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Generalized conditional expectations for quantum retrodiction and smoothing
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The inference of a hidden variable’s historical value, based on observations before and after the fact, is a
controversial subject in quantum mechanics. Here I address the controversy by proposing a formalism that unifies
and generalizes some of the previous proposals for the task, including the quantum minimum-mean-square-error
estimators proposed by Ohki, the generalized conditional expectation proposed by Accardi and Cecchini, the
quantum smoothing theory proposed by Tsang, the optimal observables for parameter estimation proposed by
Personick, Belavkin, and Grishanin, and the weak values proposed by Aharonov, Albert, and Vaidman. The
formalism is based on Ohki’s suggestion of a distance between two observables in the Heisenberg picture,
which remains well defined for incompatible observables and serves as a more general foundation for quantum
inference than Belavkin’s nondemolition principle.
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I. INTRODUCTION

The inference of a hidden variable’s historical value, based
on observations before and after the fact, is a fascinating yet
controversial subject in quantum mechanics; see, for example,
Refs. [1–8], and references therein. This problem, called retro-
diction or smoothing in the engineering literature [9,10], is
well defined in classical statistics and, indeed, a common and
uncontroversial endeavor in human activities, but its definition
in quantum mechanics is less settled. The core of the issue
is the compatibility between the inferred observable and the
measured observable in the Heisenberg picture. If the future
value of an observable ahead of the measurement is to be
inferred, as in the prediction and filtering problem, the com-
patibility holds, as per the seminal work of Belavkin [11]. The
compatibility implies that the observables can, in principle, be
measured jointly, and the laws of classical probability apply
to their joint statistics. This so-called nondemolition prin-
ciple (NDP) underlies the quantum prediction and filtering
theory pioneered by Belavkin [11,12]. In the retrodiction and
smoothing problem, on the other hand, the observables may
not commute, and although many have proposed quantum for-
mulations of the task [2,6,13–15], such as the weak values [2],
others have argued that the inference does not make sense if it
violates the NDP [3].

To clarify the murky state of affairs, here I propose a
formalism that unifies some of the existing attempts at the
quantum retrodiction and smoothing theory. The formalism
is based on a principle of quantum inference that super-
sedes the NDP. I start with Ohki’s proposal of quantum
minimum-mean-square-error estimators based on certain in-
ner products [15]. The definition of an error, and an estimator
to minimize it, gives a concrete decision-theoretic meaning to
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the inference problem, even if the involved observables do not
commute. I then convert the Heisenberg-picture approach of
Ohki to a formalism based on open quantum system theory
in the Schrödinger picture. Remarkably, the optimal estima-
tors then coincide with some of the generalized conditional
expectations (GCEs) that have been studied in mathemati-
cal physics; see, for example, Refs. [16–20], and references
therein. In the latter context, the concept has a long history and
has been found to be useful as an intermediate mathematical
tool, but there does not seem to be any attempt at applying it to
a physical quantum inference problem or relating it to quan-
tum retrodiction and smoothing. The main goal of this paper is
to forge connections between the different areas. Many other
prior works on quantum inference [1,2,5,13,14,21–24] emerge
as special cases of the formalism here.

This paper is structured as follows: To set the stage, Sec. II
reviews the established concepts of classical conditional ex-
pectation and the NDP. Section III presents the formalism
of GCEs. Section IV studies the application of the GCEs
to problems that obey the NDP, including the classical and
hybrid retrodiction and smoothing problems 1,5,13–15,21,22]
and some quantum estimation problems [23,24]. Section V
presents some examples that may violate the principle,
namely, the weak values [2] and the application of retrodiction
and smoothing to linear Gaussian systems [13,14]. Section VI
is the conclusion.

II. REVIEW OF ESTABLISHED CONCEPTS

A. Classical conditional expectation

Before discussing quantum generalizations of the con-
ditional expectation, I first review the concept in classical
probability theory [25,26]. Let (�,�, P) be a probability
space, where �, the sample space, is the set of all possible out-
comes of an experiment, � is a sigma-algebra that consists of
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subsets of �, and P : � → [0, 1] is a probability measure. If
A : � → R is a Borel map that models a real-valued random
variable and �1 is a subsigma-algebra of �, then the expecta-
tion of A conditioned on �1, denoted by E (A|�1) : � → R,
is a �1-measurable function defined by

∫
S1

A(ω)P(dω) =
∫

S1

E (A|�1)ωP(dω) ∀ S1 ∈ �1. (2.1)

The conditional probability of an event S ∈ � is then given
by E (1S|�1), where 1S is the indicator function [1S (ω) = 1 if
ω ∈ S and 0 otherwise]. To be more concrete, suppose that �1

is generated by an observed random variable Y : � → Y , in
the sense of

�1 = {Y −1(S) : S ∈ BY}, (2.2)

Y −1(S) ≡ {ω : Y (ω) ∈ S}, (2.3)

where Y is a topological space and BY is the Borel sigma-
algebra with respect to Y . Then any �1-measurable function
is simply a function that can be expressed in terms of another
Borel map c : Y → R as

C(ω) = c[Y (ω)] ≡ (Y ∗c)(ω), (2.4)

where Y ∗ denotes the pullback. Henceforth, I denote the con-
ditional expectation as E (A|Y ) if �1 is generated by Y .

If we restrict our attention to random variables with finite
variance, the conditional expectation can be defined in terms
of Hilbert-space theory [25]. Define an inner product between
two real-valued random variables as

〈B, A〉P ≡
∫

B(ω)A(ω)P(dω), (2.5)

the associated norm as

‖A‖P ≡
√〈A, A〉P, (2.6)

and the distance between two random variables as

dP(A, B) ≡ ‖A − B‖P. (2.7)

A Hilbert space L2(P) of random variables can then be con-
structed, with each element corresponding to an equivalence
class of random variables with zero distance between them,
while a subspace LY

2 (P) can be constructed from the �1-
measurable functions. E (A|Y ) can be defined as the LY

2 (P)
element that satisfies

〈C, A〉P = 〈C, E (A|Y )〉P ∀ C ∈ LY
2 (P), (2.8)

which implies that E (A|Y ) is the projection of A into LY
2 (P).

