fields
with respect to the mirror on the multipartite entanglement is
investigated with each cavity mode resonant with the cavity in
an optomechanical system.

II. THEORETICAL MODEL AND HEISENBERG-
LANGEVIN EQUATIONS

The considered standard single-cavity optomechanical sys-
tem is driven by two strong input pump 1 and 2 fields with

frequencies ωl1 and ωl2 and any number of relatively weak
input probe fields 1, 2, …, n (n being a positive integer)
with frequencies ωp1,p2,...,pn [see Fig. 1(a)], and the relevant
frequencies of the cavity fields as well as the input pump and
probe fields are displayed in Fig. 1(b), where the input pump
1 (2) field is red (blue) detuned by the mechanical oscillation
frequency ωm to the cavity field mode 0 with frequency ωc0,
and the input probe fields are tuned to the red mechanical
sidebands of the neighboring cavity modes with frequencies
ωc1,c2,...,cn. The Hamiltonian of the cavity optomechanical sys-
tem can be described as

H =
n∑

i=0

h̄ωcia
+
i ai + h̄ωmb+b −

n∑
i=0

h̄gia
+
i ai(b

+ + b)

+
(

ih̄ηl1a+
0 e−iωl1t + ih̄ηl2a+

0 e−i(ωl2t−ϕ)

+
n∑

j=1

ih̄ηp ja
+
j e−iωpt + h.c.

)
, (1)

where ai (b) is the annihilation operator of the cavity
field mode i (the mechanical oscillation mode) and g0( j) =
ωl1,l2(p j)

√
h̄/mωm/L is the optomechanical coupling coeffi-

cient of the radiation pressure with m being the effective
mass of the mechanical oscillator and L the cavity length.
The last three terms in Eq. (1) describe the interaction of
the two pump and n probe input fields with the cavity field
modes, where ηl1,l2(p j) is related to the input pump (probe)
field power Pl1,l2(p j) with ηl1,l2(p j) = √

2Pl1,l2(p j)k/h̄ωc0( j) (for
simplicity, we assume all of the decay rates of the cavity fields
are equal to k), and ϕ is the relative initial phase between the
two input pump fields. We denote the frequency detuning of
the cavity mode 0 (input pump 2 field) with respect to the
input pump 1 field as �0=ωc0 − ωl1 (δ=ωl2 − ωl1), and the
frequency detuning of the cavity mode j to the corresponding
input probe field as � j=ωc j − ωp j . In the frame rotating at
the input pump 1 (probe j) field frequency ωl1 (ωp j), the
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Heisenberg-Langevin equations can be written as

ȧ0 = −(k+i�0)a0+ig0a0(b + b+) + ηl1

+ηl2eiϕe−iδt +
√

2kain
0 , (2a)

.

b = −(γm + iωm)b +
n∑

i=0

igia
+
i ai+

√
2γmbin, (2b)

ȧ j = −(k+i� j )a+ig ja j (b + b+) + ηp j +
√

2kain
j , (2c)

where γm is the damping rate of the mechanical oscilla-
tor, and ain

i (t ) and bin(t ) are the optical and mechanical
noise operators with the relevant nonzero correlation func-
tions 〈ain

i (t )ain+
i (t ′)〉 = δ(t−t ′) and 〈bin(t )bin+(t ′)〉 = (N +

1)δ(t−t ′) in the limit of the large mechanical quality factor
(i.e., Qm = ωm/γm � 1) with N = 1/[exp(h̄ωm/kBT ) − 1]
being the mean thermal phonon number, kB the Boltzmann
constant, and T the temperature of the reservoir of the
mechanical oscillator. We assume the two pump fields are
employed in the strong coupling regime for generating a
high degree of bipartite entanglement (i.e., the two strong
pump fields with the cooperativity C = 4g2

0|〈a0〉|2/κγm � 1,
as discussed in Refs. [24–27]). We further assume that the
strengths of the two pump fields are far larger than that of the
probe fields (Pl1,l2 � Ppj); in this case, the mechanical oscil-
lator displacement mainly results from the two pump fields,
and the radiation pressure force from the probe fields can
be safely neglected. Consequently, in the resolved-sideband
regime (ωm � κ), solutions to Eqs. (2a) and (2b) can be well
approximated by the ansatz a0 = a0− + a0+e−iδt and b=̇b0,
where a0− and a0+ correspond, respectively, to the cavity field
operators with frequency components of the pump 1 (ωl1) and
pump 2 (ωl2) fields in the original frame. Similar treatment has
been employed to produce mechanical squeezing in an elec-
tromechanical system [31] and OMIE in an optomechanical
system [44]. Submitting a0 and b into Eqs. (2a) and (2b) and
equating the respective frequency components, the evolutions
of the operators a0− , a0+ , a j , and b0 can be written as

