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Quantum enhancement of qutrit dynamics through driving field and photonic-band-gap crystal
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A comparative study of a qutrit (three-level atomic system) coupled to a classical field in a typical Markovian
reservoir (free space) and in a photonic-band-gap (PBG) crystal is carried out. The aim of the study is to assess the
collective impact of a structured environment and classical control of the system on the dynamics of quantum
coherence, non-Markovianity, and estimation of parameters that are initially encoded in the atomic state. We
show that the constructive interplay of PBG material as a medium and a classical driving field as a part of the
system results in a significant enhancement of all the quantum traits of interest, compared to the case when the
driven qutrit is in a Markovian environment. Our results supply insights for preserving and enhancing quantum
features in qutrit systems, which are promising alternative candidates to be used in quantum processors instead
of qubits.
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I. INTRODUCTION

In physics, no realistic quantum system is completely
isolated from its surrounding environment, and there are al-
ways inevitable interactions that affect the evolution of the
system. As an adverse consequence of such detrimental inter-
actions, the system loses its coherence. The theory of open
quantum systems deals with such systems [1–3]. Since the
genesis of many quantum phenomena traces back to coher-
ence, nowadays this feature is considered as a key concept that
enables tremendous possibilities in a wide spectrum of quan-
tum technologies, quantum metrology [4–7], and quantum
thermodynamics [8,9]. Several strategies have been devised,
therefore, to protect coherence from being lost in quantum
systems [7,10–21].

The process of losing quantum coherence, called de-
coherence, is usually categorized into two Markovian and
non-Markovian regimes. In the Markovian regime, which
is recognized as a memoryless evolution, the information
leaks out to the environment irreversibly. In contrast, in
non-Markovian (memory-keeping) evolution, the leaked in-
formation returns to the system [1,21,22]. As a fundamental
trait, non-Markovianity itself can be quantified by a variety
of measures [23–31] and exploited as a resource for certain
applications [32,33].

On the other hand, measurements in open quantum systems
are the only way to gain insight from the quantum world.
Therefore, any advancement in quantum mechanics depends
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strongly on making progress in measurement techniques. The
more precise the measurements are, the more reliable are
the results. However, the measurement process itself can also
cause decoherence and consequently reduce the accuracy of
the quantum parameter estimation outcome. Increasing the
degree of sensitivity and accuracy of quantum parameter es-
timation, and exploiting quantum properties, is the primary
purpose of quantum metrology [34,35]. In recent years, this
line of research has been under the spotlight due to its pro-
found impact on quantum technology [34].

Quantum estimation theory provides a framework in which
quantum Fisher information (QFI) is employed as a reliable
figure of merit to evaluate the accuracy of unknown param-
eters in the system. QFI represents intrinsic information in
the quantum state, and it is not related to the actual mea-
surement procedure. It characterizes the maximum amount of
information that can be extracted from quantum experiments
about unknown parameters using ideal measurement devices
[36,37]. The behaviors of QFI have been widely investigated
both theoretically and experimentally in different systems
[38–42]. Decoherence always acts as a drawback, limiting the
precision in the measurement outcomes [43–45]. To tackle
this issue, proposals to control QFI against environmental
noise have been provided [46–56].

Decoherence effects may typically be weakened by en-
gineering suitable structured environments. In this context,
photonic crystals are materials possessing a photonic band
gap (PBG) where a range of electromagnetic frequencies are
prohibited from propagating. Due to such a feature, the den-
sity of states of PBG materials differs substantially from a
free-space vacuum field, which enables us to localize and
manipulate the light within its structure [57,58]. Therefore,
the mentioned difference leads to inhibition of spontaneous
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emission of the atoms located in PBG material [59–62]. More-
over, as the atomic resonance gets close to the photonic band
edge, the radiative dynamics experiences a long-time memory
effect [63–66]. Hence, PBG materials can be a neat solution
for overcoming decoherence and subsequently for quantum
information tasks [67–69].

In addition to environmental engineering, classical control
by driving fields can be adopted to manipulate individual
quantum systems. Classical control is indeed an effective
method to harness the dynamics of open quantum systems,
which can be implemented in both cavity-QED and circuit-
QED setups [70,71].

To overcome limitations in controlling circuit elements for
performing computational tasks via superconducting qubits,
qutrits (three-level quantum systems) have been proposed
as promising alternative candidates for quantum processors
[72,73]. It is noteworthy that multilevel systems reduce the
number of required circuit elements through extending the
Hilbert space [74]. This characteristic offers interesting pos-
sibilities for novel fundamental tests of quantum mechanics
[75,76], increased security in a range of quantum informa-
tion protocols [77–83], larger channel capacity in quantum
communication [84,85], and more efficient quantum gates
[74,86,87]. It is thus of particular interest to increase our
knowledge about the dynamical behavior of the quantum fea-
tures of a qutrit under suitable environmental conditions.