It follows from basic Hilbert-space theory that E (A|Y ) is the
LY

2 (P) element closest to A.
If A is hidden and B is the estimator given Y in a Bayesian

inference problem, then the distance given by Eq. (2.7) is the
root-mean-square error, and E (A|Y ) is the minimum-mean-
square-error estimator of A given Y [25].

Since E (A|Y )ω is a �1-measurable function, it can be ex-
pressed in terms of a Borel map ǎ : Y → R as

E (A|Y )ω = ǎ[Y (ω)]. (2.9)

Let PY be the coarse-grained measure induced by Y , defined
as

PY (S) ≡ P[Y −1(S)], S ∈ BY . (2.10)

Then the right-hand side of Eq. (2.8) can be expressed as

〈C, E (A|Y )〉P =
∫

c(y)ǎ(y)PY (dy) = 〈c, ǎ〉PY
, (2.11)

and Eq. (2.8) becomes

〈Y ∗c, A〉P = 〈c, ǎ〉PY
∀ c ∈ L2(PY ). (2.12)

This equation for the conditional expectation turns out to be
the most convenient one for quantum generalizations.

To make a connection with more elementary probability
theory, suppose that A can be expressed as a Borel map a :
X → R of another random variable X : � → X , viz.,

A(ω) = a[X (ω)], (2.13)

and assume that the ranges X and Y of X (ω) and Y (ω) are
finite sets. Let

PXY (x, y) ≡ P({ω : X (ω) = x and Y (ω) = y}) (2.14)

be the joint probability distribution of X and Y . Then
Eq. (2.12) becomes∑

x,y

c(y)a(x)PXY (x, y) =
∑

y

c(y)ǎ(y)PY (y)∀ c ∈ L2(PY ).

(2.15)

The solution for ǎ(y) with PY (y) > 0 is

ǎ(y) =
∑

x

a(x)
PXY (x, y)

PY (y)
, (2.16)

which is the Bayes theorem. Plugging Kronecker deltas in the
place of a(x) leads to the posterior probability distribution of
X given Y = y.

B. Nondemolition principle

I now review Belavkin’s NDP for quantum inference. To
focus on the physics and avoid cumbersome mathematical
technicalities, assume that all the Hilbert spaces considered
hereafter (until Sec. V B) are finite-dimensional, so that the
principle becomes especially simple [12]. Let O(H) be the
set of operators on a Hilbert space H and ρ a density op-
erator on H. Let A ∈ O(H) be the hidden observable to be
estimated and B ∈ O(H) an operator-valued estimator, both
in the Heisenberg picture. Assume that both are Hermitian.
Typically, B is restricted to come from a subspace of O(H).
The NDP demands that A and B commute; that is, [A, B] ≡
AB − BA = 0. Then there exists a common orthonormal basis
{|ω〉 ∈ H : ω ∈ �} such that A and B can be simultaneously
diagonalized as

A =
∑

ω

a(ω) |ω〉 〈ω| , B =
∑

ω

b(ω) |ω〉 〈ω| (2.17)

in terms of some functions a, b : � → R. The physical mean-
ing of the compatibility is that A and B can be jointly measured
by external classical observers in the same experiment, and the
observers can compare the outcomes to evaluate the quality of
the estimator. More generally, one may use a set of commuting
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observables that are measured to construct B. With the com-
mon basis, all the outcomes observe the probability measure

P(ω) = 〈ω| ρ|ω〉. (2.18)

Classical probability theory, as well as the classical condi-
tional expectation presented in Sec. II A, can then be applied
to the inference problem.

One key application of the NDP is Belavkin’s approach
to quantum filtering, in which B is a function of the observ-
ables of a field probing a system and A is an observable of
the system ahead of the field measurements. The compati-
bility among the observables in the Heisenberg picture can
be proved for a general class of Markovian models [11]; see
also Sec. 3.2.2 in Ref. [27]. The formula for the conditional
expectation of an arbitrary A can then be used to derive the
stochastic master equation that governs the posterior quantum
state [11,12].

While the NDP has been successful in producing a math-
ematically satisfying theory of quantum filtering, it is, at its
physical core, nothing but the orthodox quantum measure-
ment theory that goes back to von Neumann. The use of only
standard concepts is in fact a key virtue of Belavkin’s work,
as it clarifies that no extension to standard quantum mechan-
ics is needed to solve his problem [11]. On the other hand,
Belavkin’s writings do not seem to express any strong opinion
about what one should or should not do with incompati-
ble observables. Some researchers following his work have
nonetheless adopted a harder line [3,28], arguing that quantum
inference should be done only if the NDP is observed, and
retrodictive questions do not make sense, such as the question
of which slit a photon goes through in a two-slit interference
experiment [3].

There is no doubt that the NDP agrees with standard
quantum measurement theory and quantum inference methods
based on the NDP agree with classical probability theory. It is
debatable, however, whether inference methods that violate
the NDP should be strictly forbidden. Despite the strong view
of some, the physics community has continued to demonstrate
significant interest in such “forbidden” problems [2,29].

