
PHYSICAL REVIEW A 105, 042402 (2022)

Quantum distance to uncontrollability and quantum speed limits
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Distance to uncontrollability is a crucial concept in classical control theory. Here, we introduce quantum
distance to uncontrollability as a measure of how close a universal quantum system is to a nonuniversal one. This
allows us to provide a quantitative version of the quantum speed limit, decomposing the bound into geometric
and dynamical components. We consider several physical examples including globally controlled solid state
qubits, scrambling of quantum information, and a cross-Kerr system, showing that the quantum distance to
uncontrollability provides a precise meaning to spectral crowding, weak interactions, and other bottlenecks
to universality. We suggest that this measure should be taken into consideration in the design of quantum
technology.
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I. INTRODUCTION

Just as it is in our day-to-day computers, universality (the
ability to run any algorithm in principle) is the central con-
cept in quantum computing. In the current race to prove the
first traces of it, and with the first success to report it in
larger systems [1], this is more true than ever. It is often
argued [2] that universality itself is universal, e.g., that al-
most all systems are universal, and if not, a slight change of
parameters would render them so. This is even true in noisy
systems, where universality needs to be combined with error
correction.

However, we argue that there is a flip-side to this: if
any nonuniversal system is close to a universal one, then
also many universal ones are dangerously close to nonuni-
versal ones. Universality might be unstable or inefficient
then. Indeed, it seems that nature is hesitant to explore high-
dimensional dynamics [3] and simple nonuniversal systems
are often good approximations. Experimentalists working
hard to engineer weak nonlinearities in quantum optics, weak
anharmonicities in superconducting systems, or to avoid spec-
tral crowding in solid-state systems are well aware of such
limitations. Here, we put this intuition in a precise framework
we call quantum distance to controllability and we show how
it relates to a notoriously difficult to compute yet indepen-
dently interesting quantity: the quantum speed limit [4–6].
It is worth pointing out that there are many different speed
limits, some for the transformation of states, some for unitary
transformation, some for uncontrolled dynamics, and some
for controlled dynamics, see the review given in [4]. The
one we focus on here is for the controlled evolution of a
system. Intuitively speaking, the distance to uncontrollability

identifies and quantifies the control bottleneck of a quantum
system.

But first let us put our result into context. Universality
is also universal in (Kalman) linear control, a key subject
in engineering with a wide range of applications ranging
from mobile communications to space travel. The concept of
distance to controllability was introduced in the linear set-
ting [7,8] to quantify the smallest perturbation that would lead
to an uncontrollable system. There is no speed limit in linear
control when the controls are unbounded [9] and distance to
controllability is used as a test of the numerical robustness of
controllability.

In quantum mechanics, our results rely on the simple
observation that if a controllable quantum system is close
to an uncontrollable one, nature needs time to distinguish
them. More precisely, for short time evolution, the corre-
sponding unitaries will be close and only over longer times
do the difference accumulate. This should provide us with
a bound for the quantum speed limit. To make this precise
we have to find a path-independent controllability criterion
and solve a group theoretic worst-case scenario. We solve
both using very recently developed techniques and insights on
controllability [10,11].

The last of these is worth motivating independently. Let
us imagine Bob wants to buy a quantum computer, but un-
fortunately the shop is out of stock of universal machines.
However, he can choose among any nonuniversal device. Bob
knows that his friend Alice will try to run the hardest possible
algorithm on whichever machine he chooses. Which is the
best machine to buy and by how much is his machine going to
fail at running Alice’s task? We give a dimension-independent
bound to this question.
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II. SETUP

We consider a control system given by a time-dependent
Schrödinger equation

d

dt
U (t ) = iH (t )U (t ), (1)

where U and H are complex valued square matrices of size
d < ∞ and U (0) = 1. First, for simplicity, we assume that
H (t ) decomposes into a drift and a single control as H (t ) =
Hd + f (t )Hc, with Hd , Hc self-adjoint and traceless and f (t )
arbitrary piece–wise continuous. The extension to multiple
controls and other classes of control pulses will be considered
later. It is well known that the pair (Hd , Hc) is controllable if
and only if the smallest real Lie algebra g that contains iHd

and iHc and has maximal dimension dim g(Hd , Hc) = d2 − 1.
In this case, the corresponding group is SU(d ), the unitaries
with unit determinant. Equivalently, g is generated by iterated
commutators and real linear combinations of iHd and iHc.

