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Quantum walk on the Bloch sphere
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A scheme for implementing the discrete-time quantum walk on the Bloch sphere is proposed, which is closely
related to the SU(2) group. A spin cluster serves as the walker, whereas its location on the Bloch sphere is
described by the spin coherent state. An additional spin that interacts with the spin cluster plays the role of
a coin, whose state determines the rotation of the spin cluster. The Wigner function is calculated to visualize
the movement of the walker on the Bloch sphere with which the probability distribution and the standard
deviation are also achieved. The quadratic enhancement of variance for the quantum walk on the Bloch sphere is
confirmed. Compared to the ideal quantum walk on a circle, the walker’s states on the Bloch sphere are generally
nonorthogonal, whose drawbacks can be eliminated by increasing the number of spins in the spin cluster.
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I. INTRODUCTION

As a quantum counterpart to the classical random walk,
the quantum walk has been widely employed in numerous
realms, ranging from physics to computer science [1–4]. One
of the most surprising features of the quantum walk is a
quadratic enhancement of variances and possible exponential
algorithmic speedups due to the quantum interference [2]. On
one hand, the quantum walk provides a versatile platform to
simulate physical phenomena, such as the nontrivial topo-
logical phase [5–8], non-Hermitian system [9–12], Anderson
localization [13], strongly correlated quantum matter [14],
dynamic quantum phase transitions [15], quantum-to-classical
transition [16–19], etc. One the other hand, the quantum walk
plays a significant role in quantum information as it provides
a powerful technique for building quantum algorithms and
serves as a universal platform for quantum computation [20].

The implementation of quantum walks has been proposed
or realized in different physical systems [4], such as the ion
trap [16,21–24], NMR [25], CQED [17], nitrogen-vacancy
centers in diamond [26], the optical lattice [14,27], single
photon [10,28], single optically trapped atoms [19], Bose-
Einstein condensate [8,29], etc. Theoretically, they can be
broadly classified into two categories: The discrete-time quan-
tum walk [1] in which the walker propagates on a lattice in
discrete time steps determined by an additional coin, and the
continuous-time quantum walk [30] in which the dynamics is
totally governed by a time-independent lattice Hamiltonian.
This paper is mainly concerned with the former case, which is
first introduced by Aharonov et al. [1].

Generally, the discrete-time quantum walk consists of a
walker moving in some space, and a flipped coin whose
state determines the movement of the walker. The position
space [16,19,24], momentum space [8,29], and phase space
[17,22,31] have been chosen as a platform for the walker
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to move. In the phase space, one usually employs a har-
monic oscillator as the walker, which is closely related to the
Heisenberg-Weyl group [17]. The walker’s state determines
the location on the phase plane, which consists of all pos-
sible values of position and momentum variables. Previous
theoretical studies mainly focus on ideal localized states for
the walker in the phase space. There is no overlap, namely,
that states corresponding to different locations are orthogonal.
However, one can hardly generate the orthogonal localized
states for the walker physically, whereas nonorthogonal Gaus-
sian states, such as the bosonic coherent state, are more
feasible in the experiments [17,22,24,32,33]. The influences
of nonorthogonal walker’s states have been studied, which
can smear out the probability distributions [24] and model
transport processes in complex systems [32].

In this paper, I consider the quantum walk on the Bloch
sphere. The Bloch sphere is a geometrical representation
for systems closely related to the SU(2) group [34,35]. The
walker can be a cluster of spins, an angular momentum, or
a coupled two-mode field through the Schwinger realization,
whereas its location on the sphere can be described by the
spin coherent state [34,36,37]. The spin coherent state, also
known as atomic or Bloch coherent state [35] was introduced
in the early 1970s by Radcliffe [38], Gilmore [36,39], and
Perelomov [40]. It has been widely employed to study the
cooperative phenomena [35], such as the superradiant phase
transition, quantum magnetism, and so on. In addition, the
spin coherent state is an essential ingredient to construct
the spin cat state and spin compass state [41,42]. Like the
bosonic coherent state, the spin coherent states are gener-
ally nonorthogonal and can be generated in the experiments
[34,36]. A visual description to the walker’s states on the
Bloch sphere can be achieved by calculating the Wigner func-
tion [41–44].