In this work, we consider a classically driven three-level
atomic system as a qutrit that is placed in either free space
or a PBG crystal (a structured reservoir). In this way, we
can make a comparative study and individuate the conditions
for the enhancement of the quantum properties of interest.
In particular, we assess the influence of both a driving laser
field and a PBG reservoir on the time evolution of quantum
coherence, non-Markovianity, and QFI of the qutrit. Such a
comprehensive investigation supplies useful insights about the
possibility of preserving and controlling quantumness in a
three-level open quantum system, which can be employed as
a constituent of a qutrit-based register.

The paper is organized as follows: In Sec. II, we describe
the model and give explicit expression to the evolved reduced
density matrix of the atomic system for two considered situa-
tions, namely the atom in free space and the atom in a photonic
band gap. In Sec. III, the time evolution of coherence for both
situations is comparatively discussed. Section IV presents the
results concerning the non-Markovian dynamics of the system
by employing the HSS measure. The dynamics of quantum
Fisher information and optimal parameter estimation is re-
ported in Sec. V. In Sec. VI, we discuss the experimental
context in which our results can be reproduced. Conclusive
remarks and perspectives of this work are summarized in
Sec. VII.

II. MODEL AND SOLUTION

We consider a three-level atom that interacts with the vac-
uum field and a driving field. As schematically depicted in
Fig. 1, the upper level |a〉 decays to the ground level |c〉 with
rate γ due to the interaction with vacuum reservoir modes.
Meanwhile, the transition |a〉 ↔ |b〉 is resonantly coupled by
means of a coherent laser field with the Rabi frequency �.

FIG. 1. Illustration of the energy levels of the atomic qutrit.
Atomic states of the system are characterized by |a〉, |b〉, and |c〉. The
double arrow and the wavy arrow, respectively, denote the coupling
laser field with Rabi frequency � and the spontaneous emission of
rate γ .

Such a system is recognized as upper-level coupling [88,89].
The Hamiltonian of the system in the interaction picture can
be written as (h̄ ≡ 1)

V̂ = �|a〉〈b| +
∑

k

gk|a〉〈c|b̂kei(ωac−ωk )t + c.c., (1)

where ωab, ωac are the frequencies of |a〉 → |b〉 and |a〉 →
|c〉 transitions, respectively; bk (b†

k ) indicates an annihilation
(creation) operator for the kth vacuum mode with frequency
ωk . The parameter � characterizes the Rabi frequency of
the coupling laser field. Here gk (assumed as a real number)
denotes the coupling constant between the kth vacuum mode
and the atomic transition |a〉 → |c〉. Its expression is

gk = ωacdac

h̄

(
h̄

2ε0ωkV

)1/2

êk · d̂ac, (2)

where dac and ˆdac are the magnitude and unit vector of the
atomic dipole moment for the transition |a〉 → |c〉, V is the
sample volume, êk is the transverse polarization unit vector,
and ε0 is the Coulomb constant.

We assume the atom to be initially in a pure superposition
of |a〉 and |b〉,

|�A(0)〉 = cos(θ/2)|a〉 + eiφ sin(θ/2)|b〉, (3)

and the field in the vacuum state |0〉. Hence, at any later time
t , the quantum state of the whole system can be described as

|�AF(t )〉 = A(t )|a〉|0〉 + B(t )|b〉|0〉 +
∑

k

Ck (t )|c〉|1k〉, (4)

where |1k〉 indicates the state with one photon in the kth
vacuum mode. Substituting Eq. (4) into the Schrödinger equa-
tion, we obtain the following set of coupled equations for the
probability amplitudes A(t ), B(t ), and Ck (t ),

Ȧ(t ) = −i�∗B(t ) − i
∑

k

gkCk (t )e−iδkt , (5a)

Ḃ(t ) = −i�A(t ), (5b)

Ċ(t ) = −igkA(t )eiδkt , (5c)
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where δk = ωk − ωac is the detuning of the radiation mode
frequency ωk from the atomic transition frequency ωac. Solv-
ing Eq. (5c) formally and substituting the solution into
Eq. (5a), one obtains

Ȧ(t ) = −i�B(t ) −
∫ t

0
F (t, t ′)A(t ′)dt ′, (6)

where

F (t − t ′) =
∑

k

g2
ke−iδk (t−t ′ ) (7)

is the correlation function including the memory effects in-
duced by the reservoir. The memory kernel strictly depends
on the spectral density of the field in the reservoir.

