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Evolution of two-mode quantum states under a dissipative environment:
Comparison of the robustness of squeezing and entanglement resources

Rishabh ,1,* Chandan Kumar ,1,† Geetu Narang,2,‡ and Arvind 1,3,§

1Department of Physical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Sector 81 SAS Nagar,
Manauli P.O. 140306, Punjab, India

2Department of Applied Sciences, U.I.E.T., Panjab University, Chandigarh 160014, India
3Vice Chancellor, Punjabi University Patiala, Punjab 147002, India

(Received 23 January 2022; accepted 15 March 2022; published 5 April 2022)

We explore the relative robustness of single-mode squeezing and entanglement (which are quantum resources
interconvertible via passive optics) for two-mode Gaussian states under different dissipative environments. When
the individual modes interact with identical local baths, entanglement and squeezing decay at the same rate.
However, when only one of the modes interacts with a local bath, the comparative robustness of entanglement
and squeezing depends on the initial squeezing of the state. Similarly, when the system interacts with a global
bath, the robustness of entanglement and squeezing depends on the initial squeezing. Thus depending on the
nature of dissipative environments and the initial squeezing of the state, one can select the more robust form of
resource out of squeezing and entanglement to store quantumness. This can be used to effectively enhance the
performance of various quantum information processing protocols based on continuous variable Gaussian states.
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I. INTRODUCTION

Continuous variable (CV) quantum information processing
(QIP) based on quantum optical sources has been gaining at-
tention over time [1,2]. Developments in continuous variable
quantum key distribution (CV-QKD) protocols [3] and pho-
tonic computing [4] are particularly noteworthy. Nonclassical
Gaussian states play a key role in this context, as they can be
easily produced, manipulated, and measured in the laboratory
[5,6]. Nonclassicality or genuine quantumness in quantum
states is a resource that needs to be defined, identified, and
preserved for use in QIP protocols [7–10].

In the quantum optical sense, if the Glauber-Sudarshan P
function [11,12] behaves like a classical probability distribu-
tion, the corresponding state can be simulated by ensembles
of solutions of Maxwell equations, and the state cannot
exhibit any nonclassical features [13]. On the other hand,
nonpositivity of the Glauber-Sudarshan P function indicates
nonclassicality [14,15]. Squeezing, when quadrature noise
drops below the shot noise limit, is one specific form of quan-
tumness based on P representation [16]. Gaussian squeezed
states are thus an important class of nonclassical states that are
extremely useful for QIP. A different notion of quantumness
arises from an information theory viewpoint, where correla-
tions in composite quantum systems can go beyond classically
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allowed values leading to nonclassical situations. Quantum
entanglement is one such resource that can lead to situations
that violate local realism [17]. While single-mode squeezing
and intermode entanglement are very different notions of non-
classicality, for Gaussian states they can be interconverted into
each other via passive optical elements such as beam splitters,
phase shifters, wave-plates, and mirrors [18–25]. However,
this may not be true for general CV system states [26].

Environmental interactions can cause disturbances that in-
variably lead to the diminishing of quantum resources, which
may be present in the form of squeezing and entanglement.
The environmental interactions are detrimental to the perfor-
mance of various QIP tasks. Therefore, it is of significant
importance to analyze the evolution of quantum systems under
different dissipative environments and find ways to protect
resources against environmental effects. A lot of work has
already been done in this regard [9,27–33]. Entanglement dy-
namics has been studied for local as well as global dissipative
environments under both Markovian and non-Markovian as-
sumptions. Many interesting phenomena have been observed,
such as sudden death of entanglement in local as well as global
dissipative environments [9,32]. Further, researchers have also
shown that entanglement can be produced in two-mode sepa-
rable squeezed states and can even be enhanced in two-mode
squeezed vacuum (TMSV) states evolving under the presence
of a global thermal bath [30,34]. The effect of decoherence on
nonlocality, steering, entanglement of formation, and discord
has also been studied [35–39]. Moreover, much research has
been conducted to study decoherence in non-Gaussian states,
particularly photon subtracted states [40,41].