III. GENERALIZED CONDITIONAL EXPECTATIONS

A. Inner products and Hilbert spaces for operators

The mathematical physics literature has recognized other
ways of generalizing the conditional expectation in quantum
mechanics [16–20]. One route is to generalize the Hilbert-
space treatment of random variables in Sec. II A for operators.
Given two operators A, B ∈ O(H), define an inner product
and a norm as

〈B, A〉ρ ≡ trB†EρA, (3.1)

‖A‖ρ ≡
√

〈A, A〉ρ, (3.2)

where † denotes the adjoint, tr denotes the trace, and Eρ :
O(H) → O(H) is a linear map that depends on ρ. Assume
that Eρ is self-adjoint and positive-semidefinite with respect
to the Hilbert-Schmidt inner product

〈B, A〉HS ≡ trB†A, (3.3)

such that Eq. (3.1) also qualifies as an inner product. Assume
further that E satisfies the following properties:

EρA = ρA if ρ and A commute, (3.4)

Eρ (U †AU ) = U †(EUρU † A)U, (3.5)

Eρ⊗ρ ′ (A ⊗ A′) = (EρA) ⊗ (Eρ ′A′), (3.6)

where U is a unitary operator, ρ ′ is another density operator
on Hilbert space H′, and A′ ∈ O(H′). Equation (3.4) ensures
that the inner product coincides with the classical version for
commuting operators. Equations (3.5) and (3.6) are desirable
properties in dealing with dynamics and composite Hilbert
spaces [20]. In what follows, I further require that

‖A ⊗ I‖ρ = ‖A‖tr′ρ, (3.7)

where I is the identity operator, ρ is a density operator on
H ⊗ H′, and tr′ is the partial trace over H′. Equation (3.7) is
a reasonable requirement for the definition of a quantum vari-
ance. Given these properties, E is not unique. Some prominent
examples that satisfy Eqs. (3.4)–(3.6) include the left product

EρA = ρA, (3.8)

the Jordan product

EρA = 1
2 (ρA + Aρ), (3.9)

and the root product

EρA = √
ρA

√
ρ. (3.10)

More generally, a class of E can be constructed from convex
combinations of EρA = ρλAρ1−λ, 0 � λ � 1 [20,30]. With
the left product, Eq. (3.1) becomes the inner product in the
Gelfand-Naimark-Segal construction [31]. With the Jordan
product, Eq. (3.1) becomes an inner product proposed by
Holevo that is useful in quantum statistics [32,33]. The other
products also have their uses in mathematical physics and sta-
tistical mechanics [18,19,30]. The left product and the Jordan
product further satisfy Eq. (3.7), although the root product and
many others do not [20].

With an inner product and the associated norm at hand, an
operator Hilbert space L2(ρ) can be constructed from O(H),
generalizing the classical L2(P) space described in Sec. II A.
Because H is finite-dimensional, there is no need to complete
the space with unbounded operators [33].

A distance between two operators can be defined as

dρ (A, B) ≡ ‖A − B‖ρ. (3.11)

In the context of quantum inference, Eq. (3.11) can serve as
a generalization of the classical root-mean-square error given
by Eq. (2.7) as a performance criterion [15,34]. The choice
of an estimator to minimize Eq. (3.11) may be called the
minimum-error principle. Note that the principle imposes no
requirement on the compatibility between A and B. The whole
point of inference is that A is hidden and can only be inferred,
so the NDP’s requirement that A be jointly measurable with B
by external classical observers may seem too restrictive if A
is never measured in reality. The minimum-error principle, on
the other hand, avoids the stringent requirement and serves
as a more general principle for quantum inference beyond
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an exact correspondence with probability theory. To quote
Belavkin himself on the limitation of quantum probability
theory [11]:

It is nonsense to consider seriously a complete observation
in the closed universe; there is no universal quantum obser-
vation, no universal reduction and spontaneous localization
for the wave function of the world. Nobody can prepare an a
priori state compatible with a complete world observation and
reduce the a posteriori state, except God. But acceptance of
God as an external subject of the physical world is at variance
with the closeness assumption of the universe. Thus, the world
state-vector has no statistical interpretation, and the human-
itarian validity of these interpretations would, in any case,
be zero. The probabilistic interpretation of the state-vector is
relevant to only the induced states of the quantum open objects
being prepared by experimentalists in an appropriate com-
pound system for the nondemolition observation to produce
the reduced states after the registration.

Unless we impose an artificial classical-quantum boundary
or force quantum mechanics to serve our classical intuition,
nothing in quantum mechanics mandates that observables
should commute.

B. Application of open quantum system theory

To treat time evolution and open quantum systems, suppose
that

H = H1 ⊗ H2 ⊗ H3 (3.12)

consists of three Hilbert subspaces H1, H2, and H3,

ρ = σ ⊗ τ (3.13)

is the density operator at, say, time t with σ being a density
operator on H1 and τ a density operator on H2 ⊗ H3,

At ≡ A ⊗ I ⊗ I (3.14)

is the hidden observable with A ∈ O(H1),

BT ≡ U †(I ⊗ B ⊗ I )U (3.15)

is the Heisenberg picture of an operator-valued estimator B ∈
O(H2) at time T � t , and U is a unitary operator on H that
models the time evolution from t to T . The mean-square error
of BT in inferring At becomes

d2
ρ (At , BT ) = ‖A‖2

σ − 2Re〈F†B, A〉σ + ‖I ⊗ B ⊗ I‖2
UρU † ,

(3.16)

where

Fσ ≡ tr13U (σ ⊗ τ )U † (3.17)

is a trace-preserving completely positive (TPCP) map F :
O(H1) → O(H2) in the Stinespring representation [20], F†

is its adjoint with respect to the Hilbert-Schmidt inner product,
tr13 denotes the partial trace over the Hilbert spaces numbered
by the subscript (H1 ⊗ H3 here), and the properties given by
Eqs. (3.5) and (3.6) have been used. If Eq. (3.7) is also used,
then

d2
ρ (At , BT ) = Dσ,F (A, B), (3.18)

Dσ,F (A, B) ≡ ‖A‖2
σ − 2Re〈F†B, A〉σ + ‖B‖2

Fσ . (3.19)

Let B = Fσ A be an estimator of A that minimizes Eq. (3.19).
By substituting B = Fσ A + εc into Eq. (3.19), differentiating
with respect to ε, and assuming that c is an arbitrary operator,
it is straightforward to show that Fσ A obeys

〈F†c, A〉σ = 〈c,Fσ A〉Fσ ∀ c ∈ L2(Fσ ). (3.20)

Notice that this equation is a generalization of Eq. (2.12), with
σ generalizing the probability measure P, Fσ generalizing
the coarse-grained measure PY , F†c generalizing the pullback
Y ∗c, and Fσ A generalizing the conditional expectation ǎ. The
existence and uniqueness of Fσ A as an element in L2(Fσ )
is guaranteed by the Riesz representation theorem [25], if the
left-hand side of Eq. (3.20) is regarded as a linear functional
of c, necessarily bounded in the finite-dimensional case con-
sidered here.

