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Learning quantum dynamics with latent neural ordinary differential equations
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The core objective of machine-assisted scientific discovery is to learn physical laws from experimental data
without prior knowledge of the systems in question. In the area of quantum physics, making progress towards
these goals is significantly more challenging due to the curse of dimensionality as well as the counterintuitive
nature of quantum mechanics. Here we present the QNODE, a latent neural ordinary differential equation (ODE)
trained on expectation values of closed and open-quantum-systems dynamics. It can learn to generate such
measurement data and extrapolate outside of its training region that satisfies the von Neumann and time-local
Lindblad master equations for closed and open quantum systems, respectively, in an unsupervised means.
Furthermore, the QNODE rediscovers quantum-mechanical laws such as the Heisenberg’s uncertainty principle
in a data-driven way, without any constraint or guidance. Additionally, we show that trajectories that are
generated from the QNODE that are close in its latent space have similar quantum dynamics while preserving
the physics of the training system.
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I. INTRODUCTION

Deep learning and neural networks have recently become
the powerhouse in machine learning (ML) and have success-
fully been used to tackle complex problems in classical [1–3]
and quantum mechanics [4–7] (see Refs. [8–12] for reviews).
Machine-assisted scientific discovery is still in its infancy,
but progress has been made, mostly by building the correct
inductive bias, or structure, into the model or loss function.
For example, physical conservation laws can be learned [1,2].
Other work has made progress, for example, in a purely
data-driven approach learning relationships between quantum
experiments and entanglement using generative models [13].
Recently, neural ordinary differential equations (ODEs) were
introduced [14,15], a neural network layer defined by differ-
ential equations. Neural ODEs provide the perfect model for
physics, since many physical laws are governed by ODEs and
thus every neural ODE has the correct inductive bias built into
the model itself.

Quantum computing is another prominent area of research
currently, with the potential to outperform the capabilities of
the best classical computers [16–18]. To make advances in this
so-called noisy intermediate-scale quantum (NISQ) era [19],
where a quantum computer can possess hundreds of qubits,
several NISQ algorithms [20–23] have been proposed. One of
the fundamental challenges for NISQ devices to scale-up is
to understand noises involved in devices. However, account-
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ing for these undesired environmental effects would require
exponential classical compute resources [24]—one solution
attempt is to employ quantum computer-aided design [25,26],
which still cannot fully account for the environmental effects
due to limited NISQ hardware availability.

In general, the study of open quantum systems is impor-
tant for quantum computing as well as many other areas
of physics, from many-body phenomenon [27,28] and light-
matter interaction [29–31] to nonequilibrium physics [32,33].

Here we demonstrate that latent ODEs can be trained
to generate and extrapolate measurement data from dynam-
ical quantum evolution in both closed and open quantum
systems using only physical observations without speci-
fying the physics a priori. This is in line with treating
the quantum system as a black box and the “shut up
and calculate” philosophy [34], all the while ignoring
ontological interpretation [35] of quantum physics. The
QNODE can predict and extrapolate quantum trajectories
much longer than trained on without needing to solve the
underlying Schrödinger equation of motion or the time-
local Lindblad master equation [31,36] (setting h̄ = 1 on-
wards, see Appendix C for detailed derivation): d ρ̂S (t )/dt =
−i[Ĥ , ρ̂S (t )] + ∑

ν �ν[Aν ρ̂S (t )A†
ν − 1

2 {A†
νAν, ρ̂S (t )}]. Here,

�ν � 0 are decay rates, Aν are superoperators, depending on
the physical noise model considered, and {a, b} = ab + ba is
an anticommutator, while Ĥ is the quantum system Hamilto-
nian and ρ̂S is the system density matrix. By setting �ν = 0,
we arrive at the von Neumann equation for a closed quan-
tum system. There are some attempts to learn open quantum
systems [37,38] using recurrent neural networks (RNNs),
but these models have inaccurate long-term predictions and
poor extrapolation [39]. In addition, there exists similar
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FIG. 1. (a) The model. Visualizing QNODE’s components. We first encode the dynamics of a qubit in the form of a time series of its
observables. In the case of a simple two-level quantum system, we are looking at the Bloch vector evolution, which is mapped via a recurrent
neural network to a latent representation of the dynamics. Then a neural ODE layer outputs a latent representation of subsequent dynamics,
which are mapped to quantum dynamics by an MLP decoder. QNODE can reconstruct the training dynamics and extrapolate the dynamics
forward in time. (b) Closed-quantum-system dynamics. A table comparing examples of closed-system quantum dynamics from the training
DATA (top row) with examples of closed-system quantum dynamics generated by the QNODE (bottom row). Beneath each Bloch sphere is
the time-series plot of the norm ||�||2 of the dynamics. The green solid line is two arbitrary time units (arb. units, i.e., when h̄ = ω = 1) of
trained dynamics and blue is four arb. units of extrapolated dynamics. Black and red are the real quantum dynamics, with black being the
actual training region or two arb. units and red being four arb. units of dynamics unseen to the QNODE. Furthermore, we set the limits of the
y axis for ||�||2 from 0.5 to 1.5.