In this article, we strive to find which of the two resources,
squeezing or entanglement, is more robust to environmental
noise [42–44]. We consider two different cases that provide
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an insight into the relative sensitivity of squeezing and en-
tanglement resources to dissipative environments under the
Markovian assumption. The first case considers squeezing
of the individual modes followed by an evolution under a
dissipative environment, and finally the two modes are en-
tangled using passive optics (beam splitter). The second case
considers squeezing of the individual modes, which then are
entangled using passive optics, and finally we let them evolve
in a dissipative environment. We have considered our system
to be interacting with local and global thermal baths, which
are Gaussian channels, i.e., Gaussian states remain Gaussian
under such interactions. We provide the time-dependent co-
variance matrix, which is used for entanglement analysis. Al-
though a full characterization of entanglement for CV systems
is not possible, for Gaussian states, necessary and sufficient
criteria for the detection of entanglement exist [7,8]. Further,
we can quantify entanglement using logarithmic negativity in
two-mode Gaussian states, which we use in our work [45–47].

It is natural to expect that entanglement in the TMSV
state, where intermodal correlations are present, will be
more fragile compared to squeezing in a two-mode separable
squeezed state. However, our analysis reveals that the relative
robustness of entanglement and squeezing depends on the
dissipative environment with which the system is interact-
ing. When the two modes interact with identical baths, the
squeezing and entanglement decay in exactly the same way.
On the other hand, when only one of the modes interacts
with a local bath, the results depend on the initial squeezing
of the state. There exists a threshold of the initial squeezing
of the state, below which entanglement is more robust than
squeezing. Otherwise, squeezing is more robust than entangle-
ment. Similarly, such a threshold also exists when the system
interacts with a global bath, below which squeezing is more
robust than entanglement. Otherwise, entanglement is more
robust than squeezing. We provide analytical expressions for
these thresholds of the squeezing parameter, which will enable
experimentalists to identify more robust resources against a
dissipative environment.

The paper is organized as follows. In Sec. II, we review
the formalism for the CV systems and describe the notions
of squeezing and entanglement for two-mode Gaussian states.
In Sec. III A, we set out to study the relative robustness of
squeezing and entanglement against a disturbance caused by
a noisy dissipative environment. We consider the system evo-
lution under local thermal baths in Sec. III B, while Sec. III C
deals with the evolution of the system under a global bath.
Finally, in Sec. IV, we provide some concluding remarks and
future directions.

II. TWO-MODE SYSTEMS: ENTANGLEMENT
AND SQUEEZING

We describe the formalism of two-mode CV systems and
discuss the two nonclassical notions, namely squeezing and
entanglement, which we intend to study under different noisy
dissipative environments.

A. Two-mode CV systems and symplectic transformations

We consider a two-mode CV quantum system described
by the quadrature operators q̂1, p̂1, q̂2, and p̂2 [1,2,48,48,49].

To handle the analysis of the two-mode system compactly, we
introduce the column vector

ξ̂ = (ξ̂ j ) = (q̂1, p̂1, q̂2, p̂2)T . (1)

The canonical commutation relations can be written as

[ξ̂ j, ξ̂k] = i(ω⊕2) jk

j,k=1,2,3,4

h̄=1

with ω =
(

0 1
−1 0

)
. (2)

The annihilation and creation operators â j and â†
j ( j = 1, 2)

can be expressed in terms of quadrature operators as follows:

â j = 1√
2

(q̂ j + i p̂ j ), â†
j = 1√

2
(q̂ j − i p̂ j ). (3)

The Hilbert space of the two-mode system has an orthogo-
nal basis in the Fock representation |n1, n2〉 with {n1, n2 =
0, 1, . . . ,∞}, which are simultaneous eigenvectors of the
number operators â†

1â1 and â†
2â2.

