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Fast multiqubit Rydberg geometric fan-out gates with optimal control technology
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Practical quantum computation requires highly efficient implementation of quantum logic gates. The fan-out
gate represents such a type of multiqubit controlled gate with one qubit controlling a number of target qubits.
Recent efforts for fan-out gates using Rydberg atoms include adiabatic operations along with the dark-state
dynamics of Rydberg states [M. Khazali and K. Mølmer, Phys. Rev. X 10, 021054 (2020)] and implementation
based on the asymmetric Rydberg-Rydberg interaction [J. T. Young et al., Phys. Rev. Lett. 127, 120501 (2021)].
Inspired by these advances, we propose a fast-operation scheme for geometric multiqubit fan-out gates, in which
the target qubits can be executed with arbitrary operations based on the asymmetric Rydberg-Rydberg interaction
and time-optimal control technology. One of the main favorable features of our scheme is its performance in a
nonadiabatic way and with the time-optimal control technology, by which the shortest smooth geometric path
is found. Another feature, that the target qubits could be executed with arbitrary geometric quantum operations,
makes our scheme general and useful. Therefore, our scheme provides a promising alternative route toward
scalable fault-tolerant quantum information processing based on Rydberg atoms.
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I. INTRODUCTION

Rydberg atoms are a kind of neutral atom subject to
dipole-dipole interaction when excited to high-lying Rydberg
states [1–7]. This dipole-moment-induced interaction, called
Rydberg-Rydberg interaction (RRI), can give rise to a Ry-
dberg blockade [8–11], in which one atom excited to the
Rydberg state prohibits the adjacent atoms from being excited
to their Rydberg state and thus provides a way to fast quantum
logic gating [8,11–15]. So far, universal quantum computa-
tion with neutral atoms is in principle available. Single-qubit
operations have been well studied experimentally [15], even
with high fidelity [16–20]. Quantum controls [21] were also
demonstrated in neutral atoms, where two-qubit gates based
on RRI have been carried out experimentally [22–29].

Multiqubit gates are efficient and also versatile [30–37]
and can be applied to expedite conspicuously quantum algo-
rithms [38–41], quantum error correction [42–44], and state
preparation [45]. Many previous approaches for multiqubit
Rydberg gates relied on asymmetric Rydberg blockade in-
duced by spatial asymmetry, which is usually complicated by
scale differences between different types of Rydberg inter-
actions [30,36,46–49]. By choosing an interatomic distance
D, strong 1/D3 dipole-dipole interactions and weaker 1/D6

*llyan@zzu.edu.cn
†mangfeng@wipm.ac.cn
‡slsu@zzu.edu.cn

van der Waals (vdW) interactions have been acquired [47]. In
contrast to changing the distance between atoms to achieve
such an interaction induced by spatial asymmetry, a variety
of approaches have recently been proposed to modify Ryd-
berg interactions using microwave fields [48–59]. Of these
two methods to realize an asymmetric Rydberg blockade, the
former depends more on spatial asymmetry whereas the latter
depends on dispersion coefficients. Additionally, researchers
have recently proposed different ways to constitute multiqubit
Rydberg gates, such as adiabatic operations along Rydberg
excited dark eigenstates [60] and unconventional Rydberg
pumping closely related to the ground states of the atoms [61].
These multiqubit gates, however, are only for specific phase
operations on target qubits and also are extremely fragile due
to the inevitable interaction with the surrounding environ-
ment. This motivates us to construct the multiqubit gates with
arbitrary operations on the target atoms with higher fidelity
and stronger robustness.

Quantum gates using geometric phases, due to their built-in
noise-resilience features, are promising strategies for robust
quantum computation [62–64]. Explicitly, geometric quantum
computation [65–68] has been proposed through the adiabatic
geometric phases, including the adiabatic Abelian geomet-
ric phase [69] and adiabatic non-Abelian geometric phase
[70]. However, the adiabatic condition implies a lengthy gat-
ing time; thus the environment-induced decoherence would
cause considerable gate infidelity. To overcome such limita-
tions, nonadiabatic geometric quantum computation [71–74]
based on nonadiabatic Abelian geometric phases [75] and
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nonadiabatic holonomic quantum computation (NHQC)
[76,77] based on nonadiabatic non-Abelian geometric phases
[78] have been proposed. In particular, nonadiabatic holo-
nomic quantum computation [76,77] employs the holonomic
matrix itself as a quantum gate, which makes the NHQC
possess a whole geometric property depending only on the
global properties of evolution paths and not on the concrete
details. Due to the merits of both geometric robustness and
high-speed implementation without the limit of adiabatic evo-
lution, NHQC has received considerable attention and was
extended to further enhancing gate fidelity [79–87]. However,
the implementation of NHQC is sensitive to imperfect opera-
tions and also the implementation time is unnecessarily long
for most of the geometric gates, especially for the gates with
small rotation angles.

In this paper we propose a fast and reliable scheme to
implement the high-fidelity geometric fan-out gate based on
unconventional geometric phases, NHQC, and asymmetric
blockade, in which the operation time is independent of the
qubit number and the fan-out gate executes arbitrary opera-
tions on the target qubits. Recent works on NHQC and neutral
atoms provide solid theoretical support, and our scheme is
experimentally relevant since our consideration of the Ryd-
berg blockade regime has been fully witnessed experimentally
[29,81,88–92]. In particular, Ref. [48] proposed a method to
realize a perfect asymmetric blockade by dressing several
Rydberg states with a strong microwave field, which provides
strong theoretical support for future implementation of our
scheme. As an example, we consider the fan-out gates per-
forming X , T , and X 1/2 operations on the target qubits, which
are called FOX, FOT, and FOX1/2 in the following. In contrast
to the previous works in Refs. [47,93], our proposed scheme
has the following distinguished features. First, our proposed
scheme can implement arbitrary single-qubit operations (other
than a NOT or phase operation) on the target atoms. Second,
the shortest evolution path to the target atoms can be found
by introducing the time-optimal control (TOC) technology
[94–98], based on which the shortest duration time can be ac-
quired. Third, with the geometric phase involved, our scheme
is less sensitive to the relative errors of Rabi frequency and
detuning induced by imperfect operations.