explorations of studying open quantum systems using ker-
nel methods [40], convolutional neural networks [41,42], and
recurrent neural nets [43]. However, the difference between
these and ours is that our QNODE is unsupervised learning
while all the above references are based on supervised learn-
ing methods.

II. PRELIMINARIES

A. QNODE model

We repurpose the latent variable neural ordinary differ-
ential equation (ODE) model [14], which is a generative
latent function time-series model. The model is trained as
a variational autoencoder [44,45] on the quantum dynamics
time series, and in this context we refer to the model as the
quantum dynamics latent neural ODE (QNODE). We visu-
alize each component of the model in Fig. 1. The encoder
is a RNN, which takes in the training quantum dynam-
ics xO(t1), . . . , xO(tn) sequentially backwards in time and
outputs the parameters of the distribution on the latent repre-
sentation hO(t0) for some initial t0. Using a standard Gaussian

prior on the latents, the dynamics xO(t ) are modeled with a
Gaussian likelihood.

The subsequent learned latent representation hO(t ) of the
quantum dynamics comes from a neural ODE layer [14]
which parameterizes the continuous dynamics of the system
using an ordinary differential equation specified by a multi-
layer perceptron (MLP) with parameters θ :

dhO(t )

dt
= MLPθ (hO(t ), t ). (1)

Starting from the latent space with hO(t0), we can obtain
the subsequent latent dynamics hO(t ) from the output of this
layer, which is the solution to this ODE initial value problem
at any time t . A black-box differential equation solver com-
putes this:

hO(t1:N ) = ODESolve[hO(t0), MLPθ , t0:N ], (2)

where hO(t1:N ) = hO(t1), . . . , hO(tN ) is the latent represen-
tation of the quantum dynamics xO(t1), . . . , xO(tN ). A single
MLP is used to decode the latent dynamics into quantum
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TABLE I. Training Parameters. We provide the number of hidden units for the RNN, ODE layer and MLP for all 3 models and their
respective hyperparameters.

Model RNN HU ODE HU MLP HU Learning Rate Epochs Total MSE Average MSE

Closed 48 48 48 4×10−3 7500 2.765×10−3 2.560×10−6

Open 53 53 53 7×10−3 7500 9.964×10−4 9.226×10−7

Two Qubit 170 170 170 2×10−3 7200 2.375×10−2 2.199×10−6

dynamics. For any latent state, the entire latent trajectory is
uniquely defined and we can extrapolate this latent trajectory
to make predictions arbitrarily far forward in time. The con-
tinuously defined dynamics provided by the neural ODE allow
us to work over arbitrary times and avoid any discretization of
the time intervals. This is akin to treating hO(t ) as ρ̂S (t ) in
the quantum dynamics. The model parameters can be found
in Table I.

B. Data generation

To generate time-series data for a quantum system, we first
consider a simple two-level quantum system Ĥ1 = (ωσ̂z +
	σ̂x )/2, where ω is the energy splitting of the two-level
system, 	 is the detuning, and σ̂ ’s are the usual Pauli ma-
trices. ω,	 are sampled from a Gaussian distribution (see
SM A 1). For each set of {ω,	}, we obtain time-series data
of the three expectation values that define the Bloch vector,
〈σ̂x(t )〉, 〈σ̂y(t )〉, 〈σ̂z(t )〉, for t ∈ [0, tN ], by numerically solv-
ing the corresponding von Neumann equation or Lindblad
master equation using QUTIP’s [46] numerical solver, given
an arbitrary initial quantum state, i.e., |ψ (0)〉 = ÛR|0〉—we
produce two datasets, one each for the open and closed sys-
tems. Here ÛR refers to the 2 × 2 Haar random unitary matrix,
and tN is the total training time. In this way one can take the
time-series data as a series of projective measurements made
across various times [0, tN ] on the statistical ensemble, which
is prepared in an initial quantum state ρ̂S (0).

