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Quantum carpets in a leaky box: Poincaré’s recurrences in the continuous spectrum
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The freedom to define branch cuts of the complex function is used to derive an integral representation of
the quantum carpet, thus producing a generalization of the Poincaré recurrence theorem in the case of the
continuous spectrum. This approach provides a different way to renormalize resonant states to be both space
and time convergent. The coherence of quantum carpets was related to the properties of the Wigner function in
the canonical time-frequency phase space. It has been shown that the distortion of the Wigner function shape is
directly responsible for the lack of the ability of the dynamics to produce revivals equally as sharp as the initial
wave packet.
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I. INTRODUCTION

A quantum carpet is a pattern—generated by a wave
propagating in a dispersive medium—characterized by regu-
lar spontaneous reconstructions of the original wave packet
and its copies [1]. Carpets were observed in optics [2,3],
Bose-Einstein condensates [4], cold-atom waves [5,6], and
multimode waveguides [7], to name just a few. In all these
examples, carpets were formed by a discreet superposition of
waves whose phases are a quadratic function of the summing
index, and their properties were determined by Gauss sums of
the number theory [8,9]. Soon it was realized that the carpet is
a pattern associated with the first in the hierarchy of the revival
effects related to the cubic, quartic, etc., phase functions [10].
Thus, carpets are quantum manifestations of the Poincaré
recurrence theorem, stating that a volume-preserving discrete
state-space system must revisit its initial state infinitely often
[11].

The purpose of this paper is to show that continuous
superpositions can produce carpets. In that regard, we will
analyze the evolution of a quantum particle in a leaky-box
potential

V (q) = Vo[δ(q − a) + δ(q + a)], (1)

where 2a is the length of the box, while parameter Vo > 0 con-
trols the amplitude of the tunneling current. At first glance, the
substitution of eigenstates by resonances [12,13] provides the
desired generalization. This approach is inadequate for several
reasons. Outgoing time-decreasing resonances are spatially
divergent, implying the existence of the self-amplification
mechanism operating in the free space. Resonances are not
complete, nor orthogonal. Interpreting complex eigenvalues
of an arbitrary operator or making sense of complex prob-
ability densities is far from trivial. Addressing these issues
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sparked the development of the theory of rigged Hilbert spaces
[14].

It will be shown how to utilize the freedom to define the
branch cut and sheets of the complex function to obtain phys-
ically acceptable resonant states without the mentioned arti-
facts. The proposed model applies to imperfect waveguides,
where part of the wave can escape the resonator, or to real dy-
namics of trapped atoms where an external field is used to sup-
press tunneling and obtain the quadratic phase function [4].

Understanding the coherence-loss process is important in
itself since there are many proposals for applications of car-
pets in metrology [15], number-theoretic computing [16–18],
quantum information processing [19], or as a tool for studying
interactions between ultracold fermions [20]. The coherence
of the obtained carpets will be the subject of a separate analy-
sis, which will focus on the spectral properties of the nondecay
probability. It will be shown that synchronization between
spectrogram modes is responsible for the creation of extrema
of the nondecay probability function, while their deformation
is responsible for the creation of the wider extrema of the
reduced amplitude. A similar approach was used to explain the
quantum rainbow effect by the coordinated self-interference
of wave packets [21–23].

There are proposals to use the distortion of quantum car-
pets to study decoherence processes [24–26]. The presented
model can also be used for that purpose. It will be shown that
tunneling leads to the suppression of interference between res-
onant states, thus inducing decoherence. However, tunneling
alone is not capable of producing complete decoherence. Nev-
ertheless, the presented simple, solvable model shares many
features of the effective decoherence models [24–26], or more
elaborate numerical investigations [27–29]. An additional ad-
vantage is that all physical quantities, such as the energies
and lifetimes of resonant states that are are functions of Vo,
have a clear physical interpretation. The derived model has
effectively only one free parameter controlling the strength
of decoherence, instead of the abstract parameter used in
Refs. [24–26].
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II. DYNAMICS OF QUANTUM CARPETS

A. The integral representation

The time development of the initial state ψ0 is given by

ψ (q, t ) =
∫ ∞

−∞
K (q, q̄, t )ψ0(q̄)dq̄, (2)

where K is the propagator. Its associated Green’s function
is defined by Fourier’s transform of the propagator and is

a function of the real energy E . An analysis of resonances
requires an analytical continuation of the Green’s function
to the whole complex plane. Therefore, it will be defined by
Laplace’s transform