The article is organized as follows. In Sec. II we present
the theoretical framework of the geometric quantum fan-out
gates, which is achieved by introducing the optimal control
technique and geometric phase. Section III describes the per-
formance and robustness of our quantum fan-out gates, an
experimental problem is considered, and a numerical simula-
tion is done based on the parameters available in experiment.
In addition, we briefly describe the application of the fan-
out gate in the entangled state preparation. A brief summary
is given in Sec. IV. Mathematical details can be found in
Appendices A and B.

II. RYDBERG GEOMETRIC FAN-OUT GATE WITH TOC

As sketched in Fig. 1, we show the relevant energy levels
of N atoms for realizing the Rydberg quantum gate, where our
scheme consists of one control atom (red) labeled 1 and N − 1
target qubits (green) labeled 2, 3, 4, . . . , N , respectively. In
such an available two-dimensional (2D) atom array [99], the
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FIG. 1. Illustration of the implementation of the geometric fan-
out gate. (a) Schematic diagram with the control atom (red) labeled
1 and multiple target atoms (green) labeled 2, 3, 4, . . . , N . (b) Cou-
pling configuration. For atom 1, state |1〉 is resonantly coupled to
the Rydberg |R〉 with Rabi frequency �1(t ) [�3(t )] and phase φ1(t )
[φ3(t )] in step (i) [(iii)]. For qubit 2 or 3, the ground states |0〉 and
|1〉 are resonantly coupled to the Rydberg state |r〉 with the Rabi
frequencies �s(t )eiφs (t ) and �p(t )eiφp(t ) in step (ii).

target atoms sit on a ring and the control atom is located in the
center, which ensures equivalent control-target interactions.
The qubit basis states are represented by a pair of long-lived
hyperfine ground-state sublevels |0〉 and |1〉 which can be ma-
nipulated by a microwave field or an optical Raman transition.
The ground state |1〉 of the control atom can be resonantly
coupled to the Rydberg state |R〉 by focusing the laser field
with Rabi frequency �1(t )eiφ1(t ) in step (i) and �3(t )eiφ3(t ) in
step (iii) [�1(3)(t ) and φ1(3)(t ) are the maximum value and
phase of the Rabi frequency, respectively]; two external classi-
cal fields are necessary for the target atoms to resonantly drive
the atomic transition |0〉 ↔ |r〉 with �s(t )eiφs (t ) and |1〉 ↔ |r〉
with �p(t )eiφp(t ) in step (ii). In our scheme, the Rydberg-
Rydberg interactions have two forms, i.e., the dipole-dipole
(DD) interaction and the vdW interaction. The control-target
interaction is a DD interaction with strength VRr coupling near
resonant product states |R, r〉 j, j′ ≡ |R〉 j ⊗ |r〉 j′ and |r, R〉 j, j′ ,
whereas the target-target interaction is a vdW interaction with
strength Vrr resonantly coupling product states |r, r〉 j, j′ and
|r, r〉 j, j′ (the subscripts represent different atoms). We will
introduce our nontrivial geometric fan-out gates based on the
unconventional geometric phase, NHQC, and the asymmetric
Rydberg blockade VRr � �s(p) � Vrr , which has no require-
ment for the Rabi frequency of the control qubit.

A. Three-qubit fan-out gate

We consider three four-level Rydberg atoms including one
control atom (atom 1) and two target atoms (atoms 2 and 3).
The construction of the geometric fan-out gate requires the
three following steps.

Step (i). Turn on the laser on the control atom with the
Hamiltonian

H1(t ) = �1(t )

2
eiφ1 |1〉1〈R| + H.c., (1)
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where H.c. denotes Hermitian conjugate (here and throughout
we set h̄ ≡ 1). Apply a π pulse on the control atom with initial
phase φ1 in the process of the first step; then the transition
|1〉 → |R〉 is achieved when atom 1 is in state |1〉. Assuming
�1(t ) in step (i) is constant, labeled �0, then the gating time of
the first step is τ1 = π/�0. State |0〉 is completely decoupled
from the lasers due to the transition selection rule or large
transition frequency mismatch augmented by properly shaped
laser pulses.

Step (ii). Turn off the laser on atom 1 and turn on the lasers
on the target atoms 2 and 3 with identical Rabi frequencies
and phases. The RRI Hamiltonian among the three atoms can
be expressed as

Hv =
3∑

j=2

(VRr |Rr〉1 j〈rR| + H.c.) + Vrr |rr〉23〈rr|. (2)

In addition, with the condition of �s(p)(t ) � Vrr , atoms 2 and
3 can be simultaneously excited to the Rydberg state |r〉 due
to the small energy shift induced by Vrr with respect to the
Rabi frequency �s(p)(t ) [8]. Thus, the interactions between
the three atoms are reduced to two two-body interactions only
existing between the control atom 1 and the target atom 2 (3)
because the interaction between atoms 2 and 3 can be ignored.
Now let us turn our attention to the dynamics between atoms
1 and 2, which is identical to the dynamics between atoms 1
and 3. The Hamiltonian of atom 2 can be written as

H2(t ) = �s(t )

2
eiφs (t )|0〉2〈r| + �p(t )

2
eiφp(t )|1〉2〈r| + H.c.