The paper is structured as follows. In Sec. II, I revisit
the basic properties of the spin coherent state and the Bloch
sphere. Then, a physical implementation of quantum walk
on the Bloch sphere is proposed. In Sec. III, I calculate the
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FIG. 1. Sketch of quantum walk on a circle with L = 6 sites.
(a) A harmonic oscillator on the phase plane; (b) a spin cluster on the
equator of the Bloch sphere. The blue arrows point to the possible
locations of the walker.

probability distribution and the standard deviation based on
the Wigner function. An ideal quantum walk on a circle with
orthogonal walker’s state is also present for comparison. A
brief summary is given in Sec. IV.

II. QUANTUM WALK ON THE BLOCH SPHERE

Previous studies on the quantum walk over a circle in the
phase space mainly focus on the harmonic oscillator [17,22].
The phase space corresponds to a plane consisting of all pos-
sible values of position and momentum variables as shown in
Fig. 1(a), which associates with the Heisenberg-Weyl group.
In this paper, the quantum walk in phase space is extended to
the Bloch sphere based on a spin cluster as shown in Fig. 1(b),
which corresponds to the SU(2) group. Specifically, the spin
cluster consists of identical spins which are permutational
invariant.

A. Spin-coherent state and Bloch sphere

I begin by briefly reviewing the spin coherent state, which
corresponds to a point on the surface of the Bloch sphere
[34,35]. It can be written as

|θ, φ〉 = exp

[
θ

2
(eiφ Ĵ− − e−iφ Ĵ+)

]
|J, J〉

= cos2J

(
θ

2

)
exp

[
tan

(
θ

2

)
eiφ Ĵ−

]
|J, J〉, (1)

where Ĵγ (γ = x, y, z) are the collective spin operators and
Ĵ± = Ĵx ± iĴy are the corresponding ladder operators. Ĵγ can
also be regarded as the generators of the SU(2) group. |J, J〉
is a Dicke state which satisfies Ĵz|J, J〉 = J|J, J〉. For the spin
coherent state |θ, φ〉, the expectation values of the collective
spin operators Jγ = 〈θ, φ|Ĵγ |θ, φ〉 are

(Jx, Jy, Jz )/J = (sin θ cos φ, sin θ sin φ, cos θ ). (2)

Therefore, it is located on the Bloch sphere with polar angle θ

and azimuthal angle φ [34]. It should be noted that [36]

|〈θ, φ|θ ′, φ′〉| = cos2J �

2
, (3)

where � is the angle between the (θ, φ) and the (θ ′, φ′)
directions and satisfies

cos � = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′). (4)

Then, the spin coherent states are, in general, not orthogonal
except for antipodal points (� = π ) [34]. The orthogonality is
achieved in the limit of J → ∞ for arbitrary two spin coherent
states with � �= 0.

A generic rotation on the Bloch sphere can be described by
the rotating operator, defined by

R̂n(α) = e−iαn·Ĵ, (5)

which indicates a rotation by angle α along the n direction.
Without loss of generality, n = (0, 0, 1) is chosen and the
corresponding rotating operator is labeled as R̂z(α) in what
follows. For each θ , there exists a corresponding circle on
the Bloch sphere. A set of equally displacing sites on the
circle can be written as |θ, φn = n δφ〉 with n ∈ [− L

2 , L
2 ],

δφ = 2π/L, and L as the total number of sites. From Eqs. (3)
and (4), the overlap between different states |〈θ, φm|θ, φn〉|
is smallest, and the quantum walk on the Bloch sphere can
better mimic the ideal one when θ = π/2. Therefore, I focus
on θ = π/2 and the corresponding states are labeled as

|φn〉 =
∣∣∣θ = π

2
, φ = n δφ

〉
, (6)

which satisfy

|〈φm|φn〉| =
[

cos(m − n)δφ + 1

2

]J

. (7)

As an example, Fig. 1(b) depicts six sites on the equator,
which correspond to θ = π/2 and δφ = π/3. In the next sec-
tion, I will proposed a scheme for implementing the quantum
walk on such a kind of circular trajectory.