From now on we assume that (Hd , Hc) is such a control-
lable pair. In this case there is a minimal time T∗ > 0 such
that all unitaries U can be reached exactly at that time [12]
(alternatively one can consider the minimum time such that
all unitaries can be reached up to this time). We refer to this
as the control time and note that not much is known about
the dependence of the control time on the drift and controls.
Interestingly, in linear control theory, controllable systems
can, in principle, be controlled arbitrarily fast. In our case,
however, it is clear that even for unbounded controls f (t ) the
evolution of the drift sets a “quantum speed limit” (we first
consider pulses as “free resources” and later look at more
general scenarios with additional constraints). The goal of the
present study is to understand this limit better by finding the
distance to uncontrollability.

More specifically, consider the smallest self-adjoint mod-
ification to the drift which renders the system not fully
controllable (here referred to as “uncontrollable”):

ε∗ = inf{‖�H‖ : dim g(Hd+�H, Hc) < d2−1}, (2)

where �H = �H† and ‖A‖ ≡ ‖A‖∞ denotes the oper-
ator norm of A. Notice that (0, Hc) is uncontrollable
[dim g(0, Hc) = 1] and therefore ε∗ � ‖Hd‖. If a system is
uncontrollable, intuitively there is a least one “direction” in
the dynamics missing. This will be made more precise later.
Let us denote with R the set of unitaries that can be reached in
the not fully controllable system (Hd + �H, Hc). We are then
interested in

δ(R) = sup
U∈SU(d )

inf
V ∈R

‖U − V ‖, (3)

which describes the unitary that has the worst approximation
within R. For any uncontrollable system (Hd + �H, Hc) there
is a U such that any evolution is at least at distance δ(R) to
U :

‖T ei
∫ T

0 (Hd +�H+ f (t )Hc )dt − U‖ � δ(R) (4)

for any time T and any control pulse f (t ) on [0, T ]. However,
by the definition of T∗ there is a control pulse f on the interval
[0, T∗] such that

T ei
∫ T∗

0 [Hd + f (t )Hc]dt = U . (5)

A simple calculation [13,14] using the unitary invariance of
the operator norm states that for this f (t ) we have

‖T ei
∫ T∗

0 [Hd +�H+ f (t )Hc]dt − U‖ � T∗‖�H‖. (6)

Since this holds for any �H rendering the system uncon-
trollable we get T∗ � δ(R)/ε∗. This bound characterizes the
speed limit in terms of a geometric term δ(R) and a dynamical
one ε∗.

Note that δ(R) still depends on the geometry of specific
control system and computing R typically involves a Lie clo-
sure. For applications in quantum information theory R can
be exponentially large and therefore δ(R) is hard to obtain.
Thus, it is interesting to introduce a universal bound

δ∗ = inf
R�=SU(d )

δ(R), (7)

which is independent of the details of the model. This allows
us to obtain a nontrivial bound on the control time T∗ � δ∗/ε∗.

The next part of this paper is dedicated to finding explicit
expressions on the geometric δ∗ (which is only a function
of the dimension d of Hilbert space; we, however, give a
dimension-independent lower bound) and on the dynamical
quantity ε∗ = ε∗(Hd , Hc). We will then look at examples.

III. UNDERSTANDING THE GEOMETRIC
COMPONENT δ∗

The simplest case is when R has a symmetry, that is, there
is a nontrivial projection P such that [R, P] = 0. In such
a case, we may choose a target unitary U which moves a
particular state |ψ〉 in the range of P to an orthogonal state in
its kernel. Then, for all V ∈ R, ‖V − U‖ � ‖(V − U )|ψ〉‖ =√

2 (the distance between two orthogonal states). As an ex-
ample this provides the loose bound T∗ �

√
2/‖Hd‖ which is

an instance of [14]. In general, this approach does not work
since there are uncontrollable systems without symmetry (see
the first physical example below).

In the Appendix, we use recent results [10,15] that show
uncontrollable systems always have nontrivial symmetries
on a doubled system. This allows us to make an argument
similar to the simple case above. However, in general, even
fully controllable systems in the doubled space cannot move
states in the range of such symmetries to their kernel and
we need to use a group averaging argument to see how far
we can move them at least. Both steps (doubling and aver-
aging) cost us some constants in the bound, but we show in
the Appendix that δ∗ � 1/4. This is remarkable because it is
independent of the dimension and only a factor of 8 from the
trivial bound δ∗ � 2. In terms of the quantum speed limit, it
means we can eliminate the geometric component δ∗ at little
cost and obtain the bound

T∗ � 1/4ε∗ . (8)