(3)

In addition, the RRI Hamiltonian

H1,2
v (t ) = VRr |Rr〉12〈rR| + H.c. (4)

is relevant to Rydberg blockade depending on whether the
control atom is excited or not. Thus the two-atom conditional
dynamics are described in Figs. 2(b) and 2(c), with the former
showing the dynamics of the control atom in state |0〉 and
the latter the dynamics of the control atom in state |1〉. The
effective Hamiltonian in Fig. 2(b) is given by

He1 = �s(t )

2
eiφs (t )|00〉〈0r| + �p(t )

2
eiφp(t )|01〉〈0r| + H.c.

(5)

Here and throughout we omit the subscripts
for simplicity. By setting φ = φs(t ) − φp(t ),

�s(t ) =
√

�2
s (t ) + �2

p(t ) sin(θ/2), and �p(t ) =√
�2

s (t ) + �2
p(t ) cos(θ/2), with θ and φ constant values,

Eq. (5) can be reexpressed as

He1 =
√

�2
s (t ) + �2

p(t )

2
eiφp(t )|b〉〈0r| + H.c., (6)

where the bright state |b〉 = sin(θ/2)eiφ|00〉 + cos(θ/2)|01〉.
Thus, only states |b〉 and |0r〉 are resonantly coupled with Rabi

frequency
√

�2
s (t ) + �2

p(t ), i.e., the dynamics of the quantum

system are captured by the resonant coupling between the
bright state |b〉 and |0r〉, while the dark eigenstate |d〉 =
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FIG. 2. (a) Pulse sequence of the three-qubit fan-out gate based
on asymmetric Rydberg blockade. The effective dynamical process
of step (ii) in the two-atom basis is shown (b) without and (c) with
RRI. With the control atom 1 not excited to |R〉, all target atoms
undergo the same resonance evolution. However, with the control
atom excited to |R〉, the resonance condition is broken due to an
energy shift VRr of the Rydberg state |r〉 induced by DD interaction,
thereby leading to off-resonant Raman transfer from |0〉 to |1〉 on
target atoms. The concrete energy-level structure will be described
in Sec. III.

cos(θ/2)|00〉 − sin(θ/2)e−iφ |01〉 is left unchanged. Note

that the effective Rabi frequency
√

�2
s (t ) + �2

p(t ) does not

originate from additional fields. Similarly, the effective
Hamiltonian in Fig. 2(c) can be calculated as

He2 = �s(t )�p(t )

4VRr
eiφ|R0〉〈R1| + H.c. (7)

Considering the condition VRr � �s(p)(t ), in the timescale of
resonance dynamics in Fig. 2(b), the off-resonant dynamics
in Fig. 2(c) only leads to a rotation by a very small angle
from the initial state. Namely, there is no effective dynamics
going on in Fig. 2(c), because the energy shift VRr of the
DD interaction induced by the Rydberg state |r〉 is much
larger than the Rabi frequency of the target atom, preventing
quantum jumps from |0〉 and |1〉 to the Rydberg state |r〉. This
is known as the Rydberg blockade [8]. Note that the level
shifts induced by the vdW interaction and DD interaction
are the result of a pairwise interaction. Finally, the effective
dynamics of the two-atom quantum system can be described
by the Hamiltonian (6).

Without a loss of generality, we select a set of basis vectors
{|ψ0(t )〉, |ψ1(t )〉, |ψ2(t )〉} as

|ψ0〉 = (cη1/2 − isη1/2)eiη2/2|0r〉 − isη3 sη1/2e−iη2/2|b〉,
|ψ1〉 = −isη3 sη1/2eiη2/2|0r〉 + (cη1/2 + isη1/2cη3 )e−iη2/2|b〉,
|ψ2〉 = |d〉, (8)

which follows the time-dependent Schrödinger equa-
tion (TDSE) i|ψ̇k (t )〉 = H(t )|ψk (t )〉 [H(t ) = He1 for
simplicity], with {η1, η2, η3} the parameters defined,
sx = sin x, cx = cos x, and η3 a constant (η1 and η2 are
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time dependent). By directly substituting the parameters into
the TDSE, the control parameters of pulses, namely, the Rabi

frequency
√

�2
s (t ) + �2

p(t ) and phase φp(t ), must satisfy

the parameter relations
√

�2
s (t ) + �2

p(t ) = η′
1(t ) sin η3 and

φp(t ) = η2(t ). To this end, the time-evolution operator can be
expressed as

U (t ) = T exp

(
−i

∫ t

0
H(t ′)dt ′

)
=

2∑
m=0

|ψm(t )〉〈ψm(0)|, (9)

which shows that transitions from the state |ψ (t )〉 to its
orthogonal states will not occur during the whole quantum
evolution governed by the Hamiltonian H(t ).