The linear homogeneous transformations S specified by
real 4 × 4 matrices acting on the quadrature operators (1) and
preserving the canonical commutation relation (2) form the
symplectic group Sp(4, R). The quadrature operators trans-
form as ξ̂i → ξ̂ ′

i = Si j ξ̂ j . Further, the symplectic condition for
matrix S is

Sω⊕2ST = ω⊕2 ⇒ S ∈ Sp(4, R). (4)

The symplectic group can be decomposed as S = PK (X,Y ),
where P is the noncompact part and K (X,Y ) is the maximally
compact subgroup of Sp(4,R). The elements of the set P
act on the states through their infinite-dimensional unitary
representation (metaplectic representation), change the total
number of photons, and are called active operations. Active
operations can transform a classical state into a nonclassi-
cal state and vice versa. On the other hand, the elements
of K (X,Y ) which form the maximally compact subgroup
while acting on the states via their metaplectic representation
conserve the total number of photons and are called passive
operations. Passive operations cannot create or destroy the
nonclassicality of a state and can be implemented using pas-
sive optical elements such as beam splitters, phase shifters,
waveplates, and mirrors. We discuss two basic symplectic
operations that are important for our work [1,2,48,49].

Single-mode squeezing operation: The transformation ma-
trix corresponding to the single-mode squeezing operator,
which acts on the quadrature operators q̂i and p̂i, is given by

Si(r) =
(

e−r 0
0 er

)
. (5)

The corresponding Sp(4,R) element will be S1(r) ⊕ 12 or
12 ⊕ S2(r) depending upon which of the two modes the
squeezing operator acts. Here 12 represents a 2 × 2 identity
matrix. Single-mode squeezing operators are active operations
that can transform a classical state into a nonclassical state.

Beam splitter operation: The transformation matrix corre-
sponding to a beam splitter acting on the two-mode quadrature
operators ξ̂ = (q̂1, p̂1, q̂2, p̂2)T is given by

B12(θ ) =
(

cos θ 12 sin θ 12

− sin θ 12 cos θ 12

)
, (6)
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where θ is related to the transmittance of the beam splitter
according to τ = cos2 θ . Angle θ = π/4 corresponds to a
balanced (50 : 50) beam splitter. Beam splitter transformation
is a passive operation belonging to the K (X,Y ) subgroup of
Sp(4,R), which cannot transform the classical or nonclassical
status of a state.

B. Squeezing and entanglement in Gaussian states

Gaussian states can be described by Gaussian-Wigner
functions in phase space. They can be completely specified by
the mean values and covariances of the quadrature operators.
However, without any loss of generality, we can consider
a zero-centered state as any general Gaussian state can be
made zero-centered by application of the displacement oper-
ator without affecting the entanglement content of the state.

The Wigner function for zero-centered Gaussian states can be
written as [1]

W (ξ) = exp[−(1/2)ξT V −1ξ]

(2π )2
√

detV
, (7)

where V is the covariance matrix whose elements are given by

V = (Vi j ) = 1
2 〈{�ξ̂i,�ξ̂ j}〉, (8)

where �ξ̂i = ξ̂i − 〈ξ̂i〉, and {, } denotes the anticommutator.
The uncertainty principle can be expressed in terms of the
covariance matrix as

V + i

2
� � 0. (9)

The covariance matrix for the zero-centered two-mode Gaus-
sian state is given by

V =

⎛
⎜⎜⎝

〈q2
1〉 1

2 〈{q1, p1}〉 〈q1q2〉 〈q1 p2〉
1
2 〈{q1, p1}〉 〈p2

1〉 〈q2 p1〉 〈p1 p2〉
〈q1q2〉 〈q2 p1〉 〈q2

2〉 1
2 〈{q2, p2}〉

〈q1 p2〉 〈p1 p2〉 1
2 〈{q2, p2}〉 〈p2

2〉

⎞
⎟⎟⎠. (10)

A quantum state is said to be squeezed in quadrature ξ̂i if
the fluctuations in the corresponding quadrature reduce below
the coherent state value, i.e., (�ξ̂i)2 < 1/2. The single-mode
squeezing operator S(r) (5) acting on a state through its
metaplectic representation alters fluctuations in the quadra-
tures, and hence can transform a nonsqueezed state into a
squeezed state. Specifically, as an example, if S(r) acts on
the first mode, the fluctuations in the ξ̂1 quadrature transform
as (�ξ̂1)2 → e−2r (�ξ̂1)2. Since one is allowed to redefine
quadratures by mixing them via passive operations, a state is
squeezed even if the noise in one of the transformed quadra-
tures falls below the coherent state value. We will consider
squeezing caused by single-mode squeezing transformations
S(r) as described above.