G(q, q̄, λ) =
∫ ∞

−∞
K (q, q̄, t ) exp[−λt]dt . (3)

For potential (1), the Green’s function is given by the expres-
sion [30]

G(q, q̄, λ) =

⎡
⎣ Gf (q, q̄), Gf (q,−a), Gf (q, a)

Gf (−a, q̄), Gf (−a,−a) + 1
Vo

, Gf (−a, a)
Gf (a, q̄), Gf (a,−a), Gf (a, a) + 1

Vo

⎤
⎦

[
Gf (−a,−a) + 1

Vo
, Gf (−a, a)

Gf (a,−a), Gf (a, a) + 1
Vo

] , (4)

where

Gf (q, q̄, λ) = 1√−iλ
exp[−2

√−iλ|q − q̄|] (5)

is the free-space Green’s function expressed in units where
a = 1/2, h̄ = 1, and m = 2, which is convergent for Re{λ} >

0 [31]. A λ representation of the wave function is defined by
the integral

Ψ (q, λ) =
∫ ∞

−∞
G(q, q̄, λ)ψ0(q̄)dq̄. (6)

It is assumed that ψ0 = δ(x). This choice simplifies the
analysis considerably but does not affect the generality of its
conclusions. Outside the box (|q| > 1/2), the λ representation
of the wave function reads

Ψ (q, λ) = exp[−2
√−iλ|q|]

Vo + √−iλ + Vo exp[−2
√−iλ]

, (7)

while inside the box (|q| � 1/2) it is given by the expression

Ψ (q, λ) = 1√−iλ
exp[−2

√−iλ|q|]
(8)

× 2Vo exp[−2
√−iλ] cosh[2

√−iλ|q|]√−iλ(Vo + √−iλ + Vo exp[−2
√−iλ])

.

Due to the factor
√−iλ, functions (7) and (8) have a branch

point at λ = 0, a branch cut along the negative Im{λ} axis,
and are both double valued. The principal branch Ψ1(q, λ) is
obtained for arg{λ} ∈ [−π, π ), while the secondary branch
Ψ2(q, λ) is obtained for arg{λ} ∈ [π, 3π ). Passing onto the
second sheet, the factor

√−iλ transforms into −√−iλ.
The morphology of these functions can be very different as

demonstrated in Figs. 1(a) and 1(b) showing the q = 0 slice
through the complex functions Ψ1 and Ψ2. The secondary
sheet contains symmetrical pairs of poles λ

(p)
2n = iη2

2k and
λ

(p)
2k+1 = iη2

2k+1 (k = 1, 2, . . .), that are solutions of the equa-
tion Vo − η + Vo exp[2η] = 0, (η = −√−iλ, thus Re{ηn} >

0, for n = 1, 2, . . .). On the contrary, the principal sheet has no
poles but ordinary maxima λ(μ)

n at ≈i Im{λ(p)
2n } = i Im{λ(p)

2n+1}.

The evolution of the wave function is now given by the
inverse Laplace’s transform of Ψ (q, λ). For its evaluation, it
is advantageous to introduce the coordinate transformation
λ̄ = −iλ, that aligns the Re{λ̄} axis with the Im{λ} axis. Thus,
ψ (q, t ) is given by the following contour integral,

ψ (q, t ) = 1

2π

∫
B
Ψ (q, λ = iλ̄) exp[iλ̄t]dλ̄, (9)

where all singularities of the integrand should be on the
left of Bromwich’s integration contour B. Regardless of the

FIG. 1. The domain color representation of (a) Ψ1(q = 0, λ) and
(b) Ψ2(q = 0, λ). The black lines show the contours of its modulus,
while white lines show the branch cuts. (c) Optimal contour for
evaluation of the inverse Laplace’s transform.
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sheet used, the optimal integration contour is parallel to the
Re{λ̄} axis displaced by a small distance 2ε. Its complement—
consisting of quarter circles Q1 and Q2 of large radius R, a
circle C1 of radius ε around the branch point, and lines l1 and
l2 displaced by ε/2 to the left and right from the branch cut—
is shown in Fig. 1(c). Together they form the closed contour
enabling the evaluation of integral (9) by contour integration.
In the limit ε → 0 and R → ∞, the contribution of segments
Q1, Q2, and C1 becomes negligible, reducing integral (9) to
the sum ψ (q, t ) = ψB(q, t ) + ψR(q, t ). Here, ψB represents
the contribution of the branch cut,