Similarly, for a two-qubit system we use the follow-
ing Hamiltonian: Ĥ2 = (ω1σ̂

1
z + 	1σ̂

1
x )/2 + (ω2σ̂

2
z +

	2σ̂
2
x )/2 + Jσ 1

x σ 2
x , where ω’s, 	’s, J’s are all sampled

from the same Gaussian distribution as in the single-qubit
case. The initial states are sampled from the Haar random
matrix for each qubit space and tensor product afterward.

III. MAIN RESULTS

We conduct three main experiments using the QNODE
trained on both closed and open two-level quantum systems—
(1) Generating quantum dynamics from random positions in
the QNODE’s latent space, (2) testing if the QNODE’s gener-
ated dynamics preserve the Heisenberg uncertainty principle
(HUP), and (3) testing if the QNODE learns an interpretable
latent space by performing interpolations and assessing its
learned physics.

In the following, for each trajectory generated by QNODE
the green is two arbitrary time units (arb. units, i.e., when
h̄ = ω = 1) of trained dynamics and blue is four arb. units
of extrapolated dynamics. Black and red lines are the real
quantum dynamics, with black being the actual training region

or two arb. units and red being four arb. units of dynamics
unseen to the QNODE.

A. Generated dynamics

After training the QNODE on trajectories from both
closed- and open-quantum-system dynamics for the single-
qubit Hamiltonian Ĥ1, we test if the model will produce
dynamics that resemble the training data and satisfy the
von Neumann (time-local Lindblad master) equation for the
closed (open) quantum system case. To generate quantum
dynamics from the QNODE, we initialize the dynamics ran-
domly in the latent space by sampling hO(t0) from a standard
Gaussian distribution. Using that random latent point, we gen-
erate quantum dynamics and extrapolate forwards in time for
an additional four arb. units. We plot the dynamics generated
by the QNODE on the Bloch sphere and compare them with
its training data in Fig. 1(b) for the QNODE trained on the
closed system and Fig. 2(a) for the QNODE trained on the
open system. Inspecting the dynamics in both, it is apparent
that the QNODE can generate similar dynamics to the train-
ing data. Importantly, the generated dynamics obeys quantum
mechanics, since in Fig. 1(b) ||�(t )||2 ≈ 1 for the training and
extrapolation time while in Fig. 2(b) ||�(t )||2 decays towards
0, as expected in an open quantum system, where we have
bit-flip and dephasing noises, i.e., A1 = σ̂− and A2 = σ̂z, with
sets of parameters for �, which is sampled from a Gaussian
distribution (see SM A 1). Here, ||C||2 is the l2 norm of the
vector C.

Quantitatively, we find that the QNODE trains and
performs very well for both closed and open quantum trajec-
tories. The average mean-squared error (MSE) between the
exact and reconstructed ones are shown in Figs. 5 and 6. They
are in the order of 10−2 for the worst cases. Furthermore, the
latent trajectories generated for the closed and open systems
as shown in Fig. 7 match the trajectories we expect from
their respective systems. This signifies that the neural ODE
layer has indeed learned quantum dynamics and shows that
the MLP layer mainly projects these latent trajectories back
onto the Bloch Sphere.

B. Heisenberg uncertainty principle

Next we test if the QNODE is capable of learning the
Heisenberg uncertainty principle. For this purpose we gen-
erate 50 trajectories from the QNODE exactly as before and
compute the variance in σ̂x and σ̂z denoted as var(x) and var(z)
from 0 to 6 arb. units. We plot the variances over time in
Figs. 2(b) and 2(c) for the closed and open quantum sys-
tem, respectively, with the same coloring as before (green for
training and blue for extrapolation). We see that over time, in-
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FIG. 2. Open system dynamics. (a) A table comparing examples of open-system quantum dynamics that the QNODE is trained on (top
row) with examples of closed-system quantum dynamics generated by the QNODE (bottom row). Beneath each Bloch sphere is the time-series
plot of the norm ||�||2 of the dynamics. The green solid line is two arb. units of trained dynamics and blue is four arb. units of extrapolated
dynamics. Black and red lines are the real quantum dynamics, with black being the actual training region or two arb. units and red being four
arb. units of dynamics unseen to the QNODE. Furthermore, we set the limits of the y axis for ||�||2 from 0.0 to 1.0. Discovering the uncertainty
principle. [(b), (c)] The variance plotted through time of generated quantum dynamics produced by the QNODE as well as plane-separating
dynamics that satisfy the uncertainty principle from those that do not.