While the detection of entanglement in general states of
CV systems remains an open problem, for Gaussian states the
Simon criterion provides necessary and sufficient conditions
for the detection of entanglement [7,8]. By Simon’s criterion,

det A det B + (
1
4 − |detC|)2 − Tr[AωCωBωCT ω]

− 1
4 (det A + det B) � 0 (11)

is necessary and sufficient for a state to be separable. Here A,
B, and C are 2 × 2 matrices and are related to the covariance
matrix of a two-mode system as

V =
(

A C
CT B

)
. (12)

Furthermore for Gaussian states, the logarithmic negativity
can be used as a measure of entanglement between the two
modes. The logarithmic negativity for a two-mode Gaussian
state is defined as

EN = max{0,−log2(2n−)}, (13)

where n− is the smallest symplectic eigenvalue of the partially
transposed covariance matrix, which can be compactly written
using the block matrices form of the covariance matrix (12) as
follows:

n2
− = 1

2 [	 −
√

	2 − 4 detV ], (14)

where 	 = det A + det B − 2 detC. We employ this measure
to quantify entanglement throughout this paper.

III. EFFECT OF ENVIRONMENT ON QUANTUM
RESOURCES OF SQUEEZING AND ENTANGLEMENT

In this section, we set out to explore the effect of envi-
ronmental coupling on diminishing the quantum resources of
squeezing and entanglement. We couple the two-mode system
with thermal baths in several different ways to study the rel-
ative performance of squeezing and entanglement in terms of
their ability to withstand the environmental effects.

A. Environment coupled to the two-mode optical system

We consider a two-mode system interacting with a thermal
bath. The bath is considered to be comprised of a large set
of harmonic oscillators. The corresponding total Hamiltonian
can be written as

Ĥ = ĤS + ĤB + ĤSB, (15)

where ĤS and ĤB are the system and the bath Hamiltonians,
respectively, and ĤSB is the interaction Hamiltonian. We con-
sider two distinct cases:

Case 1: In this case, a two-mode separable squeezed state
interacting with a thermal bath is considered. We start with
a two-mode system initialized to the vacuum state |0〉, which
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can be represented by the following covariance matrix:

V|0〉 = 1

2

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠. (16)

To generate a two-mode separable squeezed state, the two-
mode vacuum state is squeezed by equal and opposite
amounts by the squeezing operation S1(r) ⊕ S2(−r). There-
after, the covariance matrix of the two-mode separable
squeezed state can be written as

V1(t = 0) = 1

2

⎛
⎜⎜⎝

e−2r 0 0 0
0 e2r 0 0
0 0 e2r 0
0 0 0 e−2r

⎞
⎟⎟⎠. (17)

The system is then allowed to interact with a thermal bath.
We set the time to t = 0, when the interaction with the bath
is switched on. Thus, the covariance matrix of the state at
time t = 0 is given by Eq. (17). The interaction with the
thermal bath is then switched on, which can lead to decay of
squeezing. After a time t = τ , the interaction is switched off,
and the modes are mixed using a 50 : 50 beam splitter with
a view to convert the remaining nonclassicality into entangle-
ment.