For the realization of the scheme, to guarantee pure geo-
metric properties of fan-out gates, we need to eliminate the
accumulation of the dynamical phase, thus satisfying an un-
conventional geometric condition [100]. We introduce a set
of auxiliary bases {μm(t )} defined by |μ0(t )〉 = e−iλ1(t )|ψ0〉,
|μ1(t )〉 = eiλ1(t )|ψ1〉, and |μ2(t )〉 = |ψ2〉, with λ1(0) = 0,
which does not need to satisfy the TDSE. If the cyclic evolu-
tion conditions are satisfied [η1(τ ) = 2π ], namely, |μm(τ )〉 =
|μm(0)〉 = |ψm(τ )〉, the unitary transformation matrix at the
final time τ of step (ii) can be expressed as U (τ ) =∑

lm{T exp[i
∫

(A + K )dt]}lm|ψl (0)〉〈ψm(0)|, where the dy-
namical and geometric parts are Kml = −〈μm(t )|H(t )|μl (t )〉
and Aml = i〈μm(t )| d

dt |μl (t )〉, respectively. However, the ex-
istence of the dynamical phase

∫
Kdt will damage the

geometric noise-resilient feature.
In contrast to simply eliminating the dynamic phase as

in NHQC schemes [76,77], which will inevitably limit the
geometric gating time and weaken the robustness of the ge-
ometric gate, we adopt a special approach to deal with it.
Using Eq. (9), the geometric parts can be obtained as Aml =
Aλ

ml + Aη

ml , where Aλ
ml = ∑

a i〈μm| ∂
∂ηb

|μl〉( dλa
dt ) and Aη

ml =∑
b i〈μm| ∂

∂ηb
|μl〉( dηb

dt ), and we have Kml + Aη

ml = 0. Conse-
quently, the global phase generated during this evolution is
purely geometric because the dynamical phase has been off-
set, i.e., the geometric phase γ = ∫

Aλ
ml dt . Thus, at the final

time of step (ii), the evolution operator can be expressed as

U1 = eiγ |μ1(0)〉〈μ1(0)| + |μ2(0)〉〈μ2(0)| (10)

in the computational subspace {|μ1(0)〉, |μ2(0)〉}, where
γ = λ1(τ ) = −π + η2(τ1 + τ2)/2 is a pure geometric phase.
Within the logic subspace {|0〉, |1〉}, when atom 1 is initially
in state |0〉, this evolution operator is equivalent to a controlled
single-qubit operation

U (θ, φ, γ ) = ei(γ /2)e−i(γ /2)(
n·
σ ), (11)

where 
σ = (σx, σy, σz ) are the standard Pauli operators,

n = (sin θ cos φ,− sin θ sin φ, cos θ ) is a unit vector, and
e−i(γ /2)(
n·
σ ) conducts a rotation around 
n by an arbitrary γ .
That is, if atom 1 is initially in state |0〉, target atom 2 can
gain a pure geometric phase, i.e., any desired single-qubit
geometric gate of target qubits can be realized via the proper
choice of θ , φ, and γ .

Furthermore, the main obstacle to the realization of high-
fidelity quantum gates is the error caused by either inaccurate
manipulation of the quantum system or interaction with

0 0.5 1

0

0.2

0.4

0.6

0.8

1
(b)

0 0.5 1
-1.5

-1

-0.5

0

0.5

1
(c)

0 0.5 1
-1

-0.5

0

0.5

1
(d)

0 /4 /2 3 /4
0

0.5

1

1.5

Our Geometric Scheme with TOC
NHQC

(a)

FIG. 3. (a) Comparison of the gating time for the NHQC in
Refs. [76,77,83] and our geometric scheme with TOC. The phases
φs and φp and Rabi frequencies �s and �p of the target atom vary in
time τ2 in step (ii) for the geometric (b) FOX gate, (c) FOT gate, and
(d) FOX1/2 gate.

the environment. Therefore, to further pursue higher gate
fidelity and stronger robustness, one possible measure is
to reduce the decoherence effects by minimizing the gat-
ing time. Here we incorporate the TOC technique [94,96–
98,101] into our framework of quantum computation. We

can simply set
√

�2
s (t ) + �2

p(t ) = 2π × 1 MHz (different

gates have different �s and �p, but the ratios of �s and �p

are fixed). The engineering of the Hamiltonian H(t ) needs
to satisfy the following constraints: (i) The Rabi frequency
of the microwave field cannot be infinite, i.e., l1[H(t )] =
1
2 {Tr[H2(t )] − 1

2�2
0} = 0, and (ii) the Hamiltonian of a realis-

tic quantum device usually takes a given form, i.e., l2[H(t )] =
Tr[H(t )σ ′

z] = 0 (σ ′
z is the Pauli operator in the subspace of

{|b〉, |0r〉}), so only a limited quantum trajectory can be real-
ized. Furthermore, by solving the quantum brachistochrone
equation [94] i∂F/∂t = [H(t ), F ], where F = ∂Lc/∂H(t )
and Lc = ∑

i μi fi(H(t )), with μi the Lagrange multiplier, the
parameters of the laser field are determined by

φp(t ) = η2(t ) = 2(γ − π )(t − τ1)/τ2, (12)

realizing the minimum evolution time in step (ii), τ2 =
2
√

π2 − (π − γ )2/�0, which clearly shows that the gating
time of target qubits can be greatly reduced compared with
NHQC with gating time τ0 = 2π/�0, especially at small an-
gles of rotation as shown in Fig. 3(a). Thus, we have shown
how to implement the fan-out gate geometrically, which
improves NHQC by efficiently reducing its gate time and
strengthening its robustness.

Next we can construct the unconventional nonadiabatic ge-
ometric operations using similar pulses because the effective
Hamiltonian between atoms 1 and 3 is similar to Eq. (6).
When step (ii) is finished, we acquire the evolution operator

U ′ = |0〉〈0| ⊗ U (θ, φ, γ ) ⊗ U (θ, φ, γ ) + |R〉〈R| ⊗ I2 ⊗ I2,

(13)

where I2 = |0〉〈0| + |1〉〈1|.
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Step (iii). Turn off the laser applied to the target atoms and
turn on lasers on the control atom with duration τ3 = π/�0.
Applying a π pulse with phase φ3 = φ1 + π turns the control
atom from the Rydberg state |R〉 to the state |1〉 without
additional phase accumulation. The evolution operator in the
whole evolution process can therefore be expressed as

U f = |0〉〈0| ⊗ U (θ, φ, γ ) ⊗ U (θ, φ, γ ) + |1〉〈1| ⊗ I2 ⊗ I2.