cluding during which the model is extrapolating, the variances
are almost entirely bounded by the plane var(z) + var(x) = 1,
signaling the model does learn to produce dynamics that sat-
isfy the uncertainty principle.

C. Latent space interpolation

We then analyze the smoothness of the latent space to
see if it learns a representation that is interpretable while
satisfying quantum mechanics. Specifically, we test if trajec-
tories that are close in the latent space have similar quantum
dynamics and also preserve physics. This can be done by
interpolating in the latent space from one latent point hO

i (t )
to another hO

j (t ), and decoding the quantum dynamics on
the path in the latent space between the two endpoints points
hO

1 (t0) and hO
8 (t0) in Fig. 3. There we plot one latent space

interpolation from the QNODE trained on the open system
(the top three rows) and one from the closed system (the
bottom three rows). We use spherical linear interpolation on
the path and decode at six equally spaced steps along it,

corresponding to hO
2 (t0), . . . , hO

7 (t0) in the figure. For each
interpolation, in the three rows, at the top, we first plot the
latent dynamics at each interpolation point hO

i (t ), in the sec-
ond row we plot the decoded quantum dynamics, and in the
third row is the quantum state’s norm ||�(t )||2. We use the
same coloring as before for training time and extrapolation
time. To see if the model has learned a notion of similarity
between trajectories corresponding to their quantum dynam-
ics, we perform interpolations from very different training
quantum dynamics. Both interpolations show a smooth transi-
tion between the different dynamics that preserves physics,
given the behavior of the time series of ||�(t )||2 in each
case.

IV. DISCUSSION

In this work we propose the latent neural ODE for quan-
tum dynamics: QNODE, which is capable of learning and
generating quantum trajectories of closed and open quantum
systems without any prior knowledge of quantum physics.

042403-4



LEARNING QUANTUM DYNAMICS WITH LATENT NEURAL … PHYSICAL REVIEW A 105, 042403 (2022)

FIG. 3. Latent space interpolations. A table of two interpolations in the latent space of the QNODE with the two different training dynamics:
the top super-row is from the open system and bottom super-row is from the closed system. In each super-row there are three subrows showing,
for each interpolation point: (1) the plotting latent dynamics, (2) decoded quantum dynamics, and (3) time series of the quantum state’s norm.
Each column is from a different interpolation point in the latent space. The green solid line is two arb. units of trained dynamics and blue is
four arb. units of extrapolated dynamics. Furthermore, we set the limits of the y axis for ||�||2 for the open and closed system from 0.5 to 1.5
and 0.0 to 1.0, respectively.

Based on the projective measurement data along the evolv-
ing time series, we find that QNODE can learn, reconstruct,
and extrapolate the quantum trajectories with high accuracy.
Furthermore, the Heisenberg uncertainty principle of a qubit
is recovered from the QNODE’s generated dynamics. The
evidence from our numerical experiments demonstrates that

the QNODE is capable of generating quantum dynamics that
preserve physical laws, even when they extrapolate outside of
the training time.

The QNODE is capable of learning systems beyond the
simple two-level quantum system presented so far. The diffi-
culty lies in generating enough data from a larger dimensional

FIG. 4. Two-qubit samples. The green and black trajectories represent expectations values of generated random samples and the training
data, respectively. Our model creates random samples similar to the training data, showing that it learns valid dynamics. The x axis traverses
from zero to two arb. units.
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FIG. 5. Closed-system reconstructions: (a) Reconstructions with MSEs ranging from best to worst performing (left to right). (b) The
average MSE over time. The plot is bounded by the maximum MSE over six arb. units. (c) A histogram of all MSE values over training data.
The colored lines refer to the MSE of the reconstructions of the same color plotted in (a).