ȧ0−, j = −(k+i�0, j )a0−, j+ig0, ja0−, j (b0 + b+
0 )

+ ηl1,p j +
√

2kain
0−, j, (3a)

ȧ0+ = −[k+i(�0 − δ)]a0++ig0a0+ (b0 + b+
0 )

+ ηl2eiϕ +
√

2kain
0+ , (3b)

ḃ0 = −(γm + iωm)b0 + igi

n∑
i=0

a+
i ai +

√
2γmbin

0 . (3c)

When the moduli of the steady-state mean values of the cavity
field mode operators |αs| � 1, one can write each Heisenberg
operator in Eqs. (3a) and (3c) as the sum of its steady-state
mean value and a small fluctuation operator with zero-mean
value (i.e., as = αs + δas (s = 0−, 0+, j), and b0 = β + δb),
and safely linearize the Hamiltonian by neglecting the
nonlinear terms in the fluctuation operators [22]. By
resolving Eqs. (3a)–(3c), one can readily get the steady-state
mean values α0−, j = ηl1,p j/|k + i[�0, j − g0, j (β + β∗)]|,
α0+ = eiϕηl2/{k + i[�0 − δ − g0(β + β∗)]}, and β

.=
ig0(|α0−|2 + |α0+|2)/(γm + iωm), where the phase references
of the input pump 1 field and input probe fields are

chosen to let α0−, j be real and positive. Defining the
fluctuation quadrature operators δXs=(δas+δa+

s )/
√

2
and δYs=(δas − δa+

s )/
√

2i, and δXb=(δb+δb+)/
√

2 and
δYb=(δb−δb+)/

√
2i, and the corresponding Hermitian noise

operators X in
s and Y in

s , as well as X in
b and Y in

b , we can obtain
the quantum Langevin equations for the fluctuation operators:

δẊ0−, j = −kδX0−, j + [�0, j − g0, j (β + β∗)]δY0−, j

+
√

2kX in
0−, j, (4a)

δẎ0−, j = −kδY0−, j − [�0, j − g0, j (β + β∗)]δX0−, j

+2g0, jRe(α0−, j )δXb +
√

2kY in
0−, j, (4b)

δẊ0+ = −kδX0+ + [�0 − δ − g0(β + β∗)]δY0+

−2g0Imα0+δXb +
√

2kX in
0+ , (4c)

δẎ0+ = −kδY0+ − [�0 − δ − g0(β + β∗)]δX0+

+2g0Reα0+δXb +
√

2kY in
0+ , (4d)

δẊb = −γmδXb + ωmδYb +
√

2γmX in
b , (4e)

δẎb = −γmδYb − ωmδXb + 2g0

n∑
s=0−,0+,1

Re(αs)δXs

+2g0

n∑
s=0−,0+,1

Im(αs)δYs +
√

2γmY in
b . (4f)

By Fourier transforming Eqs. (4a)–(4f), the quan-
tum fluctuation operators with respect to the Fourier
frequency ω can be attained. In what follows, we
focus on the entanglement at ω = 0, and use the
input-output relation δAout

s (ω) =√
2κδAs(ω) − Ain

s (ω)
(A = X,Y ) as well as the entanglement criterion
Vi j=〈δU (ω)δU +(ω) + δV (ω)δV +(ω)〉 < 2 proposed in
Refs. [48,49] to test the entangled feature of the cavity
field outputs, where δU (ω)=δX out

i (ω) ± δX out
j (ω) and

δV (ω)=δY out
i (ω) ∓ δY out

j (ω) (“+” in δU (ω) and “–” in
δV (ω) for both V0−0+ and V0+ j , whereas we use “–” in
δU (ω) and “+” in δV (ω) for V0− j). Satisfying the above
inequality sufficiently demonstrates the generation of bipartite
entanglement, and the smaller the correlation Vi j , the stronger
the degree of the bipartite entanglement. The analytical
expressions for the correlations Vi j can easily be obtained by
solving Eqs. (4a)–(4f); however, as they are too cumbersome
to be presented here, we only give the numerical results. In
the resolved-sideband limit, in order to ensure the stability of
the system, the coupling strength of the blue-detuned driving
pump 2 field should not be larger than that of the red-detuned
driving pump 1 field for the case of the equal decay rates of
the cavity fields [25–27].