Equation (3.20) can be expressed in terms of the Hilbert-
Schmidt inner product as

〈F†c, Eσ A〉HS = 〈c,FEσ A〉HS = 〈c, EFσFσ A〉HS. (3.21)

Since c is arbitrary, the equation is reduced to

EFσFσ A = FEσ A. (3.22)

Equation (3.22) coincides with the general definition of a gen-
eralized conditional expectation (GCE) given by Eq. (6.21)
in Ref. [20]; see also Ref. [18]. If EFσ is invertible, Fσ :
O(H1) → O(H2) as a map is explicitly given by

Fσ = E−1
FσFEσ . (3.23)

Any Fσ A that satisfies Eq. (3.22) leads to

min
B∈L2(Fσ )

Dσ,F (A, B) = ‖A‖2
σ − ‖Fσ A‖2

Fσ . (3.24)

Equation (3.22) can be used to define a GCE even if the E map
does not satisfy Eq. (3.7). For example, the Accardi-Cecchini
GCE [16] given by

Fσ A = (Fσ )−1/2F (
√

σA
√

σ )(Fσ )−1/2 (3.25)

results from Eq. (3.23) if E is the root product given by
Eq. (3.10) [18,19]. Then the GCE still has the meaning of
an operator that minimizes the D in Eq. (3.19). As long as
E leads to ‖I ⊗ B ⊗ I‖UρU † � ‖B‖Fσ and thus d2

ρ (At , BT ) �
Dσ,F (A, B), Eq. (3.24) and therefore Eq. (3.19) remain non-
negative [20].

It is straightforward to show that many versions of the E
map satisfy the property of mapping Hermitian operators to
Hermitian operators. An example is

EρA = 1
2 (ρλAρ1−λ + ρ1−λAρλ), 0 � λ � 1, (3.26)

which includes the Jordan product and the root product. More
generally, any convex combination of E’s satisfying the prop-
erty also satisfies it. The inner product then becomes real if the
operators are restricted to be Hermitian. Since any completely
positive map F also satisfies such a property (as easily proved
using its Kraus representation), the GCE given by Eq. (3.23)
associated with such an E map also maps Hermitian operators
to Hermitian operators, a property that some may find desir-
able.

At this juncture, the works by Leifer and Spekkens [7]
and Horsman and coworkers [8] on two-time quantum states
deserve a mention. They diverged from the formalism here by
expressing the TPCP map in its Choi form, although they also
recognized the usefulness of the root product or the Jordan
product in their formalism. It is outside the scope of this
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paper to investigate the connections of these works to those
considered here.

C. Discussion

Among the choices of E considered here, the Jordan prod-
uct seems to stand out as the most reasonable, as it satisfies all
the desirable properties given by Eqs. (3.4)–(3.7) and gives a
Hermitian GCE for a Hermitian hidden observable. With the
Jordan product and Hermitian At and BT , the error given by
Eq. (3.11) becomes

d2
ρ (At , BT ) = trρ(At − BT )2. (3.27)

At − BT is another Hermitian observable that can be measured
in principle, and the resulting variance coincides with the
error, so the error does have a probabilistic interpretation. Al-
though a measurement of At − BT seems difficult in practice,
this interpretation does not appear to be much less reasonable
than the interpretation of the NDP in terms of the joint mea-
surement of At and BT , which is also quite impractical.

Along the same line, for parameter estimation problems,
where A models a classical real parameter, the Jordan product
has the desirable feature of making the error agree with the
classical estimation error upon the measurement of a Hermi-
tian B [23,24].

In the more mathematical context of quantum information
theory, the Jordan product leads to the smallest—and thus
the most useful—quantum version of the Fisher information
for scalar parameter estimation [20,35]. The GCE given by
Eq. (3.22) determines the relation between the scores (loga-
rithmic derivative operators) of a quantum parametric model
before and after the F map, generalizing the classical case
(see, for example, Sec. 25.5 in Ref. [36]), and the fact that Fσ

is a projection can be used to prove the monotonicity of the
quantum Fisher information [20,37].

Other problems may require a different product or a dif-
ferent GCE, however. For example, the left product leads
to a quantum Fisher information matrix that may be more
useful for vectoral parameter estimation [33,38], while the
Accardi-Cecchini GCE and its Hilbert-Schmidt adjoint, the
Petz recovery map, are central to the study of quantum chan-
nel sufficiency [17–19]. There is no single best definition of a
GCE, nor does there need to be, just as there is no single best
quasiprobability representation for every problem.