The evolved reduced density matrix ρ(t ) of the driven
atomic qutrit is straightforwardly obtained by tracing out the
environmental degrees of freedom in Eq. (4). In the basis
{|a〉, |b〉, |c〉}, it is given by

ρ(t ) =
⎛
⎝ρaa ρab ρac

ρba ρbb ρbc

ρca ρcb ρcc

⎞
⎠, (8)

with

ρaa = |A(t )|2, ρbb = |B(t )|2, ρcc = 1 − |A(t )|2 − |B(t )|2,
ρab = ρ∗

ba = A(t )B∗(t ), ρac = ρ∗
ca = 0, ρbc = ρ∗

cb = 0. (9)

In the following, we give the solutions for the time-
dependent amplitudes in the two cases of interest: free space
and photonic crystal.

A. Qutrit in free space

Let us assume the atom is located in free space, i.e., a
broadband reservoir with the photon dispersion relation ωk =
ck. One can thus use the Weisskopf-Wigner approximation
[90] to obtain F (t − t ′) = γ

2 δ(t − t ′) (no memory effects),

with γ = 1
4πε0

( 4ω3
ac|dac|2
6h̄c3 ) being the spontaneous-emission rate

from level |a〉 to level |c〉. Simultaneously solving Eqs. (5b),
(5c), and (7) yields the amplitudes

A(t ) = A1ey1t + A2ey2t , (10a)

B(t ) = B1ey1t + B2ey2t , (10b)

Ck (t ) = −igk

[
A1

e(y1+iδk )t − 1

y1 + iδk
+ A2

e(y2+iδk )t − 1

y2 + iδk

]
, (10c)

where, defining β = [(γ /2)2 − 4|�|2]1/2,

y1,2 = −[(γ /2) ± β]/2,

A1 = −[y1 cos(θ/2) − i�eiφ sin(θ/2)]/β,

A2 = cos(θ/2) − A1,

B1 = −[sin(θ/2)(y1 + γ /2)eiφ − i�∗ cos(θ/2)]/β,

B2 = eiφ sin(θ/2) − B1. (11)

Putting the above solutions for A(t ) and B(t ) in Eq. (9), we get
the evolved reduced density matrix ρ(t ) of the driven qutrit in
free space.

B. Qutrit in a photonic crystal

We now divert our attention to the case in which the three-
level atom is embedded in a 3D PBG material, assuming the
transition frequency ωac is near the edge of a photonic band
gap [60,61,91–94]. Regarding this situation, and due to the
rapid change of the density of electromagnetic modes in the
vicinity of the atomic transition frequency, the Weisskopf-
Wigner approximation is no longer valid. Therefore, a more
rigorous relation is required instead of Eq. (7). It is well
known that, in a real 3D PBG material with an allowed point-
group symmetry, the gap is highly anisotropic and the photon
dispersion relation in the effective-mass approximation gets
the form [93,94]

ω	k = ωc + A(	k − 	k0)2, A ≈ f c2/ω2
c , (12)

where ωc is the upper band-edge frequency and 	k denotes the
wave vector; 	k0 is a specific wave vector related to the point-
group symmetry of the dielectric material with modulus k0 ≡
π/L, with L being the lattice constant of the photonic crystal.
Also, f is a dimensionless scaling factor whose value depends
on the nature of the dispersion relation near the band edge ωc.
The anisotropic effective-mass dispersion [Eq. (12)] leads to a
photonic density of states at a band edge ωc which behaves as
J (ω) ≈ (ω − ωc)1/2 for ω > ωc, characteristic of a 3D phase
space [91]. This dispersion relation is valid for frequencies
close to the upper photonic band edge.

Using the anisotropic effective-mass dispersion relation
Eq. (12) and assuming (t − t ′) is large enough to satisfy the
condition ωc(t − t ′) � 1, the kernel in the continuum limit
can be derived as [93,94]

F (t − t ′) = −α
ei[δ(t−t ′ )+π/4]√

4π (t − t ′)3
, ωc(t − t ′) � 1, (13)

where

α2 ≈ ωc

16 f 3

( γ

ωac

)2
(14)

has the dimension of a frequency, and δ = ωac − ωc denotes
the detuning of the atomic transition frequency ωac from
the upper band-edge frequency ωc. In contrast to the free-
space case, Eq. (13) explicitly recalls the past history (times)
of the system. Hence, it describes memory effects in the
spontaneous-emission dynamics due to the presence of the
photonic band gap. In other words, the atom-reservoir inter-
action within a PBG is expected to be non-Markovian.