III. GENERATION OF TRIPARTITE AND
QUADRIPARTITE ENTANGLEMENTS

Figures 2(a) and 2(b) give the main results of this study,
where the behavior of tripartite and quadripartite entangle-
ments among the outputs of the pump and probe fields as a
function of the normalized effective detuning �eff/ωm [�eff =
�0 − g0(β + β∗)] is depicted with the realistic experimental
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FIG. 2. The evolution of the correlations V0−0+ , V0−1, and V0+1

(a) and V0−0+ , V0−1, V0+1 V12, V0−2, and V0+2 (b) at zero Fourier
frequency as a function of the normalized effective detuning �eff/ωm

with the realistic experimental parameters used in Ref. [29] with
L = 0.025 m, T = 0.1 K, ωm = 2π × 1 MHz, γm = 2π × 1 Hz,
κ = 2π × 4.3 × 105 Hz, λ = 1064 nm, m = 150 × 10−12 kg,
Pl1 = Pl2 = 50Pp1,p2 = 40 mW, �1 = �2 = ωm, δ= 2ωm,
and ϕ = −0.3.

parameters used in Ref. [33]. It can be seen from Fig. 2(a) that,
when the pump 1 field is tuned near to the red mechanical
sideband of the cavity mode 0, that is, the pump 2 field is
nearly blue detuned by ωm, and the probe 1 field is tuned to
the red mechanical sideband of the neighboring cavity mode
1, the correlations V0−0+ , V0−1, and V0+1 all exhibit a dip in a
limited range of the effective detuning around �eff=ωm with
the minimum values of about 1.4, 1.8, and 1.8, respectively.
This clearly demonstrates that the outputs of the two pump
fields and the probe field are genuinely entangled with each
other, and tripartite entanglement among them is achieved. In
addition, the degree of the bipartite entanglement between the
two pump fields is stronger than that between the probe and
either of the two pump fields.

The physical mechanism underlying the above generated
tripartite entanglement among the outputs of the pump and
probe fields can be well understood by considering the inter-
action between the cavity fields and mechanical oscillator. As
seen from Eqs. (3a)–(3c), the Hamiltonian of the system in the
frame rotating at the input pump 1 (probe j) field frequency
ωl1 (ωp j) can be equivalently described as

H = h̄�sa
+
s as + h̄ωmb+

0 b0 +
∑

s

h̄gsa
+
s as(b0 + b+

0 ). (5)

Obviously, the single cavity driven by two strong pump
fields tuned, respectively, to the red and blue mechanical side-
bands of single-cavity field mode in the present scenario has
similar features as two driven cavities with opposite detunings

equal to the mechanical frequency coupled to a single mode
of a common mechanical resonator studied in Refs. [25–27].
As analyzed in Refs. [25–27], with the standard lineariza-
tion of the Hamiltonian in Eq. (5), the obtained effective
interaction Hamiltonian can be described by two separate
two-mode interactions in the resolved-sideband regime by
neglecting the counter-rotating terms. One is a nondegenerate
parametric down-conversion process for the driving pump 2
field, generating a Stokes photon at the cavity resonance and
a phonon at the mechanical resonance, which would result
in two-mode squeezing and bipartite entanglement between
the Stokes field mode and vibrational mode; and the other
is a beam-splitter-like coupling between the mechanical res-
onator and cavity field, where an injected drive photon from
pump 1 field and a phonon emitted from the vibrating mirror
produce an anti-Stokes photon at the cavity resonance, and
entanglement swapping leads to bipartite entanglement be-
tween the anti-Stokes field mode and vibrational mode. The
above generated Stokes and anti-Stokes modes (i.e., the two
components of the cavity field mode ωc0) can be equivalently
regarded as the result of the frequency down- (or up-) conver-
sion process through scattering the two input pump fields off
the common mechanical oscillator, which acts as a frequency
converter with frequency equal to its oscillation frequency.
Clearly, the present scheme has similar feature as that for gen-
erating anti-Stokes-Stokes-atom tripartite entanglement via
atomic spin coherence in the �-type atomic system studied
in Refs. [16,17], where the mechanical oscillator plays a role
similar to the atomic spin coherence. Therefore, strong anti-
Stokes-Stokes-mirror tripartite entanglement and subsequent
tripartite entanglement among the outputs of the two pump
fields and mirror can be realized.

When a relatively weak probe field with red detuning
equal to the mechanical frequency is incident onto the cavity
(we choose � j = ωm � g j |a j |), its influence on the mechan-
ical mode can be neglected; as done in Ref. [22], in the
frame rotating at the mechanical frequency ωm and under the
rotating-wave approximation, the quantum fluctuation of the
probe field output can be expressed as δaout

j = i g jα j√
k
δb + ain

j .
It is obvious that the probe field output completely char-
acterizes the feature of the mechanical oscillation mode,
and gets entangled with the vibrating mirror and subse-
quent outputs of the two pump fields. In this regard, the
probe field has a similar function as that used in Ref. [22]
to measure the optomechanical entanglement by using an
additional adjacent cavity sharing the common vibrating
mirror.