Case 2: In this case, we consider a two-mode squeezed
vacuum state (TMSV), an entangled state, interacting with
a thermal bath. The two-mode entangled state is generated
by first squeezing the two-mode system in the vacuum state
by an equal and opposite amount by the squeezing operation
S1(r) ⊕ S2(−r). The modes are then mixed via a 50 : 50 beam
splitter in order to convert the squeezing into entanglement,
and subsequently the thermal bath is switched on. The covari-
ance matrix at time t = 0 for this case is given by

V2(t = 0) = 1

2

(
cosh(2r) 12 sinh(2r) Z
sinh(2r) Z cosh(2r) 12

)
, (18)

where Z is diag(1,−1). It should be noted here that for the
two-mode separable squeezed state, the quantum resource is
in the form of squeezing, while for the TMSV state, squeezing
has been converted into entanglement [50,51]. Thus, for a
two-mode separable squeezed state, squeezing decays due to
environmental interactions. On the other hand, for the TMSV
state, both squeezing and entanglement decay due to envi-
ronmental interactions. The two cases differ from each other
only in the fact that quantumness has been completely stored
in the form of squeezing in the former case, while in the
latter case, quantumness has been converted into the form
of entanglement. The settings above have been constructed
to address our main question: Which form of quantumness,
squeezing or entanglement, is more resilient to a dissipative
environment? To this end, we consider the evolution of the
two aforementioned cases in the following two dissipative
environments:

(i) The two modes of the system interact with two local
thermal baths.

(ii) The two modes of the system interact with a global
thermal bath.

FIG. 1. Schematic representation of the dissipation under local
thermal baths. (a) The two-mode separable squeezed state is allowed
to evolve under local thermal baths, and after a time t , the two modes
are mixed using a 50 : 50 beam splitter. (b) The two-mode separable
squeezed state is first mixed using a beam splitter and then it is
allowed to evolve under local thermal baths.

These studies will enable us to answer whether we should
store the quantum resource as squeezing or as entanglement
in a given situation.

B. Evolution under local thermal baths

In this subsection, we consider that our two-mode system
interacts with two local thermal baths. The interaction Hamil-
tonian is given by

ĤSB = g1

∞∑
k=1

(â1b̂†
k + â†

1b̂k ) + g2

∞∑
l=1

(â2ĉ†
l + â†

2ĉl ), (19)

where g1 and g2 are the coupling constants, and b̂k and b̂†
k

are annihilation and creation operators of the kth mode of
the reservoir interacting with the first mode of the system.
Similarly, ĉl and ĉ†

l are annihilation and creation operators of
the lth mode of the reservoir interacting with the second mode
of the system.

Under Markovian assumption, we can write the master
equation for the evolution of the system density operator ρ as

∂

∂t
ρ =

{ ∑
i=1,2

γi

2
(Ni + 1)(2âiρâ†

i − â†
i âiρ − ρâ†

i âi )

+ γi

2
Ni(2â†

i ρâi − âiâ
†
i ρ − ρâiâ

†
i )

}
, (20)

where γi’s are the decay constants, and Ni’s represent the mean
photon number of the individual baths. Equation (20) can
be used to find the time evolution of variances of quadrature
operators, and hence the evolution of the covariance
matrix.

Case 1: We consider the case in which each mode
of the two-mode separable squeezed state interacts with
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distinct local thermal baths. The schematic diagram is shown
in Fig. 1(a). The covariance matrix of the initial state at time
t = 0 is given by V1(0) (17). Using the master equation (20),

we obtain the covariance matrix after an interaction with the
bath for time t as [52]

V1(t ) = X (t )V1(0)X (t )T + 1
2Y (t ), (21)

where X (t ) and Y (t ) are 4 × 4 diagonal matrices given by

X (t ) =
(

(1 − τ1)1/4 12 0
0 (1 − τ2)1/4 12

)
,

Y (t ) =
(

(1 + N1
2 )(1 − √

1 − τ1) 12 0
0 (1 + N2

2 )(1 − √
1 − τ2) 12

)
, (22)

where τ1 = 1 − e−2γ1t and τ2 = 1 − e−2γ2t are dimensionless
time parameters. We note that while t goes from 0 to ∞, τi

goes from 0 to 1. The final covariance matrix after passing
both the modes through a 50 : 50 beam splitter (6) is given by

V L
1 (t ) = B12

(
π

4

)[
X (t )V1(0)X (t )T + 1

2
Y (t )

]
B12

(−π

4

)
,

(23)

where the superscript L over V1(t ) stands for the local bath,
and t represents the time duration of the system-bath interac-
tion.