By taking the Laplace transforms of Eqs. (6) and (5b) and
using the initial state of Eq. (3), we obtain

Ã(s + iδ) = (s + iδ) cos(θ/2) − �eiφ sin(θ/2)

D(s)
, (15)

B̃(s + iδ) = [(s + αeiπ/4√s + iδ)eiφ sin(θ/2)

+� cos(θ/2)]/D(s), (16)

with D(s) = (s + iδ)2 + αeiπ/4(s + iδ)
√

s + �2 = ∏4
j=1

(
√

s − eiπ/4u j ). Here, u j ( j = 1, . . . , 4) are the roots of the
quartic equation

x4 + αx3 + 2δx2 + αδx − (�2 − δ2) = 0, (17)
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which are given by

u1,3 = −σ1 ±
√

E − r/2 + σ 2
1 ,

u2 = u∗
4 = −σ2 − i

√
E + r/2 − σ 2

2 , (18)

where

σ1,2 = (α ±
√

α2 − 8δ + 4r)/4, (19a)

E = (r2/4 + �2 − δ2)1/2, (19b)

r = (M − q/2)1/3 − (M + q/2)1/3 + η1/3, (19c)

with

M =
[(P

3

)3

+
(q

2

)2
]1/2

, P = −η2
1

3
+ η2,

q = −2
(η1

3

)3
+ η1η2

3
+ η3, (20)

and

η1 = 2δ,

η2 = α2δ + 4(�2 − δ2),

η3 = (α2 − 8δ)(�2 − δ2) − α2δ2. (21)

Numerical analysis shows that the roots u1,3 are real (u1 is
positive but u2 is negative), and the roots u2,4 are complex
conjugates of each other with a negative real part (u2 and u4

lie in the third and second quadrants, respectively). The prob-
ability amplitudes A(t ) and B(t ) are determined by inverting
Eqs. (15) and (16) via the complex inversion formula, that is,

A(t ) =
2∑

j=1

p jQ3 je
i(u2

j +δ)t + αeiπ/4

π

∫ ∞

0

g3(x)e−(x−iδ)t

Z (X )
dx,

(22)

B(t ) =
2∑

j=1

p jQ2 je
i(u2

j +δ)t + α�eiπ/4

π

∫ ∞

0

g2(x)e−(x−iδ)t

Z (X )
dx,

(23)

where

p j = 2u j

(u j − ul )(u j − um)(u j − un)
(24a)

(l, m, n = 1, . . . , 4 j �= 1 �= m �= n),

Q3 j = (u2
j + δ) cos(θ/2) + i�eiφ sin(θ/2), (24b)

Q2 j = (u2
j + αu j + δ)eiφ sin(θ/2) − i� cos(θ/2), (24c)

g3(x) = [(−x + iδ) cos(θ/2) − �eiφ sin(θ/2)](−x + iδ)
√

x,

(24d)

g2(x) = [(−x + iδ) cos(θ/2) − �eiφ sin(θ/2)]
√

x, (24e)

Z (x) = [(−x + iδ)2 + �2]2 + iα2(−x + iδ)2x. (24f)

Having A(t ) and B(t ), from Eq. (9) we obtain the evolved
reduced density matrix ρ(t ) of the driven qutrit in the photonic
crystal.

Knowledge of the evolved reduced density matrix of the
atomic qutrit shall allow us to study the dynamics of the

FIG. 2. Dynamics of qutrit coherence for different Rabi fre-
quencies � of the driving laser field. Column (I) and column (II)
correspond to the case when the atom is placed, respectively, in free
space and in a band-gap material with δ = 0. Values of the initial
state parameters are θ = π/2, φ = π/4.

quantum properties of interest, comparing them to the case of
free space. This analysis is reported in the following sections.

III. QUANTUM COHERENCE

Quantum coherence represents the coherent superposition
of distinct physical states, which draw a fundamental dis-
tinction between quantum mechanics and classical physics.
It is also a resource for quantum information processing [7].
Hence, it is important to investigate the dynamical behavior of
quantum coherence in basic systems which can be promising
constituents of quantum registers, such as the qutrit system
described above. In this section, we perform such a study.

To quantify coherence, we employ the �1 norm of coher-
ence, which is defined as a sum of the absolute values of
all off-diagonal elements in the density matrix ρi j using the
following expression [6]:

C�1 (ρ(t )) =
∑
i �= j

|ρi j (t )|, (25)

where |ρi j (t )| are the absolute values of all off-diagonal ele-
ments of the qutrit density matrix ρ(t ) of Eq. (8). Notice that
the coherence of the initial pure state |�A(0)〉 of Eq. (3) is
C�1 (ρ(0)) = sin θ . The angle θ of the initial state is fixed to
θ = π/2 to maximize the initial quantum coherence of the
qutrit, C�1 (ρ(0)) = 1.