(14)

After completing the above three steps, we achieve the
quantum controlled gates with arbitrary single quantum op-
erations. For example, the three-qubit geometric gates FOX,
FOT, and FOX1/2 can be realized, respectively, by choosing the
parameters

θ = π/2, φ = π, γ = π for X,

θ = 0, φ = 0, γ = π/4 for T,

θ = π/2, φ = 0, γ = π/2 for X 1/2, (15)

which represent nontrivial geometric fan-out gates.
Note that the parameters {θ, φ, γ } can be implemented

by fixing {�s(t )/�p(t ), φs(t ) − φp(t ),−π + φp(τ1 + τ2)/2},
respectively. Figures 3(b)–3(d) describe the parameters
{φs(t ), φp(t ),�s(t ),�p(t )} of a single target atom varying in
τ2 for different gates of the target qubits [here, for conve-
nience, we set the beginning of step (ii) or the end of step
(i) as time zero]. Additionally, the only requirement for steps
(i) and (iii) is that there is a π phase difference between steps
(i) and (iii).

B. Nontrivial multiqubit fan-out gate

We extend our scheme to the multiqubit case without
increasing the total operation time, which is important for
quantum computers due to the lack of resources for full fault
tolerance. The process for executing such a geometric fan-out
gate also follows three steps. The first and third steps are the
same as in the case of three atoms; the only differences are in
step (ii). In this case, Eqs. (1) and (4) remain invariant, but the
RRI Hamiltonian should be updated to ( j < j′)

Hv =
N∑

j=2

(
VRr |Rr〉1 j〈rR| + H.c. +

N∑
j′

Vrr |rr〉 j j′ 〈rr|
)

.

(16)

After considering the asymmetric RRI, since �0 � Vrr ,
the interactions among the target atoms do not affect the
evolutions. Nevertheless, the state of the control atom will
influence the evolution of target atoms due to the condition
VRr � �0, and the Rydberg blockade emerges if the control
atom is initially in state |1〉. Thus, after accomplishing the
above three steps, the multiqubit geometric fan-out gates

U f = |0〉〈0| ⊗ U⊗N−1 + |1〉〈1| ⊗ I⊗N−1
2 , (17)

where one control qubit and multiple target qubits can

be achieved, with U⊗N−1 = U ⊗ U ⊗ . . . ⊗ U︸ ︷︷ ︸
N − 1

and I⊗N−1
2 =

I2 ⊗ I2 ⊗ . . . ⊗ I2︸ ︷︷ ︸
N − 1

.

C. Composite scheme

To realize arbitrary controlled operations with better sup-
pression versus parameter fluctuation, we can use the method
of composite pulses. Similar to the conventional composite-
pulse scheme [87,102], in this case, the whole evolution of the
second step is also divided into two segments and the phase
φp(t ) of H2(t ) has the form

φp(t ) = 2(γ /2 − π )(t − τ1)/t ′, t ∈ (τ1, τ1 + t ′],

φp(t ) = π + 2(γ /2 − π )(t − τ1)/t ′, t ∈ (τ1+t ′, τ1 + 2t ′],

(18)

where t ′ = 2
√

π2 − (π − γ /2)2/�0 is the time in each seg-
ment. The corresponding evolution operators are

Uc1 = eiγ /2|μ1(0)〉〈μ1(0)| + |μ2(0)〉〈μ2(0)|,
Uc2 = −eiγ /2|μ1(0)〉〈μ1(0)| − |μ2(0)〉〈μ2(0)|. (19)

Then the final evolution operator can be obtained as

Uc = Uc2Uc1 = U1, (20)

which forms two loops in the Grassmannian G{4; 2}, i.e., the
space of two-dimensional subspaces of a four-dimensional
Hilbert space, and each of the two segments has a complete
circle of evolution on the Bloch sphere.

III. DISCUSSION

In this section, taking the three-qubit FOT and FOX gates
as two examples, we first compare the gate performance of
our geometric scheme with its dynamical counterpart against
environment-induced decoherence (dynamical schemes can
be found in Appendix B). Then the effect of an imperfect
asymmetric blockade and the relative errors of parameters
on FOT and FOX gates are also discussed. An experimental
example is also briefly described. Finally, we briefly describe
how to implement the Greenberger-Horne-Zeilinger (GHZ)
state based on the FOX gate.

A. Gate performance and robustness

In the above sections, we demonstrated how to realize the
multiqubit geometric fan-out gates. Our scheme can greatly
reduce the fan-out gating time, which is independent of the
qubit number. Here we focus on several factors relevant to the
performance of our quantum gates. One is the spontaneous
emission from the high-lying Rydberg state and the other is
the blockade error. In addition, we will prove the superiority of
the geometric phase, i.e., robustness to the noisy environment.
In particular, the composite-pulse scheme can further improve
robustness. In our simulations, we set w = VRr/�0 and q =
�0/Vrr , where w and q are blockade coefficients. The method
for calculating the average fidelity is given in Appendix A.