IV. EXAMPLES THAT OBEY THE NONDEMOLITION
PRINCIPLE

A. Classical

The classical case is unequivocal. Let PX (x) be the prior
probability distribution of a hidden random variable X ∈ X
and PY |X (y|x) be the probability distribution of the observed
Y ∈ Y conditioned on X = x. For simplicity, assume that X
and Y are finite sets and all the probabilities are positive. Then
PY (y) = ∑

x PY |X (y|x)PX (x) > 0. Let

σ =
∑

x

PX (x) |x〉 〈x| , (4.1)

A =
∑

x

a(x) |x〉 〈x| , (4.2)

Fσ =
∑
y,x

PY |X (y|x) 〈x| σ |x〉 |y〉 〈y| , (4.3)

Fσ A =
∑

y

ǎ(y) |y〉 〈y| , (4.4)

where {|x〉 : x ∈ X } is an orthonormal basis of H1, {|y〉 : y ∈
Y} is an orthonormal basis of H2, a : X → C is a classical
random variable, and ǎ : Y → C is an estimator given the
observation. The GCE given by Eq. (3.23), regardless of the
choice of the E map, becomes

ǎ(y) =
∑

x

PY |X (y|x)PX (x)

PY (y)
a(x), (4.5)

which is, of course, the Bayes theorem.

B. Retrodiction

For an example with quantum ingredients, consider the
retrodiction problem studied by Watanabe [1] and Barnett,
Pegg, and Jeffers [5]. Assume the classical model given by
Eqs. (4.1)–(4.5). In addition, assume that the observation dis-
tribution PY |X (y|x) arises from Born’s rule, viz.,

PY |X (y|x) = trM(y)Gρx = 〈M(y),Gρx〉HS (4.6)

= 〈
G†M(y), ρx

〉
HS, (4.7)

where ρx is the density operator of a quantum system con-
ditioned on X = x at an initial time, M is the positive
operator-valued measure (POVM) that models a measurement
of the system at a final time, and G is a TPCP map that models
the time evolution in-between. As recognized by Refs. [1,5],
one can choose to evolve ρx forward in time by G or evolve
M(y) backward in time by G†. Either way, the GCE for this
retrodiction problem is still the classical Bayes theorem given
by Eq. (4.5) and can be written as

ǎ(y) =
∑

x

trM(y)Gρ(x)∑
x′ trM(y)Gρ(x′)

a(x), (4.8)

ρ(x) ≡ ρxPX (x), (4.9)

where ρ(x) is the hybrid density operator [39]. In this con-
text, there is some freedom in how one normalizes M(y) and
ρ(x) [5].

Although Barnett and coworkers called this problem quan-
tum retrodiction, here it may be more appropriate to specify it
as hybrid retrodiction, since the hidden observable is classical,
while the observation arises from Born’s rule in quantum
mechanics.

C. Hybrid smoothing

A generalization of the retrodiction problem is the so-
called smoothing problem [9,10], where the value of a
time-varying waveform at a certain intermediate time t is to be
estimated using observations both before and after t . Consider
in particular a classical waveform, such as a gravitational
wave, perturbing a quantum system, such as an optomechan-
ical sensor. Sequential or continuous measurements are made
on the quantum system, and the outcomes are used to infer the
waveform. To model this hybrid smoothing problem, assume
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again the classical model given by Eqs. (4.1)–(4.5). Let the
classical waveform value at an intermediate time t be X and
the measurement model be

PY |X (y|x) = trM(y|x)ρx, (4.10)

where ρx is now the density operator of the quantum system
at time t conditioned on X = x, the POVM M(y|x) is also
conditioned on X = x, and Y represents all the “future” obser-
vations after t . All quantities, including PX (x), are implicitly
assumed to be conditioned on the “past” observations before
t . The GCE becomes

ǎ(y) =
∑

x

trM(y|x)ρ(x)∑
x′ trM(y|x′)ρ(x′)

a(x), (4.11)

which is the central formula employed by Tsang in his hybrid
smoothing theory [13,14] (with the obvious generalization of
PX (x) to a density and

∑
x to an integral).

Hybrid filtering refers to the estimation of X with observa-
tions up to time t only and can be accomplished by computing
the ρ(x) conditioned on the past observations [39]. As is well
known in engineering [10], smoothing is more accurate than
filtering if the waveform is stochastic, since the future obser-
vations contain information about the waveform value that is
absent in the past observations. These considerations arguably
make the hybrid smoothing theory the most useful offshoot of
the quantum retrodiction and smoothing formalism.

If a continuous measurement is performed on the quan-
tum system, M(y|x) and ρ(x) can be solved via a time-
symmetric pair of stochastic master equations, as proposed
by Tsang [13,14]. ρ(x) is to be solved using a forward-time
stochastic master equation for hybrid filtering that goes from
an initial time to the intermediate time t , while M(y|x) is to
be solved using an adjoint equation that goes backward from
a final time to t , generalizing the retrodiction formalism in
Sec. IV B.

Equation (4.11) may be solved more efficiently by con-
sidering the quasiprobability representations of M(y|x) and
ρ(x), which can admit more succinct forms in special cases.
For example, for linear Gaussian systems, the Wigner rep-
resentations of M(y|x) and ρ(x) are both Gaussian, and the
smoother coincides with the optimal linear smoother in the
classical setting [10,13,14]. The “Gaussian theory of hind-
sight” proposed earlier by Petersen and Mølmer for atomic
magnetometry [40] can then be viewed as a special case.
Tsang, Wiseman, and Caves showed that the smoothing tech-
nique is needed to achieve the fundamental quantum limit to
waveform estimation in optomechanical force sensing [41].
References [42] report experimental demonstrations of the
smoothing technique for quantum optical systems.

The more recent proposal of “past quantum state” by Gam-
melmark, Julsgaard, and Mølmer [21] is nothing but a special
case of the hybrid smoothing theory. Let {κx : x ∈ X } be a set
of Kraus operators that model a measurement at time t and
ρ ′ be the quantum state before the measurement. Their theory
can be reproduced from Eq. (4.11) by assuming

ρx = κxρ
′κ†

x

trκxρ ′κ†
x

, PX (x) = trκxρ
′κ†

x , (4.12)

ρ(x) = ρxPX (x) = κxρ
′κ†

x . (4.13)

In other words, the measurement outcome X that is assumed
to be hidden in their setup can simply be treated as a clas-
sical random variable in the hybrid theory; see also Ref. [3].
Mølmer and coworkers have since produced a series of papers
on the subject [6], such as Ref. [43], which rediscovers the
hybrid smoothing theory.