ψB(q, t ) = eiπ

2π

∫ 0

∞
Ψ (q; λ̄ = ζeiπ ) exp[iζeiπ t]dζ

(10)

+ e−iπ

2π

∫ ∞

0
Ψ (q; λ̄ = ζe−iπ ) exp[iζe−iπ t]dζ ,

while ψR stands for the sum of resonances,

ψR(q, t ) =
∑

n

iRes
λ̄=η2

n

{Ψ } exp
[
iη2

nt
]
, (11)

associated with residues enclosed by the contour.
The convergence of integral (9) determines the optimal

integration contour but says nothing about which sheet of Ψ

to use. The standard approach mandates the use of Ψ2 [13]
since at first glance only this choice for Vo → ∞ produces the
carpet for the sealed box [8]. As usual, this choice leads to
finite ψB for |q| � 1/2,

ψB(q, t ) =
∫ ∞

0
Im

{
exp[−2i

√
ζ |q|]

Vo + i
√

ζ + Vo exp[−2i
√

ζ ]

}
(12)

× exp[−iζ t]
dζ

iπ
,

and a diverging contribution of resonances

ηn

Vo − ηn + 1
2

exp
[
2ηn|q| + iη2

nt
]
, (13)

because Re{ηn} > 0, for all n.
Note that this is not the only choice. When the first sheet

is used the wave function is given only by the contribution of
the branch cut. For |q| � 1/2 it reads

ψin(q, t ) =
∫ ∞

0

√
ζ cos(2

√
ζ |q|) exp[−iζ t]

V 2
o [1+ cos(2

√
ζ )]2 + [

√
ζ −Vo sin(2

√
ζ )]2

(14)

× dζ

iπ
,

while for |q| > 1/2,

ψout(q, t )
(15)

=
∫ ∞

0

cos(2
√

ζ |q| + θ (ζ )) exp[−iζ t]√
V 2

0 [1+ cos(2
√

ζ )]2 + [
√

ζ −Vo sin(2
√

ζ )]2

dζ

iπ
,

with the phase shift given by the expression

tan θ (ζ ) = Vo[cos(2
√

ζ ) + 1]√
ζ − Vo sin(2

√
ζ )

. (16)

FIG. 2. The weight function w(ζ ) in the quartic-root scale for
Vo = 50.

The derived solution is physically acceptable because it satis-
fies boundary conditions at the box walls,

lim
q→±1/2

ψout(q, t ) − ψin(q, t ) = 0,

(17)
lim

q→±1/2
∂q[ψout(q, t ) − ψin(q, t )] ∓ 4Voψin(q, t ) = 0,

and for |q| � 1/2 its probability current

j(q, t ) ≈ sgn(q)

2π3/2
√

t
(18)

× |q|2/t2

V 2
o

[
1 + cos

(
2 |q|

t

)]2 + [ |q|
t − Vo sin

(
2 |q|

t

)]2

is outward and finite [32]. For Vo → 0 it becomes the in-
verse Laplace’s transform of Eq. (5). When Vo → ∞, the
contribution of the branch cut (10) vanishes. Maxima λ(μ)

n
become poles at λ̄n = −εn associated with bound energies of
the sealed box εn = (n + 1/2)2π2, thus transforming Eq. (11)
into

ψ (q, t ) = −
∞∑

n=1

2 cos[(2n + 1)πq]

(19)× exp[−i(n + 1/2)2π2t]
(1/2 − |q|),
a carpet formed only out of even states of the sealed box [8].