The physical origin of the generated tripartite entanglement
among the outputs of the two pump fields and probe field
can also be seen directly from Eqs. (3a)–(3c). As shown in
Eqs. (3a)–(3c), all of the pump and probe field modes are
optomechanically coupled to the mechanical oscillation mode
via the mechanical oscillator displacement operator Xb and
interact with each other, and correlation and entanglement
among the cavity field modes as well as their corresponding
outputs can be established. If there is no mechanical oscillator
displacement, then the cavity modes would have no mutual
coupling, and no correlation and entanglement would exist
among them.
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FIG. 3. The 3D plots of the evolution of the correlations V0−0+ (a), V0−1 (b), and V0+1 (c) at zero Fourier frequency with respect to the
intensity ratio R (R = Pl2/Pl1) and relative initial phase ϕ of the two driving pump fields, and the other parameters are the same as those in
Fig. 2.

The above idea for producing tripartite entanglement via
mechanical oscillator displacement can, in principle, be read-
ily extended to generate any number of entangled fields when
more probe fields red detuned by the mechanical frequency
are employed to drive different neighboring cavity modes.
This concept is evidenced by adding the probe 2 field to test
the quadripartite entanglement among the outputs of the two
pump and two probe fields. As shown in Fig. 2(b), all of
the six correlations V0−0+ , V0−1, V0+1 V12, V0−2, and V0+2 are
smaller than 2 in a limited range of effective detuning around
�eff=ωm [note that V0−1 (V0+1) and V0−2 (V0+2) have the same
evolution behavior and for clarity V0−2 and V0+2 are enlarged
by 1.01 times], indicating the generation of quadripartite en-
tanglement among these four output fields. Therefore, the
realization of the quadripartite entanglement provides clear
evidence that an arbitrary number of entangled CV fields
can, in principle, be produced via the mechanical oscillator
displacement induced by the two strong pump fields. The
scalability to conveniently and efficiently generate an arbitrary
number of nondegenerate entangled fields is the key feature in
the present scenario.

We also show the three-dimensional (3D) plots of the
evolution of the correlations V0−0+ , V0−1, and V0+1 at zero
Fourier frequency with respect to the intensity ratio R (R =
Pl2/Pl1) and relative initial phase ϕ of the two pump fields
in Figs. 3(a)–3(c) as well as the environmental temperature
T and cavity field decay rate κ in Figs. 4(a)–4(c) within the
experimentally available parameters, respectively. It can be
seen that tripartite entanglement among the outputs of the
two pump fields and probe field can be realized and opti-
mized by suitably choosing the intensity ratio R of the two
pump fields (nearly equal coupling strengths for the case of
equal cavity decay rates), which is consistent with that in
Refs. [25–27]. Also, there exists an optimal relative initial
phase ϕ and cavity field decay rate for generating the strongest
tripartite entanglement, which indicates that by controlling
the relative initial phase of the two input pump fields and/or
cavity field decay rate, the generation and manipulation of
the multipartite entanglement can be realized. Note that such
dissipation-induced entanglement in an optomechanical sys-
tem [24–27,45–47] and in an atomic system [39,40,50,51] has
been extensively examined as well. In addition, though the

FIG. 4. The 3D plots of the evolution of the correlations V0−0+ (a), V0−1 (b), and V0+1 (c) at zero Fourier frequency with respect to the
environmental temperature T and cavity field decay rate κ (κ0 = 2π × 4.3 × 105 Hz), and the other parameters are the same as those in Fig. 2.

042409-5



YANG, ZHANG, XU, AND WANG PHYSICAL REVIEW A 105, 042409 (2022)

degree of bipartite entanglement between either of the two
pump fields and the probe field would be weakened dramati-
cally with the increase of the environmental temperature, the
bipartite entanglement between the two pump fields exhibits
strong robustness to the environmental temperature, and can
still exist at room or even higher temperature. It should be
noted that, here the environmental temperature T is different
from the effective temperature of mechanical oscillator exam-
ined in Ref. [23]. As analyzed in Ref. [23] about the cooling
of the mechanical oscillator, the effective stationary excitation
number of the mechanical oscillator can be calculated by
neff = (〈δX 2

b 〉 + 〈δY 2
b 〉−1)/2, which is beyond the scope of

the present study and will be discussed in our future work.
In conclusion, we have proposed a convenient and flexible

way to produce multicolor multipartite CV entanglement via

mechanical oscillator displacement induced by two strong
input pump fields in the traditional single-cavity optome-
chanical system. This method provides a proof-of-principle
demonstration of efficiently and conveniently generating any
number of narrow-band nondegenerate entangled fields with
long correlation time, which may find potential applications
in realistic quantum information processing and quantum net-
works.
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