The quantum state smoothing theory proposed by Gue-
vara and Wiseman [6,22], which concerns the estimation of a
time-dependent density matrix with partial observations, may
also be considered as a special case of hybrid smoothing. In
their scenario, a partial observer named Alice has only partial
access to a sequence of observations of a quantum system, and
her goal is to estimate the density matrix possessed by an om-
niscient observer named Bob, who has complete access to the
observations and updates his density matrix continuously with
them. The key is to view the problem as a generalization of
quantum state tomography, where the density matrix is a clas-
sical matrix-valued parameter [44]. Under this view, Bob’s
density matrix is a classical stochastic process, whose equa-
tion of motion happens to be the stochastic master equation
driven by the observations as an effective system noise. The
hybrid approach should therefore be applicable to the state
estimation problem, although the technical details remain to
be worked out. It is an interesting open question whether the
use of other cost functions in Ref. [6] may be applied to the
hybrid theory.

D. Optimal quantum estimation of a classical parameter

A generalization of the previous examples is to allow the
experimenter to pick any quantum measurement that mini-
mizes the error. Keep the classical σ and A given by Eqs. (4.1)
and (4.2), but assume that the output state

Fσ =
∑

x

ρx 〈x| σ |x〉 (4.14)

is quantum. Then the GCE given by Eq. (3.22) obeys

E∑
x ρ(x)Fσ A =

∑
x

ρ(x)a(x). (4.15)

If a is real and E is the Jordan product, any solution for Fσ A is
an optimal observable to be measured for estimating a(x), as
discovered by Personick [23]; see Ref. [45] for a more recent
related work.

E. Optimal quantum estimation

The quantum estimation problem considered by Belavkin
and Grishanin [24] is a further variation of the previous exam-
ples. Let the larger Hilbert space be H1 ⊗ H2 and the state on
this Hilbert space be σ . The parameter to be estimated is now
a quantum observable A on H1, while the estimator is another
quantum observable B on H2. Assume that both are Hermi-
tian. Their TPCP map is simply the partial trace Fσ = tr2σ .
The resulting optimal observable obtained by Belavkin and
Grishanin coincides with the GCE here in terms of the Jordan
product.
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F. Compliance with the nondemolition principle

All the previous examples obey the NDP. To check this
explicitly for the examples in Secs. IV A–IV D, notice that
the TPCP maps there can all be expressed in the Stinespring
representation given by Eq. (3.17) if one assumes

τ = |φ〉 〈φ| , (4.16)

U =
∑

x

|x〉 〈x| ⊗ Vx, (4.17)

where |φ〉 is a pure state in H2 ⊗ H3, {|x〉 : x ∈ X } is the
orthonormal basis of H1 assumed in Secs. IV A–IV D, and
Vx ∈ O(H2 ⊗ H3) is a unitary operator controlled by x. The
TPCP map becomes

Fσ =
∑

x

〈x| σ |x〉 tr3Vx |φ〉 〈φ|V †
x . (4.18)

The classical model in Sec. IV A, the retrodiction model in
Sec. IV B, and the hybrid smoothing model in Sec. IV C are
obtained if

tr3Vx |φ〉 〈φ|V †
x =

∑
y

PY |X (y|x) |y〉 〈y| , (4.19)

while Personick’s model in Sec. IV D is obtained if

tr3Vx |φ〉 〈φ|V †
x = ρx. (4.20)

Given the density operator on the right-hand side of Eq. (4.19)
or Eq. (4.20), standard open quantum system theory [20]
assures that there always exist a purification of the density
operator and a unitary Vx that maps |φ〉 to the purification.
The fact that PY |X (y|x) in the hybrid models arises from Born’s
rule turns out to be irrelevant to the compatibility between the
hidden observable and the estimator.

In the larger Hilbert space H1 ⊗ H2 ⊗ H3, the hidden ob-
servable At and the estimator observable BT in the Heisenberg
picture are given by Eqs. (3.14) and (3.15), respectively. The
classical A given by Eq. (4.2) becomes

At =
∑

x

a(x) |x〉 〈x| ⊗ I ⊗ I, (4.21)

while applying the U given by Eq. (4.17) to Eq. (3.15) leads
to

BT =
∑

x

|x〉 〈x| ⊗ V †
x (B ⊗ I )Vx. (4.22)

The At and BT here commute, meaning that the NDP is
observed.

To treat infinite-dimensional problems, the obvious gener-
alization would be to replace |x〉 〈x| by a projection-valued
measure and

∑
x by an integral, although a rigorous analysis

of the infinite-dimensional case is outside the scope of this
paper.

For the problem considered by Belavkin and Grishanin and
described in Sec. IV E, the observables in the larger Hilbert
space are simply A ⊗ I and I ⊗ B, so their compatibility is
obvious.

V. EXAMPLES THAT MAY VIOLATE THE
NONDEMOLITION PRINCIPLE

A. Weak values

For an example that may violate the NDP, let σ and A be
quantum, A be Hermitian, F be the measurement map given
by

Fσ =
∑

y

[trM(y)σ ] |y〉 〈y| , (5.1)

and the estimator be the classical form given by Eq. (4.4).
Then Eq. (3.23) becomes

ǎ(y) = trM(y)Eσ A

trM(y)σ
. (5.2)

This GCE coincides with the weak value if E is the left
product and the real part of the weak value if E is the Jordan
product [15]. The weak values may be generalized by con-
sidering other operator products for E , while a larger class
of quasiprobability distributions that are conditioned on both
past and future observations may be generated by plugging
quantum generalizations of the Kronecker deltas in the place
of A, such as projectors [34] or phase-point operators [46].