IV. UNDERSTANDING THE DYNAMICAL
COMPONENT ε∗

At first glance ε∗ is daunting. One reason is the Lie crite-
rion. As opposed to linear systems, where controllability can
be checked by computing the rank of the controllability matrix
with fixed dependence on the perturbation, here we compute
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the rank of certain Lie polynomials which depend on the
generators. While perturbing the system with �H can change
this rank, this does not imply uncontrollability: it could just
mean that one has to construct another set of polynomials.
Fortunately, there is a recent, powerful alternative characteri-
sation of controllability which circumvents this problem [10,
Theorem 21]

dim g(Hd + �H, Hc) < d2 − 1 ⇔
dim

{
(Hd + �H )(2), H (2)

c

}′
> 2, (9)

where A(2) ≡ A ⊗ 1 + 1 ⊗ A denotes the tensor symmetriza-
tion of a matrix A on the doubled space and {S}′ is the
commutant of the set S (the vector space of matrices com-
muting with all elements of S). We can boil this down
to something more standard by noting that X commutes
with a matrix B if and only if B(ad) vec(X ) ≡ (B ⊗ 1 − 1 ⊗
BT ) vec(X ) = 0, where we used row vectorization. The di-
mension of the commutant becomes equivalent to the nullity
of the 2d4 × d4 matrix

R(Hd + �H, Hc) ≡
((

iH (2)
d + �H (2)

)(ad)(
iH (2)

c

)(ad)

)
. (10)

Finally, controllability is equivalent to this matrix having a
rank of d4 − 2 and ε∗ can be defined by reducing this rank
with a minimal Hermitian choice of �H :

ε∗ = inf{‖�H‖ : rank R(Hd+�H, Hc ) < d4−2}. (11)

Having mapped Eq. (2) to a rank problem, we may use the
vast literature on algorithms designed to approximate ε∗ in the
classical case. For recent computable bounds see [16], and in
particular, for structured (including Hermitian) perturbations
see [17]. Because the rank criterion (11) involves a structured
optimisation not considered in the previous literature, we were
only able to find lower bounds on ε∗ with the classical algo-
rithms. We therefore discuss two alternative approaches for
the quantum case: one based on energy gaps, and one on graph
theory.

A. Relating ε∗ to the energy gap

There is an intricate relationship between symmetry and
controllability [10,15,18]. Altafini [19] and Turinici [20] con-
sidered sufficient criteria based on the absence of certain
degeneracies. Here we make the following simple obser-
vation. Assume the drift Hd has an n-fold degeneracy,
e.g., there are orthogonal eigenstates {Hd |ek〉 = e|ek〉, k =
1, . . . , n}. Assume further that the control acts only nontriv-
ially on a subspace Hc, that is, H = Hc ⊕ H⊥

c , and that Hc

is left invariant by the control. Then if dim Hc < n, there
is a symmetry in the control system, ∃M = M† : [Hc, M] =
[Hd , M] = 0, and δ∗ �

√
2. To see this, simply build linear

combinations of degenerate eigenstates (of which there are
enough) to get an eigenstate of Hd that has no support on
Hc. The corresponding projector will be such a symmetry,
and by linearity and the Jacobi identity, it will commute with
R and thereby render the system not fully controllable. To
summarize: By looking at the block structure of the control(s),
and the spectrum of the Hamiltonian, we can see how to make
the system uncontrollable. In particular, when Hc is rank 1, we

get ε∗ < min �ek, the minimum gap of the energy eigenstates
of Hd .

B. Relating ε∗ to graph properties and min-cut

We bring Hc = ∑
k |ek〉〈ek| into a diagonal representation.

If H0 + �H is not a connected graph in this basis, the system
is not controllable [19]: the system splits into a block structure
with a corresponding symmetry and δ∗ �

√
2. To find such a

perturbation efficiently, we can consider a graph with weights
|〈ek|H0|e j〉| and run the polynomial-sized Stoer-Wagner algo-
rithm [21]. It provides the minimal �H in the L1,1 norm, and
thereby an interesting upper bound on ε∗. Before we consider
examples, let us also generalize to multiple control functions
that are possibly bounded.