Figure 2 shows the quantum coherence as a function of
the scaled time for different Rabi frequencies of the driving
laser field. The two situations are compared in which the atom
is placed in either free space or a photonic band gap; the
corresponding plots are presented, respectively, in column (I)
and column (II) of the figure. When the atom is located in
free space, it is seen that the coherence of the system rapidly
diminishes and vanishes in a short while. This behavior is
typical for all the intensities of the laser field, since it stems
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FIG. 3. Dynamics of qutrit coherence for different values of φ

with θ = π/2. (a) Atom in free space with � = 0.5γ ; (b) atom in
band-gap material with � = 0.5α2, δ = 0.

from the leakage of quantum information from the quantum
system to the environment. Contrarily, for the case in which
the atom is placed in a photonic band-gap material, the qutrit
loses coherence to some extent and reaches a nonzero steady-
state value. Furthermore, it is clear for both cases that as
� increases, quantum coherence dynamics manifests a non-
monotonic behavior with oscillations.

Figure 3 displays the time evolution of qutrit coherence
for various values of the initial relative phase φ. This anal-
ysis is useful to supply the dependence of the dynamics on
the relative phase assigned to the initial state of the qutrit.
As is evident, the initial relative phase significantly affects
the dynamic behavior of quantum coherence in both of the
environmental conditions. Although the dynamics exhibits
the same pattern at the beginning in both media, it radically
changes at longer times. The initial fluctuating dynamics de-
pends on φ for both cases, but quantum coherence in free
space eventually vanishes regardless of the initial relative
phase. Instead, in the case of the photonic band-gap crys-
tal, quantum coherence tends to a steady-state value whose
amount is ruled by the value of φ. It is noteworthy that
the explicit expressions of Eqs. (10) and (11), as well as
Eqs. (22)–(24), imply that the off-diagonal density matrix
elements of the qutrit, given in Eq. (8), depend on the phase:
as a consequence, quantum coherence is affected by the phase
φ.

The main message of this analysis is clear: while the
photonic crystal as a structured reservoir can guarantee a
stationary quantum coherence of the driven qutrit, the relative
phase of the initial state has to be opportunely chosen in order
to maintain it to a desired extent. Instead, the Rabi frequency
of the driving laser does not seem to have significant effects
on the long-time behavior of coherence.

IV. NON-MARKOVIANITY

The appearance of oscillating behavior in the dynamics of
quantum coherence, shown in Figs. 2 and 3, motivates us to
find out whether these oscillations are due to non-Markovian
features. That is the objective of this section.

We quantify the non-Markovian dynamics of the system
by means of the Hilbert-Schmidt speed measure (HSS), which
has been introduced recently [29]. In the following, we briefly
recall the gist of this non-Markovianity measure. Introducing

the distance measure [95]

[d (p, q)]2 = 1

2

∑
x

|px, qx|2, (26)

where p = {px}x as well as q = {qx}x are probability distri-
butions, and subsequently considering the classical statistical
speed

s[p(φ0)] = d

dφ
d (p(φ0 + φ), p(φ0)), (27)

one can define a special kind of quantum statistical speed
called HSS by extending these classical notions to the quan-
tum case. We assume an arbitrary pair of quantum states ρ

and σ from the positive-operator-valued measure (POVM),
which possess the measurement probabilities Px = Tr{Exρ}
and qx = Tr{Exσ }, respectively. Note that the POVM is de-
fined by the {Ex � 0} and meets the

∑
x Ex = I condition.

The maximization of the classical distance of Eq. (26) over
all possible choices of POVMs yields the associated quantum
distance called the Hilbert-Schmidt distance [96],

D(ρ, σ ) ≡ max
Ex

d (ρ, σ ) =
√

1

2
Tr[(ρ, σ )2]. (28)

Likewise, the corresponding quantum statistical speed (HSS)
can be obtained by maximizing the classical statistical speed
of Eq. (27) over all possible POVMs [29],

S(ρ(φ)) ≡ max
Ex

s[P(φ)] =
√

1

2
Tr

[(
dρ(φ)

dφ

)2]
. (29)

Thus, HSS can be conveniently determined using this expres-
sion in which there is no need to diagonalize dρ(φ)/dφ.

Given a quantum system with an n-dimensional Hilbert
space and initial state

|�0〉 = 1√
n

(eiφ|ψ1〉 + · · · + |ψn〉), (30)

where φ is a relative phase and {|ψi〉, i = 1, 2, . . . , n} form
a complete and orthonormal basis, the time derivative of
HSS, χ (t ) = dS(ρφ (t ))/dt , can be interpreted as a bona-fide
witness of information flow between the system and its envi-
ronment [29]. In particular, χ (t ) � 0 stands for an irreversible
flow of information from the system to the environment, iden-
tifying a Markovian regime. In contrast, χ (t ) < 0 indicates a
backflow of quantum information from the environment to the
system, which identifies a non-Markovian regime.