As shown in Fig. 4, we plot the effect of the atomic spon-
taneous rate of the control and target atoms on the average
fidelities of the three-qubit FOT gate. The results show that
the geometric FOT gate has a higher fidelity and a smaller
reduction than the dynamical FOT gate for identical block-
ade coefficients. In particular, the geometric scheme with
an imperfect Rydberg blockade can perform better than the
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FIG. 4. Average fidelities of the three-qubit FOT gate versus
atomic spontaneous rate  for geometric and dynamical FOT gates
with different block coefficients w and q.

dynamical scheme with a perfect Rydberg blockade when the
spontaneous emission rates of the atoms are much larger.

The second factor is the error caused by an imperfect
blockade. As discussed earlier, one of the key points for the
geometric fan-out gate is to keep the asymmetric blockade
effect valid. However, if perfect asymmetric RRI is not strictly
met, it would be challenging to execute the Rydberg blockade
and the collective excitation of multiple target atoms. In order
to demonstrate the superiority of the proposed geometric fan-
out gate, we plot the average fidelities of the three-qubit FOX

and FOT gates versus different blockade coefficients w and q
in Fig. 5. The results indicate that the proposed geometric fan-
out gate is less sensitive to the change of blockade coefficient
than the dynamical scheme. In other words, when the condi-
tions VRr � �0 � Vrr are not strictly satisfied, our geometric
solution is still a good choice. It is necessary to emphasize
that the reason for the high fidelity in an imperfect blockade is
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FIG. 5. Performance of FOX and FOT gates under imperfect Ry-
dberg blockade based on different schemes, i.e., geometric and
dynamical schemes, for (a) and (c) q = 10 and (b) and (d) w = 10.
Here all the atomic spontaneous rates of the Rydberg atoms are the
same, i.e.,  = 1 kHz.

the peculiarity of the FOT gate. Note that the ground state |0〉
is decoupled from the Rydberg state in our scheme, i.e., �s =
0 MHz in the construction of the FOT gate (for the FOX gate,
�s = �p �= 0). We start from eight initial states of the three
qubits {|000〉, |010〉, |001〉, |011〉, . . . } and the correspond-
ing ideal states {|000〉, eiπ/4|010〉, eiπ/4|001〉, eiπ/2|011〉, . . . },
based on which we can find that the vdW interaction mainly
affects the evolution process of the initial state |011〉. Thus,
although the ratio q is too small to satisfy the asymmetric
blockade condition, the reason for such high fidelities of the
FOT gate in Fig. 5(d) is that each component’s weight is
identical in calculating the average fidelities of the FOT gate,
namely, Vrr only has a small impact on the average fidelity
of the FOT gate. In addition, we want to point out that this
particular example does not mean that our scheme can work
outside the asymmetric blockade condition.

In addition, the imperfect operations have considerable
impact on the dynamical phase generated during the whole
evolution, since small fluctuations in the Hamiltonian
are fed back into the evolution operator immediately.
Fortunately, the introduction of geometric phases can
help us suppress the adverse effects from the relative
fluctuation of laser parameters and enhance robustness.
The Rabi-frequency error will occur when the strength
of the driving field deviates from the ideal value by an
unknown fraction. In addition, the error in frequency
detuning appears when the laser is not exactly resonant
with the atomic transition, which will break the resonant
conditions and induce an off-resonant evolution. Thus, for
both the qubit frequency drift δ and the relative error of Rabi
frequency ε in the form of ��0/�0 leading to H1(t ) →
H′

1(t ) = (1 + ε)�1(t )/2eiφ1 |1〉1〈R| + H.c. + δ|R〉1〈R|
and H2(t ) → H′

2(t ) = (1 + ε)�s(t )/2eiφs (t )|0〉2〈r| + (1 +
ε)�p(t )/2eiφp(t )|1〉2〈r| + H.c. + δ|r〉2〈r|, we plot the average
fidelity of the three-qubit FOT gate based on geometric
and dynamical schemes, which show that our implemented
geometric gate is more noise resilient than the dynamical
scheme and the composite scheme further improves
robustness as shown in Fig. 6.

B. Experimental consideration

We know that the performance of the proposed scheme
depends on the strength of the blockade interactions and the
degree to which the couplings are asymmetric. For a con-
crete experimental process, here we consider the excitation
from the ground state to the Rydberg state achieved by a
two-photon process or single-photon process in a Rb atom
platform, with the ground state encoding |0〉 = |5S1/2, F =
1, mF = −1〉 and |1〉 = |5S1/2, F = 1, mF = 1〉. According
to recent work [48], by dressing several Rydberg states |s〉 =
|60S1/2, mj = 1/2〉, |p0〉 = |60P1/2, mj = 1/2〉, and |p+〉 =
|59P1/2, mj = −1/2〉 with strong microwave fields (with dif-
ferent polarizations), the dressed states |R〉 and |r〉 can be
achieved with theoretically estimated lifetimes of 356 and
431 μs and the correspond decay rates R = 2.80 kHz and
r = 2.32 KHz, respectively. Theoretical prediction of the
interaction gives C3 = −2π × 730 MHz μm3 and C6 = 2π ×
600 MHz μm6 [48], based on which the minimum control-
target dipole-dipole interactions can be calculated as VRr =
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FIG. 6. Average fidelities of the three-qubit FOT gate for the (a) geometric, (b) composite, and (c) dynamical schemes for the Rabi frequency
error ε and off-resonance error δ in the form of ��0/�0. Here we set VRr = 2π × 10 MHz, Vrr = 2π × 0.1 MHz, and  = 0.