Hilbert space. To demonstrate such a point, we have carried
out two-qubit numerical experiments with the system Hamil-
tonian Ĥ2. The results are shown in Fig. 4, where we show
that samples generated by the QNODE are valid and physical.
The quantitative analysis regarding the two-qubit case can be
seen in Fig. 8. Potentially, multiqubit data could be gathered
from recent superconducting qubit experiments [16–18] with
randomized quantum gates to produce some physical observ-
ables in time. We believe that the QNODE is one step closer
to machine-assisted discovery of scientific principles such as
quantum phenomena modeled by many interacting classical
worlds [47], or could be used to implement dynamical de-
coupling schemes [48] on the fly during quantum dynamical
evolutions as a kind of inverse design [49], thereby paving the
way towards large-scale NISQ devices.

The main code used to obtain data presented here can be
found in a public repository [50].
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APPENDIX A: METHODS

1. Creating the Training Data

As mentioned in the manuscript, both datasets come from
a similar type of Hamiltonian, more specifically, Ĥ = (ωσ̂z +
	σ̂x )/2, where ω is energy splitting of the two-level system,
	 is the detuning, and σ̂ ’s are the usual Pauli matrices. ω and
	 are sampled from a Gaussian distribution with a range of
1.5–2.5. Additionally, for the open system, � is sampled from
a Gaussian distribution with a range of 0.1–0.3. We create 30
of these Hamiltonians and evolve them with 36 sampled initial
states from the surface of the Bloch sphere for 60 time steps
from 0 to 2 arb. units. We then take the expectation values of
the evolution with respect to σ̂x, σ̂y, σ̂z. This creates our dataset
with the size of (30 ∗ 36, 60, 3).

2. Training the Models

The results in the paper are the best models based on
the lowest evidence lower bound objective (ELBO) and
mean-squared error (MSE). The Table I highlights the hyper-
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FIG. 6. Open-system reconstructions. (a) Reconstructions with MSEs ranging from best to worst performing (left to right). (b) The average
MSE over time. The plot is bounded by the maximum MSE over six arb. units. (c) A histogram of all MSE values over training data. The
colored lines refer to the MSE of the reconstructions of the same color plotted in (a).

parameters, e.g., RNN hidden units (HU) and metrics for the
best closed, open, and two-qubit models trained.

APPENDIX B: QUANTITATIVE ANALYSES

While the focus of unsupervised learning models is to
create new data samples shown in Figs. 1, 2, and 4. We add the
reconstruction performance of our models for more quantita-
tive analysis in Figs. 5, 6, and 8. Our models reconstruct the
training data well with the bulk of mean squared error losses
within 4 × 10−2.

APPENDIX C: MICROSCOPIC DERIVATION OF THE
OPEN-QUANTUM-SYSTEM MASTER EQUATION

In this section, to remind our readers who are not familiar
with open-quantum-system treatment, we present a micro-
scopic derivation formalism to arrive at a proper time-local
Lindblad master equation for a general open quantum system.
Suppose we consider a scenario where a quantum system S
weakly interacts with a bath environment B.

In the interaction picture, the system evolution can be
written as

d ρ̂S (t )

dt
= −

∫ t

0
dτ TrB[ĤI(t), [ĤI(τ ), ρ̂(τ )]], (C1)

where ρ̂S represents the system density operator, the subscript
B represents the bath, and ρ̂ is the combined system and bath
density operator. In application of the Born approximation, we

assume the interaction between the system and the bath is so
small that the bath degrees of freedom ρ̂B are negligibly af-
fected by the system-bath interaction. Thus the total system at
time t can be approximated by ρ̂(t ) ≈ ρ̂S (t ) ⊗ ρ̂B. Therefore
we arrive at

d ρ̂S (t )

dt
= −

∫ t

0
dτ TrB[ĤI(t), [ĤI(τ ), ρ̂S(τ ) ⊗ ρ̂B]]. (C2)

Furthermore, we assume environmental excitations decay
over time and cannot be resolved. With the Markovian ap-
proximation, we arrive at the Redfield equation:

d ρ̂S (t )

dt
= −

∫ t

0
dτ TrB[ĤI(t), [ĤI(τ ), ρ̂S(t) ⊗ ρ̂B]]. (C3)

We then substitute τ by t − τ and change the upper limit of
the integral to ∞. This is allowable provided the integrand
vanishes sufficiently fast for τ 	 τB and the timescale over
which the state of the system varies is large compared to the
timescale over which the bath correlation functions decay.
Thus we arrive at the Markovian quantum master equation,

d ρ̂S (t )

dt
= −

∫ ∞

0
dτ TrB[ĤI(t), [ĤI(t − τ ), ρ̂S(t) ⊗ ρ̂B]],

(C4)
where the time evolution is given by the present state ρ̂S (t ) and
is not dependent on the system state in the past. Thus there is
no memory effect.