As the weak value is well known to create paradoxes that
defy classical logic [2], one should not expect it to obey
the NDP in general. To check, notice that the measurement
map given by Eq. (5.1) can be expressed in the Stinespring
representation given by Eq. (3.17) if one assumes

M(y) = tr3�13(y)(I ⊗ τ3), (5.3)

τ = |φ〉 〈φ| ⊗ τ3, (5.4)

U =
∑

y

�13(y) ⊗ Vy, (5.5)

where �13 ∈ O(H1 ⊗ H3) is the projection-valued measure
and τ3 ∈ O(H3) is the ancilla state that arise from the
Naimark extension of M(y) [20], while Vy ∈ O(H2) is a uni-
tary that gives Vy |φ〉 = |y〉. Note that Eq. (5.5) is expressed
in the order of O(H1 ⊗ H3) ⊗ O(H2). Following the same
order, the operator-valued estimator given by Eq. (3.15) can
be expressed as

BT =
∑

y

�13(y) ⊗ V †
y BVy, (5.6)

which may not commute with the hidden observable given by
Eq. (3.14).

Despite the possible violation of the NDP, the weak values
are not necessarily paradoxical. The literature on the weak
values tends to focus on the paradoxes, but it is arguably
more important to demonstrate that they make sense for large
classes of problems, so that they can serve as a discerning
test of nonclassicality. The next section demonstrates that, for
a certain class of systems called linear Gaussian systems, a
classical probability model can indeed be constructed even for
incompatible observables, thus guaranteeing the inference to
conform with classical logic.
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B. Linear Gaussian systems

A large class of quantum optics experiments, such as
optomechanics, can be modeled as linear Gaussian sys-
tems [39,47,48]. They are defined by the following condi-
tions:

(1) The Wigner representations of all the density operators
involved are Gaussian.

(2) The observables of interest are restricted to quadrature
operators, defined as real linear combinations of canonical
position and momentum operators.

(3) All the unitary operators involved are generated by
Hamiltonians that are quadratic with respect to the quadrature
operators, such that the equations of motion for the quadra-
tures are linear.

(4) The measurements are restricted to spectral resolutions
of the quadrature operators, such as homodyne detection in
optics.

These conditions can also be applied to TPCP maps
and POVMs via their Stinespring or Naimark represen-
tations. It is well established that, for linear Gaussian
systems, the Wigner representation offers a classical proba-
bility model for the quadratures, despite the incompatibility
among them [39,47,48].

Assume a quantum system with N bosonic modes with
density operator σ at time t . Let Q be a column vector of the
2N phase-space (position and momentum) operators. Some of
the phase-space operators can be used to model classical con-
tinuous variables in a hybrid problem [49]. Suppose that the
measurement outcomes from the system are used to estimate
a quadrature operator A, which can be written as

A = b
Q, (5.7)

where b is a column vector of 2N constants and 
 denotes
the transpose. Let Y ∈ Y = RL be the noisy observation of
L quadratures after t and M be the corresponding POVM.
Assume that M can be expressed as

M(S) =
∫

S
dLyγ (y), (5.8)

where γ (y) is an operator-valued density of M. The probabil-
ity density of Y is then

fY (y) = trγ (y)σ. (5.9)

For example, if ideal homodyne detection is performed,
γ (y) = |y〉 〈y| in terms of the Dirac eigenkets {|y〉 : y ∈
RL, 〈y|y′〉 = δL(y − y′)} for the L quadratures [48]. Of course,
γ (y) can also incorporate the effects of more general dynam-
ics and measurements after t .

Assume the Jordan product for the E map hereafter. The
L2(σ ) space remains well defined for this infinite-dimensional
problem if one completes the space with limit points of
the space of bounded operators [33], although I ignore the
mathematical complications that may arise when generaliz-
ing the earlier finite-dimensional results in the following,
as per standard practice in quantum optics [48]. The ap-
propriate generalization of the L2(Fσ ) space in this case is
the classical L2( fY ) space with the inner product 〈b, a〉 fY ≡∫

dLyb(y)a(y) fY (y), while the appropriate generalization of

Eq. (5.2) is

ǎ(y) = trγ (y)Eσ A

trγ (y)σ
. (5.10)

Let Wσ (q) and Wγ (y|q) be the Wigner representations of
σ and γ (y), respectively, where q is a column vector of the
2N phase-space coordinates. For the smoothing problem, σ

and Wσ are implicitly assumed to be conditioned on the past
observations before t . It is straightforward to show that the
GCE given by Eq. (5.10) becomes [14]

ǎ(y) =
∫

d2N qW (q|y)b
q, (5.11)

W (q|y) = Wγ (y|q)Wσ (q)∫
d2N q′Wγ (y|q′)Wσ (q′)

, (5.12)

d2N q ≡ dq1 · · · dq2N . (5.13)

Equation (5.12) has the form of the Bayes theorem, with Wσ

and Wγ playing the roles of PX and PY |X in the classical model
in Sec. IV A.

For a linear Gaussian system, the Gaussianity of Wσ and
Wγ can be proved [47,48]. Assume

Wσ (q) ∝ exp
[− 1

2 (q − q̌σ )
K−1
σ (q − q̌σ )

]
, (5.14)

Wγ (y|q) ∝ exp
[− 1

2 (y − hq)
R−1(y − hq)
]
, (5.15)

where q̌σ and Kσ are the mean vector and covariance matrix
of Wσ , y is an L-dimensional column vector, h is an L × 2N
matrix, and R is an L × L covariance matrix. Since both Wσ

and Wγ are positive here, the GCE has all the nice properties
of a classical conditional expectation, even if the NDP is
violated.