−2π × 12.55 MHz and the maximum target-target vdW in-
teractions are Vrr = −2π × 0.13 MHz by choosing the radius
of the ring d1 = 2.1 μm and the nearest-neighbor separation
of the target atoms d2 = 3 μm, respectively. In addition, in
order to satisfy the asymmetric Rydberg blockade, we set the
Rabi frequencies of target atoms �0 = 2π × 1.3 MHz and
control atom �1(t ) = �3(t ) = 2π × 12 MHz. Note that the
parameters selected above can be easily obtained and adjusted
experimentally [26,103,104]. In the case of three-qubit gates
in Fig. 7(b), our thorough numerical calculations indicate that
the gate fidelity can reach 99.51% for the geometric FOT

gate and 98.73% for the geometric FOX gate as shown in
Figs. 7(c) and 7(d), respectively. In addition, as our proposed
gate implementation scheme partially relies on the phase re-
lations between different excitations as shown in Fig. 3, it is
interesting to see how much fluctuations in the relative phases
between the fields would affect gate performance. Here we
only consider the effects of relative phase fluctuations of target
atoms. As shown in Fig. 7(e), we plot the average fidelities as a
function of relative phase error in the form of [−0.1π, 0.1π ],
which shows that our scheme still has good robustness.

There is no obstacle to the realization of such a setting with
the current experimental technique. The defect-free atomic 2D
array with a ring geometry in Fig. 1(a) can be readily achieved
in current experiments [14,19,99], and recent experiments
[104–108] have demonstrated the possibility of building an
atomic array with such nearest-neighbor separation. We men-
tion that, although one can place maximally N = 4 atoms on
the 2D ring, the defect-free 3D array in Fig. 7(a) with the
target atoms distributed on a spherical surface may also be
accessible [108–110], from which the available number of
target atoms can be greatly increased.

Recently, the addressing and manipulation of a single qubit
in 2D and 3D arrays have made remarkable progress ex-
perimentally [17–19,28,103,104,111], and it is possible to
confine a single 87Rb atom in optical traps with a 1-μm
waist or even smaller [104,111]. These achievements have
greatly advanced the applications using neutral-atom systems
in quantum simulation and quantum computation. Thus our
proposed scheme is feasible in experiments. Additionally, the
target atoms can be driven by N − 1 independent fields with
different driving parameters by using a single-site addressing
technique and thus different single-site quantum operations
can be performed.

C. Application of the fan-out gate

The proposed geometric fan-out gates can be widely
used in quantum algorithms [112] and the preparation of
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FIG. 7. Rydberg atom setting and dynamics of the three-qubit
FOT gate. (a) Extended 3D view. (b) Spatial configuration of the
three-Rydberg-atom array. The fidelities of three-qubit geometric
gates, that is, the (c) FOT and (d) FOX gates, are shown as functions
of the evolution time when the control atom is located at the center
of the circle. (e) Gate performance of the FOX gate under phase
fluctuation for the range of [−0.1π, 0.1π ]. The spontaneous emis-
sion rate of the dressed Rydberg state |R〉 (|r〉) is 2.80 (2.32) kHz.
The dipole-dipole interaction VRr = −2π × 12.55 MHz, the Rabi
frequency of the target atoms �0 = 2π × 1.3 MHz, and the vdW
interaction Vrr = −2π × 0.13 MHz.
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FIG. 8. Variation trends of the GHZ state fidelity versus the
number of qubits. The inset shows |GHZ〉3 = (|000〉 + |111〉)/

√
2

and the three-qubit FOX gate versus the rate of decay . The other
parameters are  = �0/1000, VRr = 10�0, and Vrr = �0/10 in our
simulations.

the entanglement state [45]. Here we take the N-particle
Greenberger-Horne-Zeilinger state

|GHZN 〉 = 1√
2

(|0101 . . .〉 + |1010 . . .〉) (21)

as a typical example. Such a state provides an important
resource for applications that range from quantum metrol-
ogy [113,114] to quantum error correction [44]. Therefore,
the preparation of a multipartite GHZ state is particularly
important.

The GHZ state preparation protocol is as follows. Initially,
all atoms are in state |1〉 except for a single atom in state (|0〉 +
|1〉)/

√
2. This single atom will be the control atom, while the

N − 1 nearest neighbors are target atoms. A geometric FOX

gate is applied, creating a many-body entangled state

|0〉 + |1〉√
2

⊗ |1 . . . 1〉 FOX−→ |00 . . . 0〉 + |11 . . . 1〉√
2

, (22)

which is one of the GHZ states. The performance of the
geometric FOX gate can be evaluated by generating an N-

atom GHZ state |GHZ〉N = (
|00 . . . 0〉︸ ︷︷ ︸

N
+ |11 . . . 1〉︸ ︷︷ ︸

N
)/

√
2 from an

initial state |ψi〉 = (
|01 . . . 1〉︸ ︷︷ ︸

N
+ |11 . . . 1〉︸ ︷︷ ︸

N
)/

√
2. In Fig. 8 we plot

the GHZ state fidelity up to five atoms by numerically solving
the TDSE [the fidelity is defined as F = 〈GHZ|ρ(t )|GHZ〉],
which shows that GHZ states induced by the geometric
FOX gate have high fidelities even in the presence of large
dissipation.