Case 2: We consider the case in which each mode of the
TMSV state interacts with a distinct local thermal bath. The
schematic is depicted in Fig. 1(b). The initial covariance ma-
trix of the TMSV state is given by Eq. (18). Using the master
equation (20), the covariance matrix at time t is evaluated as

V L
2 (t ) = X (t )V2(0)X (t )T + 1

2Y (t ). (24)

From Eqs. (23) and (24), various conclusions can be drawn.
We consider the following two special cases of symmetric and
asymmetric interaction of the local baths with the system:

Symmetric interaction: Consider the case in which g1 =
g2 = g and both baths are at the same temperature so that
γ1 = γ2 = γ and N1 = N2 = N . Thus the two local baths are
identical. This leads to the same final covariance matrix for
the two-mode separable squeezed state (23) and the TMSV
state (24). Therefore both of the resources, squeezing and
entanglement, are equally sensitive to decoherence when two
identical local thermal baths act on each mode of the system.

Extreme asymmetric interaction: Consider the case in
which g2 = 0, which implies γ2 = 0. Further, we take g1 = g,
γ1 = γ , and τ1 = τ . Thus, only the first mode of the system
interacts with the thermal bath. The evolved covariance matrix
for the two-mode separable squeezed state (23) and the TMSV
state (24) are not the same in this situation, and hence we
expect different rates of decay for logarithmic negativity of
the final state.

Using Eq. (11), the condition on the initial squeezing pa-
rameter r, such that the two-mode separable squeezed state
never becomes disentangled, is given by

|r| > rL
c = 1

2

[
ln

(
1 + N1

2

)]
. (25)

However, for values of |r| � rL
c , entanglement dies out for

interaction times longer than

τa = 8 e4|r|[2 + N1 − 2 cosh(2|r|)] sinh(2|r|)
[(2 + N1)e2|r| − 2]2

. (26)

On the other hand, the time of disentanglement for the TMSV
state evaluates to [38]

τb = 8(2 + N1)

(4 + N1)2
, (27)

which is independent of the initial squeezing parameter r.
Further, lim

N1→0
τb = 1, which means the entanglement of the

TMSV state survives indefinitely for a zero-temperature bath.
In general, Eqs. (26) and (27) imply the existence of finite
disentanglement time under the aforementioned conditions for
two-mode separable as well as TMSV states. This corresponds
to the phenomenon of entanglement sudden death.

Further, if the initial squeezing parameter r is such that |r|
is less than a certain value rL

t , then it is a better strategy to store
the resource in the form entanglement, otherwise it is better to
store resources in the form of squeezing. The expression for
rL

t can be evaluated by equating τa and τb, and it is given by

rL
t = 1

2

[
ln

(2 + N1 +
√

2(2 + 4N1 + N2
1 )

4 + N1

)]
. (28)

We plot the logarithmic negativity for different values of the
initial squeezing parameter in Fig. 2. For N1 = 4, the numeri-
cal values of rL

c and rL
t turn out to be rL

c = 0.55 and rL
t = 0.29.

Therefore, for r = 0.20 < rL
t < rL

c , we observe that entan-
glement is more robust against dissipation as compared to
squeezing. For rL

t < r = 0.40 < rL
c , we see that squeezing is

more robust against dissipation as compared to entanglement.
Finally, for r = 0.60 > rL

c > rL
t , squeezing is more robust

against dissipation as compared to entanglement, and the two-
mode separable case always stays entangled.