V. BOUNDED AND MULTIPLE CONTROLS

Often, control amplitudes are bounded and in such a
case we can compute a distance to uncontrollability also by
perturbing the controls. We may consider a time-dependent
Hamiltonian H (t ) = ∑M

j=1 g j (t )H̃j + ∑L
k=1 fk (t )Hk with the

first set of controls bounded as |gj (t )| < c and the remain-
ing controls not bounded. This notation can also include
a drift term by setting g(t ) = 1. If now the generators
(H̃1, . . . , H̃M , H1, . . . , HL ) are controllable, and the modified
set (H̃1 + �1, . . . , H̃M + �M, H1, . . . , HL ), ‖� j‖ � ε∗/M is
uncontrollable, we can derive a similar bound as above. For
U1 generated by

∑M
j=1 g j (t )H̃j + ∑L

k=1 fk (t )Hk and U2 gener-

ated by
∑M

j=1 g j (t )(H̃j + � j ) + ∑L
k=1 fk (t )Hk on [0, T∗] we

have ‖U1 − U2‖ �
∫ T∗

0 ‖g(t )�‖ � cε∗T∗ and therefore T∗ �
δ∗/(cε∗). Having generalized to this more realistic scenario,
we now look at four paradigmatic examples.

VI. PHYSICAL EXAMPLES

As a first and simple example consider two qubits with full
local control and the drift δZ ⊗ Z , where Z denotes a Pauli
matrix. Even when uncontrollable, this system has no sym-
metry and we use δ∗ � 1/4. Our bound provides T∗ � 1/(4δ)
while the exact limit was shown to be [22] T∗ = π/(2δ),
which only differs from our bound by a constant factor.

A. Global controls

This is a commonly encountered situation in solid-state
quantum technology. The system with drift Hd = ∑

Zi ⊗ Zj

and global controls g1(t )
∑

γiXi and g2(t )
∑

γiYi is fully con-
trollable as long as |γi| �= |γ j | [23]. Therefore, ε∗ � �γ ≡
mini j (|γi| − |γ j |). The corresponding quantum speed limit
with bounded controls gi(t ) � c is given by T∗ �

√
2/c�γ ,

which makes spectral crowding [24] rigorous.

B. Local controls

As our third example, we consider the nearest-neighbor
control system given by Hd = ∑d−1

n=1 |n〉〈n + 1| + |n + 1〉〈n|
and Hc = |1〉〈1| on a d-dimensional space with orthonormal
basis |n〉. This is one of the gold standards [6,25] in quantum
speed limits. The control is rank 1 so we can use the energy
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gap to bound the speed limit. The spectrum of the Hamilto-
nian is simply given by ek = 2 cos( kπ

d+1 ), k = 1, . . . , d . The
minimum gap can be upper bounded by 3π2/d2 and this
bound becomes tight as d → ∞. Therefore, we can find a
lower bound on the control time as T∗ �

√
2d2/3π2. To our

knowledge this is the first analytical proof that control times
scale at least quadratically with the dimension in this system.

C. Cross-Kerr interaction with fixed particle number

Linear optics, both passive and active, is a premier platform
of quantum information processing [26]. Thus, the problem of
extension to universality of passive linear optics has gained a
lot of attention in recently. In particular, it has been shown that
adding a cross-Kerr interaction leads to universality [27,28].
This is of relevance in quantum metrology with random
bosonic states [29].

Here we will perform our analysis of distance to con-
trollability in such a platform, considering d qumodes with
N photons. The Hamiltonians that we can implement are
any linear optical gates with essentially arbitrary strength,
and cross-Kerr gates between nearest-neighbor modes with
a strength that is typically strongly bounded, i.e., we have a
Hamiltonian of the form

H =
d−1∑
j=1

g j (t )n jn j+1 +
d∑

k�l

fk,l (t )a†
kal +H.c., (12)

where a†
j and a j are the creation and annihilation operators

and n j = a†
j a j is the particle number operator correspond-

ing to mode j. The control functions fk,l can be considered
unbounded, while the control functions for the cross-Kerr
interactions are bounded gj (t ) � c. We can now upper-bound
the ε∗ by choosing � = ∑

j n jn j+1. One can easily show that

‖�‖ = N2

4 . Thus we arrive at T∗ � 1/cN2 which shows us
how gate times scale with the number of photons and the
strength of the cross-Kerr interaction.

D. Scrambling

One way of interpreting uncontrollability in the context of
scrambling is that an uncontrollable system is a bad 2-design.
Equation (A4) of the Appendix shows, in fact, that any ap-
proximation to a 2-design by an uncontrollable system is at
least at distance 1 from a perfect 2-design, independently of
the details. This allows us to derive a quantum speed limit
for scrambling based on the distance to uncontrollability:
Suppose that a controllable system approximates a 2-design at
time Tscramble with an error μ. A bound of the design based on
Eq. (6) of the main text applied to the 2-design shows that the
design approximation by the controllable and uncontrollable
system can only differ by 4Tscrambleε∗. On the other hand,
because the controllable system is μ close to a 2-design, and
the uncontrollable 1 far, the triangle inequality shows that the
distance between the designs must be larger than 1 − μ. Com-
bining the bounds gives the promised Tscramble � (1 − μ)/4ε∗
This bound also holds for higher designs.