To suitably investigate non-Markovianity by the HSS dy-
namics for the considered qutrit, the latter has to be initially
set in a state of the form of Eq. (30), that is,

|�A(0)〉 = 1√
3

(|a〉 + eiφ|b〉 + |c〉). (31)

Such an initial state leads to a density matrix ρ(t ) of the form
of Eq. (8), whose elements are given by Eq. (9), with the
difference that now

ρac = ρ∗
ca = A(t )√

3
, ρbc = ρ∗

cb = B(t )√
3

, (32)
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FIG. 4. Dynamical behavior of HSS for different Rabi frequen-
cies � of the coupling laser field. Column (I) corresponds to the atom
placed in free space and column (II) to the atom in a photonic-band-
gap material with δ = 0.

and A(t ), B(t ) are obtained from Eqs. (10) and (11) (atom in
free space) and from Eqs. (15)–(24) (atom in photonic crystal)
by substituting cos(θ/2) = sin(θ/2) ≡ 1/

√
3.

Figure 4 displays the HSS dynamics for different Rabi
frequencies � of the coupling laser field. It is seen that for the
case of free space, the qutrit evolution exhibits a Markovian
behavior regardless of the value of �. In fact, the HSS always
has a monotonic behavior with no change of its time derivative
χ (t ). On the other hand, the HSS dynamics in the case of
photonic-band-gap material quickly reacts to the increase of
the intensity (�) of the driving field (nonmonotonic curves).
Moreover, a larger Rabi frequency of the coupling laser field
not only gives rise to non-Markovian behavior, but it also
affects the time duration of non-Markovianity.

To finalize the investigation about non-Markovianity, we
now assess the impact of the initial relative phase φ of the
state vector on the time evolution of the HSS. This is shown
in Fig. 5. It is observed that both situations (free space and
photonic crystal) exhibit the same dynamics of the HSS for the
pairs of phases φ = 0, π and φ = π/2, 3π/2. As expected,
for the qutrit situated in free space, phase change cannot in-
duce a non-Markovian behavior. On the other hand, when the

FIG. 5. Dynamics of HSS for different values of φ. (a) Atom in
free space with � = 0.5γ ; (b) atom in band-gap material with � =
0.5α2, δ = 0.

qutrit is placed in the photonic crystal, a non-Markovian dy-
namics emerges for any initial phase. Although phase change
has a minor effect on the non-Markovianity of the system,
it causes a shift in the time when information flows back
from the environment. Thus, as a general characteristic, one
deduces that the relative phase φ does not significantly affect
the memory effects of the system dynamics either in free space
or in PBG.

Our analysis clearly demonstrates that the photonic crys-
tal as a structured reservoir enhances the non-Markovianity
of the system dynamics. The study performed in this sec-
tion provides the general tools and some values of the system
parameters to quantitatively manipulate the emergence of dy-
namical memory effects.

V. QUANTUM FISHER INFORMATION

In this section, we enter the context of quantum metrology,
with an interest in dynamical variations in the estimation
precision of the angle parameters φ and θ encoded into the
initial state of the atomic qutrit defined in Eq. (3). In particular,
we aim to figure out how changes of both Rabi frequency �

of the coupling laser field and initial values of the relative
phase φ affect the sensitivity in the measurement of φ, θ .
Multiparameter quantum estimation theory allows us to deal
with such a study [97].

Based on this theory, the precision of simultaneous estima-
tion of the two unknown parameters θ and φ is limited by the
quantum Cramer-Rao bound (QCRB) as [36,37]∑

�
∑

min
= F−1(θ, φ), (33)

where
∑

is the covariance matrix for the parameters θ and
φ, and F−1(θ, φ) is the inverse matrix of the quantum Fisher
information matrix (QFIM) F (θ, φ). The latter is given by

F (θ, φ) =
(

Fθ (t ) Fθφ (t )
Fφθ (t ) Fφ (t )

)
, (34)

with Fθ = Tr[ρ(t )L2
θ ], Fφ = Tr[ρ(t )L2

φ], and Fθφ (t ) = Fφθ =
1
2 Tr[ρ(t )(LθLφ + LφLθ )], where Lθ and Lφ are the symmetric
logarithmic derivatives for the parameters θ and φ defined by

∂

∂θ
ρ(t ) = 1

2
[Lθρ(t ) + ρ(t )Lθ ],

∂

∂φ
ρ(t ) = 1

2
[Lφρ(t ) + ρ(t )Lφ], (35)

respectively [98]. Since Lθ = L†
θ and Lφ = L†

φ , the QFIM
F (θ, φ) is Hermitian. Notice that a key feature of this matrix
is to impose a lower bound to the mean-square error of any
unbiased estimator for the parameters through the Cramer-
Rao inequality [36,37].