IV. CONCLUSION

Using the asymmetric Rydberg-Rydberg interaction, time-
optimal control technology, and an unconventional geometric
phase, we have proposed and analyzed a geometric scheme of
the fan-out gate with one control and multiple target qubits
that can be performed with arbitrary operations. The Ryd-
berg blockade being proved experimentally [90,91] and the

asymmetric Rydberg-Rydberg interaction being predicted the-
oretically [47,48] ensure the feasibility of the physical model
of our scheme. Geometric quantum computation and optimal
control technology provide the technical feasibility of the
scheme and its advantages over using other Rydberg atoms
to construct fan-out gates. Our scheme not only maintains
the superiority of the geometric phase but greatly reduces the
gating time. By numerically simulating the average fidelity
of the geometric FOX or FOT gate and dynamical counterparts
under spontaneous emission, the relative error of the Rabi
frequency, the off-resonance error, the phase error, and an
imperfect blockade, we prove that our gate scheme indeed has
a better performance and higher fidelity than the three-qubit
dynamical controlled gate scheme. Thus, our scheme provides
a promising way towards fault-tolerant quantum computation
of a neutral-atom-based system.
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APPENDIX A: MASTER EQUATION
AND AVERAGE FIDELITY

In a practical implementation of the fan-out gate, we need
to consider the spontaneous emission of Rydberg atoms. Gen-
erally speaking, the quantum dynamics of the whole system
described by the Hamiltonian H can be described by the
master equation

ρ̇ = −i[H, ρ]

+ 

2

N∑
j=1

[
4 j∑

a=4 j−3

(2σaρσ †
a − σ †

a σaρ − ρσ †
a σa)

]
, (A1)

where H denotes the Hamiltonian of the system,  is the de-
cay rate of the Rydberg atoms, and σ4 j−3 = |0〉 j〈R|, σ4 j−2 =
|1〉 j〈R|, σ4 j−1 = |0〉 j〈r|, and σ4 j = |1〉 j〈r| are the four decay
channels of the jth atom. To evaluate the performance of
the fan-out gate, we introduce the trace-preserving quantum-
operator-based average fidelity [115,116] defined as

F̄ (ζ ,K) =
∑

j tr[KK†
jK†ζ (K j )] + b2

b2(b + 1)
, (A2)

where K j is the tensor of Pauli matrices
I2I2 . . .I2I2︸ ︷︷ ︸

N
,
I2I2 . . .I2σx︸ ︷︷ ︸

N
, . . .,

I2I2. . .σxI2︸ ︷︷ ︸
N

,
I2I2. . .σxσx︸ ︷︷ ︸

N
, . . .,

σzσz . . . σzσy︸ ︷︷ ︸
N

,

σzσz . . . σzσz︸ ︷︷ ︸
N

for the N-qubit quantum gates, K is the ideal fan-out

gate, b = 2N , and ζ is the trace-preserving quantum operator.
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APPENDIX B: DYNAMICAL SCHEME

Here we briefly explain the dynamical scheme mentioned
in the main text to achieve FOX and FOT gates. Taking a three-
qubit gate as an example, the process can be divided into three
similar steps.

Step (i) is the same as the geometric scheme.
In step (ii) we set �s = 0 for the rest of the Rydberg atoms

2 and 3. In the interaction picture, the interaction Hamiltonian
of this system is

Hd =
3∑

j=2

�p

2
eiφp |1〉 j〈r| + H.c. (B1)

With this Hamiltonian we can obtain an evolution operator
similar to the geometric gate

Ud =
⎛
⎝1 0 0

0 cos β −ieiφp sin β

0 −ie−iφp sin β cos β

⎞
⎠, (B2)

where β = �pτ/2, with τ the gate duration. During this evo-
lution, which is divided into two parts to acquire T gates on
target atoms, the parameters of the Hamiltonian are chosen as

β = π/2, φp = 3π/8, t ∈ [t1, t1 + t ′
2/2],

β = π/2, φp = −3π/8, t ∈ [t1 + t ′
2/2, t1 + t ′

2], (B3)

where t ′
2 = 2π/�p is the whole gating time in step (ii). Thus,

the evolution operators of target atoms 2 and 3 in computation
subspace (|0〉, |1〉) are all T gates. Suppose the conditions

VRr � �p � Vrr are satisfied. Then the transition |αβ〉23 →
(eiπ/4)α (eiπ/4)β |αβ〉 is achieved if the initial state of atom 1 is
|0〉, where α, β ∈ 0, 1. Otherwise, if the initial state of atom 1
is |1〉, then it would be excited to |R〉 after step (i). Thus, the
transition |αβ〉23 → |αβ〉23 is achieved under an asymmetric
Rydberg blockade.

Step (iii) is also the same as the geometric scheme. Thus,
we can acquire the whole evolution process

|0αβ〉 → (eiπ/4)α (eiπ/4)β |0αβ〉,
|1αβ〉 → |1αβ〉, (B4)

which represents the three-qubit FOT gate. Additionally, the
dynamical FOX gate can also be achieved. In step (ii) we divide
the total evolution time 3π/�0 into three equal parts π/�0,
and each part of the Hamiltonian can be represented as

Hd1 =
3∑

j=2

�s

2
eiφs |0〉 j〈r| + H.c., φs = 0,

Hd2 =
3∑

j=2

�p

2
eiφs |1〉 j〈r| + H.c., φp = π,

Hd3 =
3∑

j=2

�s

2
eiφs |0〉 j〈r| + H.c., φs = 0, (B5)

respectively. Thus, the dynamical FOX gate can be realized at
the end of the evolution.
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Vuletić, and M. D. Lukin, Science 371, 1355 (2021).

[100] S.-L. Zhu and Z. D. Wang, Phys. Rev. Lett. 91, 187902 (2003).
[101] T. Chen and Z.-Y. Xue, Phys. Rev. Appl. 14, 064009

(2020).
[102] G. F. Xu, P. Z. Zhao, T. H. Xing, E. Sjöqvist, and D. M. Tong,

Phys. Rev. A 95, 032311 (2017).

[103] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang,
S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui,
M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M.
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