B. Physical implementation of the quantum walk
on the Bloch sphere

Now I consider a universal model composed of two sub-
systems, which are described by the collective spin operators Ĵ
and Ŝ. One subsystem (Ĵ) serves as a walker, whereas the other
one (Ŝ) serves as a coin whose state determines the movement
of the walker. The total Hamiltonian can be written as

Ĥ (t ) = Ĥ0 + Ĥ1(t ), (8)

Ĥ0 = 2κ Ĵz ⊗ Ŝz, (9)

Ĥ1(t ) =
+∞∑
k=0

Îw ⊗ h · Ŝδ(t − kT ), (10)

where κ is the interacting strength between two subsystems,
h = (hx, hy, hz ) corresponds to a pulse acted on the coin with

period T and amplitude h =
√

h2
x + h2

y + h2
z along the direc-

tion h/h, and Îw is the identity matrix of the walker. Such a
kind of Hamiltonian commonly appears in various systems,
such as atom-light interaction systems [45–47], Bose-Einstein
condensates [47,48], and magnetic clusters [49], etc. . In this
paper, I take two subsystems as spin clusters, whereas other
systems can be dealt with accordingly. In terms of the Pauli
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matrices σ̂γ , the collective spin operators can be written as
Ĵγ = ∑N

i=1 σ̂i,γ /2 and Ŝγ = σ̂γ /2, where N is the total number
of spins in the spin cluster of the walker.

The time evolution over one period is determined by

Û (T ) = M̂ · Ĉ, (11)

with

M̂ = exp(−iĤ0T )

= R̂z(κT ) ⊗ |↑〉〈↑| + R̂z(−κT ) ⊗ |↓〉〈↓|, (12)

Ĉ = exp(−iÎw ⊗ h · Ŝ)

= Îw ⊗ exp(−ih · Ŝ). (13)

In each step of the quantum walk, one flips the coin and
changes its state at first, which is determined by the coin-flip
operator. Then, the walker shifts its location according to
the coin’s state, which is determined by the conditional-shift
operator. Based on the time-evolution operator Û (T ), one can
find that Ĉ leads to a rotation of the coin state by angle h along
the h/h direction, which plays a role of the coin-flip operator.
One of the most frequently employed coin-flip operators is the
Hadamard gate Ĥc with

Ĥc = 1√
2

(
1 1
1 −1

)
. (14)

The Hadamard gate up to a global phase factor is achieved

Ĉ = −iÎw ⊗ Ĥc, (15)

by setting h = (π, 0, π )/
√

2. M̂ can be regarded as a
conditional-shift operator. The interacting strength κ and pe-
riod T are chosen such that κT = δφ = 2π/L, which leads to
the transfer of walker’s states depending on the coin, namely,

M̂|φn〉 ⊗ |↑〉 = |φn+1〉 ⊗ |↑〉,
M̂|φn〉 ⊗ |↓〉 = |φn−1〉 ⊗ |↓〉. (16)

Given that the initial state is |ψ (0)〉 = |w〉 ⊗ |c〉 with the
walker and the coin initially at |w〉 and |c〉, respectively, the
final state after k steps would be

|ψ (k)〉 = (M̂ · Ĉ)k|ψ (0)〉. (17)

In what follows, the initial state is set to be |w〉 = |φ0〉 and
|c〉 = |↑〉. If the overlap [Eq. (7)] between different walker’s
states is ignored, the quantum walk on the Bloch sphere re-
duces to an ideal one with orthogonal walker’s states [16].