B. The resonant expansion

An approximate resonant expansion of ψin will be de-
rived using an approach applicable also to ψout. Expres-
sion (14) represents a continuous superposition of waves
cos(2

√
ζ |q|) exp[−iζ t] weighted by the function

w(ζ ) = 1
V 2

o√
ζ

[1 + cos(2
√

ζ )]2+√
ζ
[
1 − Vo√

ζ
sin(2

√
ζ )

]2 , (20)

shown in Fig. 2. Its support is a set of narrow intervals whose
width progressively becomes wider. Intervals are centered at
minima ζn of the denominator function (20), where w(ζ ) is
equivalent to the Lorentzian of half width Γn, and amplitude
ϒn. Parameters of the Lorentzian assume particularly simple
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FIG. 3. The quantum carpet generated by the Ψ1 for (a) Vo = 50, (b) Vo = 100, and (c) Vo = 500. The white dashed lines represent the
walls of the box. Probability densities were color coded according to the shown color map. The arrows show time instances corresponding to
t = Tr/4, Tr/2, 3Tr/4, and Tr , respectively.

form for v = 1/Vo small

ζn ≈ εn

(
1 − v + 3v2

4

)
, Γn ≈ v4ε3

n

2 + v2εn
, ϒn ≈ 4

v2ε
3/2
n

.

(21)
Consequently, ψin becomes

ψin(q, t ) ≈
N∑

n=1

χn(q, t ) + χB(q, t ), (22)

where χn(q, t ) is given by the integral

χn(q, t ) ≈
∫ ∞

0
ϒnΓ

2
n

cos(2
√

ζ |q|) exp[−iζ t]

(ζ − ζn)2 + Γ 2
n

dζ , (23)

ζ1 < ζ2 · · · < ζN is a set of maxima sufficiently distant and
narrow to be considered as isolated, while χB(q, t ) represents
the correction of remaining maxima, that according to Eq. (14)
and Fig. 2 is small.

Integrals (23) can be evaluated analytically [33], giving

χn(q, t ) = ϒnΓn

4i

[
eiφ̄n E1

( |q|2
it

+ iφ̄n

)
+ e−iφn E1

( |q|2
it

− iφn

)
− eiφ̄∗

n E1

( |q|2
it

+ iφ̄∗
n

)
− e−iφ∗

n E1

( |q|2
it

− iφ∗
n

)]
, (24)

where φn = κn|q| + ωnt , φ̄n = κn|q| − ωnt , κn = 2
√

ωn, ωn =
ζn + iΓn, and E1 is the exponential integral [34]. Each term in
Eq. (24) is finite because ezE1(z) → 1/z for z large. It can be
understood as a renormalized Gamow state of energy ζn and
half lifetime 1/Γn since the identical expression is valid for
ψout.

C. Poincaré’s recurrences

Figures 3(a)–3(c) show quantum carpets for Vo = 50, Vo =
100, and Vo = 500, respectively, calculated by a numerical

evaluation of integrals (14) and (15) using the z transformation
[35]. The most prominent features of the observed carpets
are full and fractional wave-packet revivals [9,10], and deep
diagonal canals (also called intermode traces) that connect all
regions, of very low density, located between reconstructed
copies of the initial wave packet [8,36,37]. The time instances
when the dynamics reconstruct the original wave packets and
two of its copies are indicated by arrows. Figures 3(a)–3(c)
show many other revivals occurring for t = e

f Tr with e and f
integers and mutually prime.
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FIG. 4. The nondecay probabilities for Vo = 50, 100, and 500 in
arbitrary units, shifted vertically for greater clarity.

According to theory, the evolution of the arbitrary initial
state repeats after one revival time Tr , corresponding to the
second full wave-packet revival [9,10]. For an even initial
state of zero linear momentum, each full revival occurs at the
initial position of the wave packet. This means that the period
of such a carpet is 1

2 Tr . Thus, the revival times for carpets
shown in Figs. 3(a)–3(c) are Tr = 0.6481, 0.6488, and 0.6378,
respectively. Note that they are very close to the revival time
of the carpet for the sealed box To = 2/π = 0.6366 [8].

To simplify the analysis of the wave-packet revivals we
shall introduce a nondecay probability defined by the integral

P(t ) =
∣∣∣∣
∫ 1/2

−1/2
ψ∗

o (q)ψin(q, t )dq

∣∣∣∣
2

= |ψin(0, t )|2, (25)

that is, in this particular case, identical with the q = 0 slice
through the carpet. The introduced quantity is much easier to
calculate, and it is known to contain all essential information
about the wave-packet revivals [9,10,38]. Figure 4 shows the
obtained nondecay probabilities for Vo = 50, 100, and 500,
respectively. Large peaks indicated by arrows correspond to
full revivals occurring every 1

2 Tr . All other maxima occur-
ring at t = e

f Tr for odd f correspond to fractional revivals
at the origin of the q axis. The lowest values (approximately
zero, nondecay probability assumes for t = e

f Tr and f even)
correspond to wave-packet revivals occurring far from the
origin of the q axis. It is interesting that the initial transient
is observable of t � 1