C. Evolution under a global bath

In this section, we consider the scenario in which the two
modes are coupled to a common thermal reservoir, which we
refer to as the global bath. The interaction Hamiltonian ĤSB is
given by

ĤSB = g
∑
i=1,2

(
âi

∞∑
k=1

b̂†
k + â†

i

∞∑
k=1

b̂k

)
, (29)
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FIG. 2. Logarithmic negativity EN of the two-mode Gaussian
state as a function of dimensionless time τ (= 1 − e−2γ t ). Only one of
the two modes is allowed to evolve under the presence of a local bath.
The mean number of photons in the bath is taken to be N = 4. (a) For
values of the initial squeezing parameter such that |r| < rL

t < rL
c

[(25) and (28)], entanglement is more robust than squeezing. (b) For
rL

t < |r| < rL
c , squeezing is more robust than entanglement. (c) For

|r| > rL
c > rL

t , squeezing is more robust than entanglement and the
two-mode separable case always remains entangled. The vertical axis
is in ebits, while the horizontal axis is dimensionless.

where b̂k and b̂†
k are annihilation and creation operators of

the kth mode of the reservoir, and g is the coupling constant
between the system and the environment. Under Markovian
assumption, we can write the master equation for the evolution
of system density operator ρ as

∂

∂t
ρ = γ

2

{ ∑
i, j=1,2

(N + 1)(2âiρâ†
j − â†

j âiρ − ρâ†
j âi )

+ N (2â†
jρâi − âiâ

†
jρ − ρâiâ

†
j )

}
, (30)

where γ is the decay constant, and N represents the mean
photon number of the bath. Equation (30) can be used to find

FIG. 3. Schematic representation of the dissipation under a
global bath. (a) The two-mode separable squeezed state is allowed
to evolve under the global thermal bath, and after a time t , the two
modes are mixed using a 50 : 50 beam splitter. (b) The two-mode
separable squeezed state is first mixed using a 50 : 50 beam splitter,
and then it is allowed to evolve under the global thermal bath.

the time evolution of the variances of quadrature operators,
and hence the time evolution of the covariance matrix.

Case 1: We consider the case in which the two-mode
separable squeezed state interacts with a global bath. The
schematic diagram is shown in Fig. 3(a). The initial covari-
ance matrix of the two-mode separable squeezed state is given
by Eq. (17). Using Eq. (30), the covariance matrix after an
interaction for time t with the bath is evaluated to be

1

4

⎛
⎜⎝

σ1(t ) 0 σ3(t ) 0
0 σ2(t ) 0 σ3(t )

σ3(t ) 0 σ2(t ) 0
0 σ3(t ) 0 σ1(t )

⎞
⎟⎠, (31)

where

σ1,2(t ) = (2N+1)τ −cosh(2r)(τ − 2) ∓ 2 sinh(2r)
√

1 − τ ,

σ3(t ) = [2N + 1 − cosh(2r)]τ, (32)

where τ = 1 − e−2γ t . We now pass both modes through a
50 : 50 beam splitter, and the resultant covariance matrix is
given by

V G
1 (t ) = 1

2

⎛
⎜⎝

σ ′
1(t ) 0 σ ′

3(t ) 0
0 σ ′

1(t ) 0 −σ ′
3(t )

σ ′
3(t ) 0 σ ′

2(t ) 0
0 −σ ′

3(t ) 0 σ ′
2(t )

⎞
⎟⎠, (33)

where

σ ′
1(t ) = (2N + 1)τ − cosh(2r)(τ − 1),

σ ′
2(t ) = cosh(2r),

σ ′
3(t ) = sinh(2r)

√
1 − τ . (34)
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Case 2: We consider the case in which the TMSV state
interacts with a global bath. The schematic is presented in
Fig. 3(b). The initial covariance matrix of the TMSV state is
given by Eq. (18). The covariance matrix after an interaction
for time t with the bath is evaluated to be

V G
2 (t ) = 1

2

⎛
⎜⎝

δ1(t ) 0 δ3(t ) 0
0 δ2(t ) 0 δ4(t )

δ3(t ) 0 δ1(t ) 0
0 δ4(t ) 0 δ2(t )

⎞
⎟⎠, (35)

where

δ1(t ) = 1
2 (2N + 1 − e2r )τ + cosh(2r),

δ2(t ) = 1
2 (2N + 1 − e−2r )τ + cosh(2r),

δ3(t ) = 1
2 (2N + 1 − e2r )τ + sinh(2r),

δ4(t ) = 1
2 (2N + 1 − e−2r )τ − sinh(2r).