The above procedure is termed the Born-Markov approx-
imation. In general, it does not guarantee Eq. (C4) provides
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(a) (b)

FIG. 7. QNODE’s latent dynamics of a simple two-level quantum system. Latent trajectories learned by the QNODE for all training data
in the closed quantum system (a) and open quantum system (b).

the generator of a dynamical semigroup. Thus, further secular
approximation is needed [36]. We proceed by decomposing
the interaction Hamiltonian into two parts:

ĤI =
∑

α

Âα ⊗ B̂α, (C5)

with Â†
α = Âα and B̂†

α = B̂α . The secular approximation is
achieved if the interaction Hamiltonian is decomposed in

terms of the eigenoperators of the system Hamiltonian ĤS . Let
us denote the projection onto the eigenspace belonging to the
eigenvalue ε in ĤS as �̂(ε). Then,

Âα (ω) =
∑

ε′−ε=ω

�̂(ε)Âα�̂(ε′). (C6)

The sum is extended over all energy eigenvalues ε′ and ε

of HS with a fixed energy difference ω. As a consequence,

FIG. 8. Two-qubit reconstructions. (a) Reconstructions with MSEs ranging from best to worst performing (left to right). (b) The average
MSE over time. The plot is bounded by the maximum MSE over two arb. units. (c) A histogram of all MSE values over training data. The
colored lines refer to the MSE of the reconstructions of the same color plotted in (a).
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we have [ĤS, Âα (ω)] = −ωÂα (ω), [ĤS, Â†
α (ω)] = +ωÂ†

α (ω).
The corresponding interaction picture operators take the form

eiĤSt Âα (ω)e−iĤSt = e−iωt Âα (ω), (C7)

eiĤSt Âα (ω)e−iĤSt = e−iωt Âα (ω), (C8)

with [ĤS, Â†
α (ω)Âbeta(ω)] = 0 and Â†

α (ω) = Âα (−ω).
We note that Â’s satisfy the completeness relationship:∑

ω Âα (ω) = ∑
ω Â†

α (ω) = Âα . Eventually, the interaction
Hamiltonian in the interaction picture is then

ĤI (t ) =
∑
α,ω

e−iωt Âα (ω) ⊗ B̂α (t ) =
∑
α,ω

eiωt Â†
α (ω) ⊗ B̂†

α (t ),

(C9)
where B̂α (t ) = eiĤBt B̂αe−iĤBt . By substituting ĤI back to
Eq. (C4) we arrive at

d ρ̂S (t )

dt
=

∫ ∞

0
dτTrB[ĤI(t − τ )ρ̂S(t)ρ̂BĤI(t)

− ĤI (t )ĤI (t − τ )ρ̂S (t )ρ̂B] + H.c.

=
∑
ω,ω′

∑
α,β

ei(ω′−ω)t�αβ (ω)[Âβ (ω)ρ̂S (t )Â†
α (ω′)

− Â†
α (ω′)Âβ (ω)ρ̂S (t )] + H.c., (C10)

with a bath correlation function

�αβ (ω) =
∫ ∞

0
dτeiωτ 〈B̂†

α (τ )B̂β (0)〉. (C11)

The typical timescale τS for which the system evolves is de-
fined as |ω′ − ω|−1, where ω′ �= ω. By neglecting the rapidly
evolving term ω′ �= ω during which ρS varies appreciably, we
have

d ρ̂S (t )

dt
=

∑
ω

∑
α,β

�αβ (ω)(Âβ (ω)ρ̂S (t )Â†
α (ω)

− Â†
α (ω)Âβ (ω)ρ̂S (t )) + H.c. (C12)

Our QNODE model uses quantum data generated from
such time-local Lindblad master equations for open-quantum-
system dynamics.
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