2 Tr . For longer times, the established
pattern repeats with a practically constant amplitude.

In the case of the sealed box, the scaling of the bound
energies by a small factor 1 − v, translates into the scaling
of the carpet’s period by 1 + v [10]. According to Eq. (21) the
same scaling law should hold for the leaky box. Figures 3 and
4 prove that this is really the case. Numerically obtained ratios
Tr/To = 1.0018, 1.0092, and 1.0181 for Vo = 500, 100, and 50
are in excellent agreement with the corresponding theoretical
predictions 1 + 1/500 = 1.0020, 1 + 1/100 = 1.0100, and
1 + 1/50 = 1.0200, respectively.

According to Eq. (21), as long as tunneling is low it cannot
lead to detuning of resonant energies, and enables many rep-
etitions of the observed stationary patterns shown in Figs. 3
and 4. This result shows that the validity of Poincaré’s theo-
rem can be extended to the case of the continuous spectrum,

with the small caveat that recurrences cannot occur infinitely
often. The ratio 1/TrΓ1 sets an upper bound to the number of
Poincaré’s recurrences that are in principle observable.

Figures 3 and 4 show that the quantum dynamics in a
leaky box is unable to produce exact reconstructions of the
initial wave packet. Its coherence loss will be examined in the
following sections.

D. Decoherence of the quantum carpet

Using resonant expansion (22) the probability density of
quantum carpet can be written in the following form,

|ψin(q, t )|2 ≈
N∑

n=1

|χn(q, t )|2 +
N∑

n=1

N∑
m>n

[χ∗
n (q, t )χm(q, t )

(26)+ χ∗
m(q, t )χn(q, t )].

The first term represents the probability density for the cor-
responding classical problem where the particle’s state space
consists of N distinct mutually exclusive states. The second
term represents a distinctive modification of the classical the-
ory, introduced by quantum formalism, that takes into account
the interference between states. To judge the relative strength
of the interference terms we shall use Eq. (24) to calculate a
ratio,

rnm(t ) = χ∗
n (q, t )χm(q, t )

|χn(q, t )|2 , (27)

of nondiagonal and diagonal components of the density matrix
for t → 0,

rnm(0) = ϒmΓ 2
m

ϒnΓ 2
n

lim
t→0

Γ 2
n t4 + (

t2ζn − 1
4 |q|2)2

Γ 2
mt4 + (

t2ζm − 1
4 |q|2)2 = ϒmΓ 2

m

ϒnΓ 2
n

,

(28)

and t → ∞,

rnm(∞) =ϒmΓ 2
m

ϒnΓ 2
n

lim
t→∞

Γ 2
m − 4 |q|4

t4 + (
ζm + |q|2

t2

)2

Γ 2
n − 4 |q|4

t4 + (
ζn + |q|2

t2

)2

(29)

×
[

Γ 2
n + (

ζn − |q|2
t2

)2

Γ 2
m + (

ζm − |q|2
t2

)2

]2

= ϒmΓ 2
m

ϒnΓ 2
n

ζ 2
n + Γ 2

n

ζ 2
m + Γ 2

m

.

For nondiagonal components, m > n. Consequently, ζm > ζn

and �m > �n. Equation (29) shows that interference terms are
attenuated more than densities of individual resonances by
a factor (ζ 2

m + �2
m)/(ζ 2

n + �2
n ) that is very large for m � n.

Thus, the dynamics of the quantum carpet leads to decoher-
ence, although tunneling alone is not capable of eradicating
interference completely.

E. The coherence-loss analysis

The asymptotic analysis of the preceding section shows
that decoherence manifests itself after a long time. However,
Figs. 2 and 3 show that the deterioration of carpets occurs
rather quickly. To get insight into how the carpet pattern
forming ability is affected by tunneling we shall focus on the
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M. ĆOSIĆ PHYSICAL REVIEW A 105, 042218 (2022)

ψin(q = 0, t ) slice for Vo = 50 and its Wigner-Ville transfor-
mation [39–41],

W (ω, t ) = 1

π

∫ ∞

−∞
ϕ∗(ω + η)ϕ(ω − η) exp[2iηt]dη, (30)

where ϕ(ω) = −i
√

2w(−ω)
(−ω)/π is Fourier’s transform
of ψin(0, t ) transforming Eq. (30) into the form

W (ω, t ) = 2

π2

(t )
(−ω)

(31)

×
∫ |ω|

−|ω|
w(ω + η)w(ω − η) exp[2iηt]dη.