Assume that h
R−1h is positive-definite, such that its in-
verse is defined. Let

Wγ (y|q) ∝ exp
[− 1

2 (q − q̌γ )
K−1
γ (q − q̌γ )

]
, (5.16)

q̌γ = Kγ h
R−1y, (5.17)

Kγ = (h
R−1h)−1. (5.18)

Then the posterior distribution given by Eq. (5.12) becomes

W (q|y) ∝ exp
[− 1

2 (q − q̌)
K−1(q − q̌)
]
, (5.19)

q̌ = K
(
K−1

σ q̌σ + K−1
γ q̌γ

)
, (5.20)

K = (
K−1

σ + K−1
γ

)−1
, (5.21)

and the GCE of A becomes

ǎ = b
q̌. (5.22)

The mean-square error is given by Eqs. (3.18) and (3.24), and
one can use the correspondence between the operator inner
product 〈·, ·〉σ for quadratures and the classical inner product
with respect to the Wigner function 〈·, ·〉Wσ

[39] to obtain

d2
ρ = b
Kb. (5.23)

Note that q̌ is the vectoral GCE of the quadrature operator
vector Q and may violate the NDP as an estimator, since it is
a function of the retrodictive estimator q̌γ and thus the future
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observations. Despite the controversial status of q̌, the hidden
observable of interest A may still obey the NDP with respect
to the measurement, in a hybrid smoothing problem for exam-
ple. Then no one can deny the usefulness of the retrodictive
estimator, as an intermediate tool at least, in determining the
final conditional expectation of A. Compared with the filtering
estimator and its error based on σ alone, given by

ǎ = b
q̌σ , d2
ρ = b
Kσ b, (5.24)

the advantage of smoothing may be substantial.
As noticed first by Refs. [14,50], the posterior covariance

matrix K given by Eq. (5.21), unlike Kσ or Kγ , may violate
the Heisenberg uncertainty relation, but it is not a paradox
from the perspective of the effective classical model with the
positive Wigner functions.

VI. CONCLUSION

I have presented a unifying theory of generalized con-
ditional expectations (GCEs) for quantum retrodiction and
smoothing. It is fair to say that I have drawn on many
prior works in establishing the theory and constructing
the examples. Rather than proposing yet another approach
to the problem, the key contribution of this paper is to
make hitherto unappreciated connections among the exist-
ing works. As these works come from diverse fields in
physics and engineering and have different motivations, it
is worth pointing out that they share a common thread

and offer complementary perspectives on the quantum retrod-
iction and smoothing problem.

On one hand, the GCEs are shown to be natural conse-
quences of generalizing the Hilbert-space treatment of the
classical conditional expectation. On the other, they are shown
to coincide with many quantum estimation methods that have
philosophical as well as engineering implications. These con-
siderations establish the GCEs as a principled and sensible
concept for quantum inference, enabling one to address ques-
tions previously forbidden by the nondemolition principle
(NDP). Providing answers to such questions, even if they
seem paradoxical in special cases, may serve as a mental aid
for researchers and students to develop insights and intuition
about quantum systems. On a more practical level, the hybrid
smoother, discussed in Secs. IV C and V B, illustrates how
an inference about the past of a quantum sensor can improve
the estimation of a classical waveform. Regardless of one’s
position on the NDP, there is no denying that the GCEs can,
at the very least, serve as useful intermediate tools in quantum
sensing and information-processing applications.

Given the fundamental importance of the conditional ex-
pectation in classical probability and statistics, there should be
plenty of room for the concept of GCEs to grow even further
in the quantum arena.
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Bayesian quantum frequency estimation in presence of collec-
tive dephasing, New J. Phys. 16, 113002 (2014).

[46] C. Ferrie, Quasi-probability representations of quantum theory
with applications to quantum information science, Rep. Prog.
Phys. 74, 116001 (2011).

[47] A. S. Holevo, Quantum Systems, Channels, Information, 2nd
ed. (de Gruyter, Berlin, 2019).

[48] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C.
Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum informa-
tion, Rev. Mod. Phys. 84, 621 (2012).

[49] J. Gough and M. R. James, The series product and its appli-
cation to quantum feedforward and feedback networks, IEEE
Trans. Autom. Control 54, 2530 (2009); M. Tsang and C. M.
Caves, Evading Quantum Mechanics: Engineering a Classical
Subsystem within a Quantum Environment, Phys. Rev. X 2,
031016 (2012).

[50] M. Tsang, J. H. Shapiro, and S. Lloyd, Quantum theory
of optical temporal phase and instantaneous frequency. II.
Continuous-time limit and state-variable approach to phase-
locked loop design, Phys. Rev. A 79, 053843 (2009).

042213-10

https://doi.org/10.1016/0022-1236(82)90022-2
https://doi.org/10.1007/BF01212345
https://doi.org/10.1007/s11005-010-0398-0
https://doi.org/10.1103/PhysRevLett.111.160401
https://doi.org/10.1103/PhysRevLett.115.180407
https://doi.org/10.1109/TIT.1971.1054643
http://mi.mathnet.ru/eng/ppi907
https://doi.org/10.1126/science.1202218
https://doi.org/10.1007/BF00739578
https://doi.org/10.1016/0034-4877(77)90009-X
https://doi.org/10.1103/PhysRevA.91.032116
https://doi.org/10.1016/0024-3795(94)00211-8
https://doi.org/10.1103/PhysRevA.104.052411
https://doi.org/10.1109/TIT.1973.1055103
https://doi.org/10.1103/PhysRevA.74.043802
https://doi.org/10.1103/PhysRevLett.106.090401
https://doi.org/10.1103/PhysRevLett.104.093601
https://doi.org/10.1126/science.1225258
https://doi.org/10.1103/PhysRevLett.111.163602
https://doi.org/10.1140/epjqt/s40507-015-0026-0
https://doi.org/10.1103/PhysRevA.104.052621
https://doi.org/10.1088/1367-2630/16/11/113002
https://doi.org/10.1088/0034-4885/74/11/116001
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1109/TAC.2009.2031205
https://doi.org/10.1103/PhysRevX.2.031016
https://doi.org/10.1103/PhysRevA.79.053843