III. RESULTS AND DISCUSSIONS

The quantum walk is known for its ballistic spread quadrat-
ically faster than its classical counterpart which shows a
diffusive spread. Because of the quantum interference effect,
the variance of the quantum walk grows quadratically with the
number of steps k (σ 2 ∝ k2), compared to the linear growth
(σ 2 ∝ k) for the classical random walk.

In order to demonstrate the quadratic enhancement, one
needs first calculate the probability distribution. For an ideal
quantum walk, different walker’s states are orthogonal. One
can easily achieve the probability distribution as follows:

PI (φn) = 〈φn|ρ̂w(k)|φn〉, (18)

where ρ̂w(k) = trc[|ψ (k)〉〈ψ (k)|] is the reduced density ma-
trix of the walker. Then, the standard deviation is given by

σI =
√

〈φ2〉 − 〈φ〉2, (19)

with 〈φl〉 = ∑
n PI (φn)φl

n.
However, the quantum walk on the Bloch sphere cor-

responds to a set of spin coherent states, which are gen-
erally nonorthogonal, as indicated in Eq. (7). Fortunately,
the Wigner function can be viewed as a quantum anal-
ogy to the classical probability density, which is able to
visualize the evolution of the walker in the phase space. Fol-
lowing the Stratonovich-Weyl correspondence [41,43,44], the
Wigner function for the SU(2) group can be defined as

W (θ, φ) = tr[ρ̂w
̂(θ, φ)], (20)

where the kernel can be written as


̂(θ, φ) =
j∑

m=− j


 j,m| j, m; d〉〈 j, m; d|, (21)


 j,m =
2 j∑

l=0

2l + 1

2 j + 1

〈
j l j

m 0 m

〉
. (22)

Here | j, m; d〉 is the Dicke basis along d = (sin θ cos φ,

sin θ sin φ, cos θ ) direction, which satisfies d · Ĵ| j, m; d〉 =
m| j, m; d〉. 〈 j l j

m 0 m〉 is the Clebsch-Gordan coefficient.
The Wigner function satisfies the normalization relation,

2J + 1

4π

∫ π

0

∫ π

−π

W (θ, φ) sin θ dθ dφ = 1, (23)

and its marginal gives the probability distribution,

P(φ) = 2J + 1

4π

∫ π

0
W (θ, φ) sin θ dθ. (24)

Then one can define the standard deviation σ [same as
Eq. (19)] with

〈φl〉 =
∫ π

−π

P(φ)φl dφ. (25)

Here I focus on the short-time evolution when σ is feasible
to depict the quadratic enhancement of the quantum walk. For
the long-time evolution, the Holevo standard deviation is more
appropriate due to the periodic phase [50].

Figure 2 shows the quantum walk on the Bloch sphere for
the first two steps. For comparison, the ideal quantum walk
is also present. Initially, the walker + coin is described by
|ψ (0)〉 = |φ0〉 ⊗ |↑〉. The walker can be regarded as a wave
packet centered at (θ, φ) = (π/2, 0) as shown by the Wigner
function in Fig. 2(a). The probability distributions for the
spin coherent states [Fig. 2(d)] and ideal orthogonal states
[Fig. 2(g)] are quite similar, except for the finite width in the
former case. The finite width can be reduced by increasing
the number o f spins N in the spin cluster. After the first step
(k = 1), one can easily prove that the walker’s state becomes

ρ̂w = 1
2 (|φ1〉〈φ1| + |φ−1〉〈φ−1|). (26)
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FIG. 2. Quantum walk on a circle with L = 6 for the first two steps. (a), (d), and (g) correspond to the initial states (k = 0). (b), (e), and
(h) correspond to the states after one (k = 1) steps. (c), (f), and (i) correspond to the states after two (k = 2) steps. (a), (b), and (c) refer to the
Wigner functions. (d), (e), and (f) refer to the probability distribution of the quantum walk for a spin cluster with N = 50, whereas (g), (h), and
(i) show the corresponding probability distribution of an ideal quantum walk with orthogonal walker’s states.