Let us pick an arbitrary negative value −�, and let ζ1 <

· · · < ζM be a list of all resonant energies not greater than
2�. For −� � ω � 0, and t � 0 the resonant expansion (22)
can be used to approximate the Wigner-Ville transform by the
following sums [42],

W (ω, t ) ≈ 1

π2

[∑
n

Wnn(ω, t ) + 2
∑

n

∑
m>n

Wnm(ω, t )

]
. (32)

Symbols Wnm denote a symmetrical matrix whose diagonal
components are

Wnn(ω, t ) =
{

π (1 + 2Γnt ) exp[−2Γnt]ϒ2
n

Γ 3
n
, for ω = −ζn,

2π
|ωn|

ϒn
Γn

exp[−2Γnt] cos(2ωnt ), otherwise,
(33)

where ωn = |ω| − ζn. Nondiagonal components are given by
the expressions

Wnm(ω, t ) = 2πρnm exp[−2Γnt] cos(2ωnt + θnm)
(34)+ 2πρmn exp[−2Γmt] cos(2ωmt + θmn),

with

ρnm exp[iθnm] = anm

Γn
+ (ωn + iΓn)

bnm

Γn
, (35)

anm = 8ξ̄ 2
nm + 2ζnmξ̄nm + Γ 2

m − Γ 2
n

16ξ̄ 4
nm + 8

(
Γ 2

n + Γ 2
m

)
ξ̄ 2

nm + Γ 2
m − Γ 2

n

ϒnϒm,

(36)

bnm = 4ξ̄nm

16ξ̄ 4
nm + 8

(
Γ 2

n + Γ 2
m

)
ξ̄ 2

nm + Γ 2
m − Γ 2

n

ϒnϒm,

while ζnm = ζn − ζm, and ξ̄nm = ζ̄nm − |ω|. Note that both
|Wnn| and |Wnm| are very small unless ω ≈ −ζn and ω ≈ −ζ̄nm,
respectively. At the resonant frequency, amplitudes ρnm have
a maximum

ρnm(−ζ̄nm) = 1

Γn

ϒnϒm

Γ 2
m − Γ 2

n

, (37)

while the phases are θnm(−ζ̄nm) = 0, transforming the matrix
Wnm into

Wnm(−ζ̄nm) =4π exp[−2Γ̄nm]

Γ 2
m − Γ 2

n

sinh

[
Γmnt + ln

√
Γm

Γn

]
(38)

× ϒnϒm√
ΓnΓm

cos(ζnmt ),

where Γ̄nm = (Γm + Γm)/2, and Γmn = Γm − Γn.

For any t the instantaneous spectrum of ψin(0, t ) consists
of quasidiscrete resonant modes at ω = −ζ1, . . . ,−ζMwhose
time development is given by Eq. (33). Figure 5(a). shows the
first resonant mode at ω = −ζ1 = −2.419 calculated by a nu-
merical evaluation of Eq. (31) using the Chebyshev-Gaussian
quadrature of high order [34]. The central ridge decay ac-
cording to the first of Eq. (33) with a numerically obtained
decay constant 0.0008 is very close to the theoretical value
Γ1 = 0.001. Parallel to the mode’s backbone run is its asso-
ciated add-modes whose evolution is given by the second of
Eq. (33). The spectrogram also contains quasidiscrete shadow
modes, generated by coupling between resonances, at ω =
−ζ̄12, . . . ,−ζ̄M−1,M . The evolution of its backbone is given by
Eq. (38) while its add-modes evolve according to Eqs. (34)–
(36). Figure 5(b) shows the first shadow mode at ω = −ζ̄12 =
−12.095, oscillating with a period 0.3247 which is extremely
close to the theoretical prediction 2π/ζ12 = 0.3250.

Sometimes there will be l , n, and m such that ζl ≈ ζ̄nm.
In that case the spectrogram is given by the superposition
1
π2 [Wll (ω) + Wnm(ω)]. Such a mode will be considered as
accidentally degenerate. An example of this behavior is shown
in Fig. 5(c) showing a superposition of the resonant mode at
ω = −ζ3 = −60.480 and the shadow mode at ω = −ζ̄14 =
−60.509. Note that the shadow modes can also be acciden-
tally degenerate. Higher-order degeneracies are possible, but
in this particular study, they were not encountered.