VII. CONCLUSION

We introduced the quantum distance to uncontrollabilty
as a quantitative measure of how good a control systems is
and derived bounds on the quantum speed limit. These are
provided in terms of a dynamical and geometric component.
We obtained a dimension-independent bound for the geomet-
ric component and linked the computation of the dynamical
part to energy gaps and to graph theory, which provides an
easy route to estimating speed limits. We gave several physical
examples from quantum technology. Maximizing the distance
to the nearest uncontrollable system has also been used in
the design of linear controlled systems [30] and it would be
interesting to consider it in the design of quantum computers.
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APPENDIX

Here we prove that δ∗ � 1/4. First, let us derive some sim-
ple norm bounds. Note that we can bound norm differences
on a doubled system as

‖U1 ⊗ U1 − U2 ⊗ U2‖
= ‖(U1 ⊗ U1 − U1 ⊗ U2) + (U1 ⊗ U2 − U2 ⊗ U2)‖
� ‖U1 − U2‖‖U1‖ + ‖U1 − U2‖‖U2‖
� 2‖U1 − U2‖. (A1)

Next, we can relate norm differences of unitaries to their
action on states as follows.

‖V ρV † − W ρW †‖1

= ‖ρ − V †W ρ(V †W )†‖1

= ‖ρ − V †W ρ + V †W ρ − V †W ρ(V †W )†‖1

� ‖ρ − V †W ρ‖1 + ‖V †W ρ − V †W ρ(V †W )†‖1

= 2‖(1 − V †W )ρ‖1. (A2)

Using Hölder’s inequality, we get

‖V ρV † − W ρW †‖1 � 2‖ρ‖1‖(1 − V †W )‖∞ = 2‖V − W ‖,
(A3)

where we dropped the ∞ subscript from the operator norm.
Now suppose R �= SU(d ). Then by compactness of SU(d ),

the closure R ≡ G is a connected and strict subgroup of
SU(d ). By the above,

δ(R) = sup
U∈SU(d )

inf
V ∈R

‖V − U‖

� sup
U∈SU(d )

inf
V ∈G

‖V − U‖
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� 1
2 sup

U∈SU(d )
inf
V ∈G

‖V ⊗ V − U ⊗ U‖

� 1
4 sup

U∈SU(d )
inf
V ∈G

‖AdV ⊗V (ρ)−AdU⊗U (ρ)‖1, (A4)

where ρ is an arbitrary state on the doubled system and
AdW (ρ) = W ρW †.

We will now use a representation theory argument laid out
in [10,11,15] to construct a state ρ that is left invariant by
V ⊗ V . Consider G⊗2 = {g ⊗ g|g ∈ G}. It is known that this
representation of G has at least two invariant subspaces, the
symmetric and the antisymmetric subspace. It also follows
from [11, Theorem 6] that because G �= SU(d ), then either the
symmetric or the antisymmetric subspaces of G⊗2 (or both)
break into more than one irreps of G. Let us assume it happens
in the symmetric space, with the other case treated analo-
gously. Thus there is a projection P, such that for any V ∈ G,
we have (V ⊗ V )P(V ⊗ V )† = P; and PP+ = P, where P+ is
the projection to the symmetric space, and P �= P+. We can
assume that the dimension (rank) of P is less than or equal to

half of that of P+ (otherwise consider its compliment in P+).
Since projections are positive, we can normalize them into a
state ρ = P/ dim P that will be a good choice for Eq. (A4).

Due to its invariance, the infinum in Eq. (A4) disappears
and we obtain

δ(R) � 1
4 sup

U∈SU(d )
‖ρ − (U ⊗ U )ρ(U ⊗ U )†‖1. (A5)

We now need to find a U ∈ SU(d ) which moves ρ far away.
This would be a hard problem in general, but we can use
Jensen’s inequality and move to the average case, which is
good enough

δ(R) � 1

4
‖ρ −

∫
SU (d )

(U ⊗ U )ρ(U ⊗ U )†‖1

� 1

4
‖P/ dim P − P+/ dim P+‖1 � 1/4. (A6)

In the second step, we used that SU(d ) acts irreducibly in P+.
In the last step, we went to a joint diagonal representation of P
and P+ and used the fact that dim P � dim P+/2 to explicitly
bound the trace norm.
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