Initially localized wave packet propagates along opposite di-
rections, which results in two uncorrelated wave packets as
shown in Figs. 2(b) and 2(e). After the second step, the
walker’s state takes the following form:

ρ̂w = 1
4 (|φ2〉 + |φ0〉)(〈φ2| + 〈φ0|)
+ 1

4 (|φ0〉 − |φ−2〉)(〈φ0| − 〈φ−2|), (27)

which has two terms. Each term is composed of a superposi-
tion of two spin coherent states that can be regarded as the spin
cat state [41,42]. The probability distributions for the spin co-
herent states [Fig. 2(f)] and ideal orthogonal states [Fig. 2(i)]
are still quite similar. However, the Wigner function depicts
more detailed structures, as shown in Fig. 2(c). There exist
three wave packets, separated by fringes between them. The
fringe is due to the interference between different coherent
states, which is a distinguishing feature of the cat state.

If more sites on the Bloch sphere are involved in the quan-
tum walk, namely, increasing L and decreasing δφ, a larger
spin cluster with greater N should be considered to make sure
that the overlap (7) is small enough. Figure 3 exhibits the
quantum walk on the Bloch sphere with L = 40 sites for a spin
cluster with N = 200. As shown in Fig. 3(a), the probability
distributions for the spin coherent states and ideal orthogonal
states are consistent after k = 9 steps, which exhibit more
peaks. If the number of spins in the spin cluster decreases, the
overlaps become larger, which can smear out the multipeak
structures [24]. The standard deviation is depicted in Fig. 3(b).
Obviously, the standard deviation grows linearly with the
number of steps (σ ∝ k), which is a characteristic feature of
the quantum walk.

IV. CONCLUSIONS AND OUTLOOK

The phase plane associating with the Heisenberg-Weyl
group and the Bloch sphere associating with the SU(2) group

are two well-known phase spaces. The quantum walk on the
phase plane has been studied extensively based on the har-
monic oscillator. However, little attention has been paid to
the quantum walk on the Bloch sphere, to the best of my
knowledge.

In this paper, the discrete-time quantum walk in the phase
space is generalized to the Bloch sphere. I focus on the spin
cluster which serves as the walker, whereas other systems
belonging to the SU(2) group follow the same pattern. The
walker’s locations on the Bloch sphere are determined by the
spin coherent states, which are generally nonorthogonal. If
the number of spins in the spin cluster increases, the overlap

-0.4 -0.2 0 0.2 0.4
0

0.5

1

0 2 4 6 8 10
0

0.5

1

(a)

(b)

FIG. 3. Quantum walk on the Bloch sphere with L = 40 and N =
200. (a) Rescaled probability distributions at k = 9 for spin coherent
states (black line) and ideal orthogonal states (blue bar); (b) standard
deviations for spin coherent states (circle) and ideal orthogonal states
(dot). A dashed line is plotted as a benchmark.
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between different states decreases, which finally leads to the
ideal quantum walk with orthogonal walker’s states. To vi-
sualize the walking process on the Bloch sphere, the Wigner
function is calculated. The probability distribution and the
standard deviation are also calculated in virtue of the Wigner
function, which confirm the quadratically growing variance,
namely, σ 2 ∝ k2.

The Bloch sphere serves as a new platform and offers
more possibilities to study the quantum walk theoretically
and experimentally. There are numerous related applica-
tions to be addressed. Here I just give three possibilities:
(1) Macroscopic superposition, such as the spin cat state,
can be found during the walking process. The macroscopic

superposed states may exhibit sub-Planck phase-space struc-
tures, which can be used to achieve the Heisenberg-limited
sensitivity in weak-force measurements [42,51,52]. (2) One
can extend the coin to include two spins. Two spins con-
trol the movement of the walker along a parallel and a
meridian on the Bloch sphere separately, which leads to a
two-dimensional quantum walk. (3) In the presence of the
decoherence, the quantum walk tends to the classical random
walk, which provides a new arena to study the quantum-
to-classical transition [16–19]. The possible applications of
quantum walk on the Bloch sphere and the influence of de-
coherence deserve further studies, which are left to future
research.
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