According to the definition [41,43], the integral projection∫ ∞

−∞
W (ω, t )dω = |ψ (0, t )|2 = P(t ) (39)

gives the blue nondecay probability curve from Fig. 4, while
the integral projection∫ ∞

−∞
W (ω, t )dt = |ϕ(ω)|2 = 2

π2
w2(−ω)
(−ω) (40)

erases all traces of the shadow modes, leaving only resonant
modes present in the power spectrum of the function ψin(0, t ).
At the first glance, shadow modes seem to be physically
unimportant mathematical artifacts that make interpretations
of the spectrograms difficult. There are many proposals on
how to eliminate them. Some authors use a Gaussian filter
[44], while others combine it with the Gabor transformation
[45]. On the contrary, it will be shown that shadow modes are
very useful for the interpretation of structures generated by
the wave packet’s self-interference. Again, the analysis will be
focused on the q = 0 slice of ψin(q, t ), but it can be applied,
in the identical form, to any other slice.

In our subsequent analysis the following decomposition of
the Wigner function,

W (ω, t ) = W(ω, t ) cos[w(ω, t )], (41)

will be used. Function W represents an amplitude of the
phase-space probability density, while w is the corresponding
phase. Equations (33)–(38) show that if W is not negligible, its
amplitude W is an exponentially decreasing function of time.
The phase w is linearly proportional to time for shadow modes
and exactly zero at the angular frequency of the resonant
mode. It should be said that without an analytical solution
such decomposition would be ambiguous since the second
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FIG. 5. The spectrograms of ψin(0, t ) for V0 = 50 showing (a) resonant mode ω = −ζ1, (b) shadow mode ω = −ζ̄12, and (c) superposition
of modes ω = −ζ3 and ω = −ζ̄14, respectively. Values of the Wigner function were color coded according to the shown color map.

independent equation, pinpointing the values of W and w, is
missing.

Figure 6(a) shows the obtained spectrogram for 0 � t �
0.02 and −350 � ω � 0 consisting of six resonant modes,
each visible as a thin red line, and 24 shadow modes visible
as a stripe of changing color. The complete list of modes in
descending order can be found in Table I. Note that regions
colored deepest red correspond to very large positive values
of the Wigner function, i.e., w ≈ 2kπ (k ∈ N), while regions
colored deepest blue correspond to very large negative values
of the Wigner function, i.e., w ≈ (2k + 1)π . Between them
are nodal regions where W (ω, t ) ≈ 0, i.e., w ≈ (k + 1

2 )π col-
ored pale blue (almost white). The corresponding integral
projection in the frequency direction containing singular peak
at t = 0 is shown in Fig. 6(a′). This figure shows that the Dirac
pulse is produced by a superposition of aligned maxima, elon-

gated along the t axis. The observed initial synchronization is
a direct consequence of the fact that w(ω, 0) = 0.

Figures 6(b) and 6(b′) show a spectrogram and its integral
projection for a time interval centered at 1

4 grTr . The irrational

multiplier gr = 1
2 (

√
5 − 1) = 0.618 was chosen to avoid any

fractional revivals. As it can be seen, the initial synchroniza-
tion between maxima is lost, resulting in a very small value of
the integral projection.

Figures 6(c) and 6(c′) show a spectrogram and its integral
projection for a small time interval centered at 1

4 Tr . For t =
1
4 Tr each maximum of the shadow mode can be paired with a
minimum of the neighboring mode that results in their almost
perfect cancellation by the integral projection. Thus, shadow
modes can be divided into two groups perfectly synchronized
among themselves, but with a phase shift of π between them.
According to the theory [10] for 1

4 Tr resonant states χn can

TABLE I. List of resonant modes in the descending order for −350 � ω � 0. Pairs of bold symbols designate accidentally degenerate
modes.