A. Single-parameter Fisher information

We first analyze the time evolution of the individual QFIs
Fφ and Fθ related to the parameters φ and θ , respectively.
It is noteworthy that in the single-parameter quantum esti-
mation, the corresponding quantum Cramer-Rao bounds for
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FIG. 6. Dynamical behavior of QFI Fφ for different Rabi fre-
quencies of coupling laser field (�), with θ = π/2, φ = π/4.
Column (I) corresponds to the case in which the atom is placed in
free space, and column (II) corresponds to the case when the atom is
in a band-gap material with δ = 0.

independent estimations of the parameters φ and θ are [36,37]

δφ � 1/
√

Fφ, δθ � 1/
√

Fθ . (36)

Therefore, for better measurement precision, we look for the
conditions that maintain the QFIs as high as possible during
the time evolution.

To meet the target, Fφ and Fθ are, respectively, depicted
versus the scaled time for various values of � in Figs. 6 and 7.
The other parameters are chosen as θ = π/2, φ = π/4, and
δ = 0. As can be observed in column (I) of Fig. 6, when
the atom is placed in the free space, Fφ quickly decays to

FIG. 7. Dynamical behavior of QFI Fθ for different Rabi fre-
quencies of coupling laser field (�), with θ = π/2, φ = π/4.
Column (I) corresponds to the case in which the atom is placed in
free space, and column (II) corresponds to the case in which the atom
in a band-gap material with δ = 0.

FIG. 8. Dynamical behavior of QFIs Fφ (upper row) and Fθ

(lower row) for different values of φ, with θ = π/2. Column (I)
corresponds to the atom in free space with � = 0.5γ . Column (II)
corresponds to the atom in a band-gap material with � = 0.5α2,
δ = 0.

zero for all the Rabi frequencies except for � = 0.1γ , for
which the decay is slower. Larger � produces a nonmonotonic
dynamics for the QFI. For the atom placed in a photonic band
gap [column (II) of Fig. 6], Fφ decays and reaches a nonzero
steady-state value. In this case, it is interesting to observe that
increasing � not only causes the appearance of an oscillating
evolution of Fφ but it also accelerates the attainment of its
stationary value. The larger � is, the larger is the achieved
steady-state value. In Fig. 7 we report the dynamics of Fθ ,
which responds in a completely different fashion to the in-
creasing of � compared to Fφ . For both media, one sees that
larger values of � have detrimental effects on Fθ . The most
convenient condition for maintaining Fθ closer to its initial
value is found for a weak-coupling field, that is, small values
of �. These radically different time behaviors of Fθ and Fφ are
linked to the different role of the two angle parameters within
the qutrit state: θ fixes the initial probability amplitudes of
the state, while φ is a relative phase. The precision of the two
different parameter estimations during the dynamics is differ-
ently influenced by the interaction of the atomic qutrit with
the environment and the coupling field. Moreover, one expects
that these time behaviors depend strongly on the values of the
two initial parameters θ and φ to be measured.

To go deeper toward this relevant aspect in the quantum
metrology scenario, we first study the influence of the initial
relative phase on the dynamics of Fφ and Fθ , fixing θ = π/2.
In Fig. 8, Fφ [panels (a) and (b)] and Fθ [panels (c) and (d)] are
plotted as a function of the scaled time for various values of
φ. Column (I) shows the case of free space with � = 0.5γ for
the driving field, while column (II) shows the case of band-gap
material with � = 0.5α2. As expected for these values of
�, when the atom is in free space, both QFIs quickly tend
to zero regardless of the initial phase value. On the other
hand, when the atom is in the photonic-band-gap medium,
Fθ tends to different nonzero steady-state values [Fig. 8(d)]
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FIG. 9. Density plot of the steady-state QFI (a) Fφ and (b) Fθ as
functions of φ and θ when the atom is placed in a band-gap material.
Values of the parameters are t → ∞, � = 0.5α2, δ = 0.

for any φ, which is not true in general for Fφ [Fig. 8(b)].
Some values of the initial relative phase can compromise the
parameter estimation, causing Fφ to vanish. The initial phase
value affects the evolution of Fφ for the specific case θ = π/2.