(36)

The evolved covariance matrix for the two-mode separable
squeezed state (33) and that for the TMSV state (35) are not
the same in this situation, and hence we expect different rates
of decay for logarithmic negativity. For the TMSV state, there
exists a critical value of initial squeezing parameter rG

c , above
which the entanglement never becomes zero [28]:

|r| > rG
c = 1

2 [ln(2N + 1)]. (37)

For values of |r| less than rG
c , entanglement sudden death

occurs after a time

τc = 2 sinh(2|r|)
1 − e−2|r| + 2N

. (38)

It is also observed that for the two-mode separable squeezed
state, entanglement always becomes zero at a particular value
of time irrespective of the initial squeezing of the state:

τd = 1

1 + N
. (39)

Thus entanglement sudden death always occurs for the
two-mode separable squeezed state except for the zero-
temperature bath.

If the initial squeezing parameter r is such that |r| is less
than a certain value rG

t , then it is a better strategy to store the
quantum resource in the form of squeezing, otherwise it is
better to store the quantumness in the form of entanglement.
The expression for rG

t can be evaluated by equating τc and τd ,
and it is given by

rG
t = 1

2

[
ln

(
1 + 2N + √

1 + 8N + 8N2

2(1 + N )

)]
. (40)

We have shown the plots of logarithmic negativity for dif-
ferent values of initial squeezing parameter in Fig. 4. For
N = 4, the numerical values of rG

c and rG
t turn out to be

rG
c = 1.10 and rG

t = 0.39. Therefore, in corroboration with
analytical results, we observe that for r = 0.20 < rG

t < rG
c ,

squeezing is more robust against dissipation as compared to
entanglement. Further, for rG

t < r = 0.60 < rG
c , entanglement

is more robust against dissipation as compared to squeezing.
Finally, for r = 1.60 > rG

c > rG
t , entanglement is more robust

against dissipation as compared to squeezing; however, the
TMSV state always remains entangled. We have summarized
the results of this section in Table I.

FIG. 4. Logarithmic negativity EN as a function of dimensionless
time τ (= 1 − e−2γ t ). The system is allowed to evolve under the
presence of a global thermal bath. The mean number of photons
in the bath has been taken to be N1 = 4. (a) For values of the
initial squeezing parameter such that |r| < rG

t < rG
c [(37) and (40)],

squeezing is more robust than entanglement. (b) For rG
t < |r| < rG

c ,
entanglement is more robust than squeezing. (c) For |r| > rG

c > rG
t ,

entanglement is more robust than squeezing, and the TMSV state
always remains entangled. The vertical axis is in ebits, while the
horizontal axis is dimensionless.

IV. CONCLUSION

In this paper, we compared the robustness of squeezing and
entanglement resources in two-mode Gaussian states evolv-
ing in different noisy dissipative environments. To this end,
we considered two different cases: In the first case, two-
mode separable squeezed states were allowed to evolve in
the dissipative environment, and then were entangled using
passive operations. In the second case, the squeezed modes
were first entangled using passive operations and then were
evolved in the dissipative environment. The results show that
the robustness of squeezing and entanglement depends on the
initial squeezing of the state and the nature of the dissipative
environment. We also observe entanglement sudden death in
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TABLE I. More robust resource against dissipation: squeezing or
entanglement.

Environment nature r Range Result

Identical local baths Squeezing ≡ Entanglement
Single local bath |r| < rL

t Squeezing < Entanglement
|r| > rL

t Squeezing > Entanglement
Global bath |r| < rG

t Squeezing > Entanglement
|r| > rG

t Squeezing < Entanglement

specific cases. The fact that interconversion of squeezing and
entanglement can be made by using passive optical elements

like beam splitters, wave plates, phase shifters, and mirrors
makes it convenient to save the resources in one or another
form depending on the situation. One of the directions that we
are pursuing is to generalize this work by considering more
general environmental models and non-Gaussian states, which
will have implications for recent CV-based key distribution
[53] and quantum teleportation [54,55] protocols.
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