−ζ1 −ζ̄1,2 −ζ2 −ζ̄1,3 −ζ̄2,3 −ζ3 −ζ̄1,4 −ζ̄2,4 −ζ̄3,4 −ζ̄1,5

−2.419 −12.0945 −21.770 −31.449 −41.125 −60.480 −60.509 −70.185 −89.540 −99.209

−ζ̄2,5 −ζ4 −ζ̄3,5 −ζ̄1,6 −ζ̄4,5 −ζ̄2,6 −ζ̄3,6 −ζ5 −ζ̄4,6 −ζ̄1,7

−108.885 −118.600 −128.240 −147.659 −157.300 −157.335 −176.690 −196.000 −205.750 −205.809

−ζ̄2,7 −ζ̄3,7 −ζ̄5,6 −ζ̄4,7 −ζ̄1,8 −ζ̄2,8 −ζ6 −ζ̄5,7 −ζ̄3,8 −ζ̄4,8

−215.485 −234.840 −244.450 −263.900 −273.659 −283.335 −292.900 −302.600 −302.690 −331.750
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FIG. 6. Spectrograms of ψin(0, t ) for V0 = 50 in the vicinity of (a) t = 0, (b) t = grTr/4, (c) t = Tr/4, (d) grTr/2, and (e) Tr/2. (a′)–(e′)
show corresponding integral projections of spectrograms in the frequency direction. Dashed black lines and arrows indicate the centers of
the observed intervals. Black arrows indicate the positions of resonant modes. Values of Wigner functions were color coded according to the
shown color map.

be grouped into two groups perfectly synchronized among
themselves and mutually shifted by π

2 (which translates into
a phase shift of π in the ω-t phase space) whose respec-
tive superposition reconstructs two copies of the initial wave
packet at q = ± 1

4 . As a consequence it produces a negligible
probability density at q = 0 (see Fig. 3). Interestingly, even if
we are analyzing only one slice of the quantum carpet its spec-
trogram contains essential information about the dynamics of
the whole pattern.

Figure 6(d) and 6(d′) show a spectrogram and its integral
projection for a small interval centered at 1

2 grTr . The behavior
of this spectrogram is identical to the one shown in Figs. 6(b)
and 6(b′). The maxima and minima of spectral modes are
again out of phase, resulting in a small value of the integral
projection.

Figure 6(e) and 6(e′) show a spectrogram and its integral
projection for a small interval centered at 1

2 Tr . For t = 1
2 Tr

there are no negative minima of the Wigner function, i.e., only
its maxima are present. Their perfect alignment is responsible
for the creation of a large maximum of nondecay probability
by the integral projection that corresponds to the first full
revival of the initial wave packet [see Fig. 3(a)].

At the first glance, it seems that different lifetimes of
resonant states produce a distortion of the spectrum which
only grows over time and acts as a low-pass filter, explaining
why the initial wave packet cannot be reconstructed perfectly.

However, this explanation is not completely true. As it was
shown in Sec. II D, noticeable effects of the finite lifetime
appear only after a very long time. Thus, an explanation for
nonperfect revivals should be looked for elsewhere.

A closer inspection of the spectrograms from Fig. 6 re-
veals that the dynamics changes the shape of the Wigner
function extrema. Initially, all extrema are elongated along
the t axis. Over time, elongation axes assume a positive an-
gle with respect to the t axis, and the size of the extrema
decreases. This effect is more pronounced when t or ω are
large [see also Fig. 5(c)]. The reason for this behavior is that
nodal lines of any shadow mode n, m are given by a family
of hyperbolas (2ω + 2ζ̄nm + ζnm)t = (k + 1

2 )π . Although the
centers of extrema are aligned, the extrema of their add-modes
are not, which inevitably introduces phase errors. Therefore,
the described slight detuning of add-modes that produce the
deformation of the shape of the Wigner function extrema
is responsible for the imperfect reconstruction of the initial
Dirac pulse.

III. CONCLUSIONS

It is shown that contrary to the firmly established belief,
quantum carpets can be produced by the superposition of
continuous states. This result suggests that it is possible to
generalize the validity of Poincaré’s recurrence theorem to
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the continuous states, with the small caveat that reoccurrences
cannot occur infinitely often. The model also provides addi-
tional insight into the carpet’s coherence-loss process and can
be used for a better understanding of quantum decoherence,
which is extremely important in the current pursuit of a truly
universal quantum computer. It has been shown that the ability
of quantum interference to create sharp maxima is related to
the shape of the Wigner function extrema, their orientation,
and alignment. As a side result, the model provides a simple

resonant expression of the wave function with resonances
convergent in both space and time.
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