From the previous plots, we symmetrically expect that
changing the value of θ for a given φ will also affect the
evolution of the QFIs. To have a wider view of this feature,
considering the advantageous case of a photonic-band-gap
reservoir, in Fig. 9 we report the steady-state values of Fφ and
Fθ in a contour plot for a comprehensive range of initial-state
parameters φ, θ . The central role of the latter in determining
the steady-state values of Fφ and Fθ is evident. Appropriate
choices of φ and θ can yield nonzero steady-state values for
Fφ and Fθ . For the chosen values of � and δ in these plots, we
also notice that the steady-state value of Fφ is larger than Fθ . In
particular, for opportune combinations of initial angle param-
eters, one can reach the optimal condition for the stationary
amount of Fφ = 0.5, enabling a sensitivity δφmin = 1/

√
0.5

for the initial relative phase of the atomic state.

B. Two-parameter Fisher information

We now consider a two-parameter estimation problem and
employ the QFIM approach to calculate the QCRB in the
simultaneous estimation of both parameters φ and θ .

Along this route, we return to Eq. (33) and display
∑

min
(optimal sensitivity) versus scaled time for different Rabi fre-
quencies � of a coupling laser field in Fig. 10. In general,
for both types of reservoir (free space and photonic crystal),∑

min is going to increase as time goes by, but with different
rates depending on the Rabi frequency. For the case when the
atomic qutrit is placed in free space (column I of Fig. 10),
it is clear that the best optimal two-parameter estimation can

FIG. 10. Dynamical behavior of
∑

min for different Rabi frequen-
cies of coupling laser field (�). Column (I) corresponds to the case in
which the atom is placed in free space, and column (II) corresponds
to the case in which the atom is in a band-gap material with δ = 0.
Initial state parameters are fixed as θ = π/2, φ = π/4.

be acquired for � = 0.1γ ; other values of � do not yield
favorable results for the two-parameter estimation during the
dynamics. In contrast, the band-gap material as a reservoir
(column II of Fig. 10) enables a wider range of values of �

(within about two orders of magnitude), which keep
∑

min
small enough during the dynamics, with the most enduring
results occurring for � � 0.5α2; for larger values of �, this
behavior is lost.

Figure 11 depicts the time evolution of
∑

min for various
values of initial phase φ with θ = π/2. We compare the two
environmental conditions choosing the best-case scenario for
� as evinced from the above plots of Fig. 10: � = 0.1γ

for free space, � = 0.5α2 for band-gap material. In general,
one sees that the initial phase value affects the results for
both reservoirs. Notice that different values of φ give the
most advantageous conditions for

∑
min, e.g., φ = π for the

free space and φ = π/2 for the photonic crystal. However, a
remarkable aspect can be individuated: the case of a photonic
crystal keeps changes of

∑
min contained enough during the

FIG. 11. Dynamical behavior of
∑

min for different values of φ,
with θ = π/2. (a) Atom in free space with � = 0.1γ ; (b) atom in a
band-gap material with � = 0.5α2, δ = 0.

042212-8



QUANTUM ENHANCEMENT OF QUTRIT DYNAMICS … PHYSICAL REVIEW A 105, 042212 (2022)

initial stages of the dynamics when φ varies, while changes of∑
min can be abrupt for the case of free space.
The main message of this analysis is the following: the

interaction between the qutrit and the driving field must be
in general suitably adjusted via � to achieve the best possible
optimal sensitivity in the two-parameter measurement. Com-
pared to the case of free space, a PBG material as a structured
environment interestingly allows a very large margin of error
in setting the desired � and a minor dependence on variations
of initial relative phase parameter φ. This aspect may be
especially relevant from an experimental viewpoint.

VI. DISCUSSION ON EXPERIMENTAL FEASIBILITY

Since the experimental validation of a theoretical study
matters, we aim to find out the experimental feasibility of
the proposed qutrit for both real and artificial atoms. For the
real case, the calcium atom exemplifies our model whose
energy levels aptly map onto the considered qutrit [89]. In
that way, level 4s2 1S0 functions as ground state |c〉, while
levels 4s3d 1D2 and 4s6p 1P1, which can be labeled as |b〉
and |a〉, respectively, correspond to metastable and excited
states. In this case, the excited state 4s6p 1P1 can be coupled
to level 4s3d 1D2 via a coupling field possessing a wavelength
of 504 nm [89]. Nobody could overlook the fact that the fabri-
cation of an appropriate photonic crystal is equally important
to embed the candidate qutrit into it. However, steady techni-
cal advancements have paved the way for the fabrication of
photonic crystals with a three-dimensional gap in both visible
and infrared ranges [99–101].

On the other hand, compared to real atoms, quantum
dots (as artificial atoms) have the advantage of being readily
coupled to photonic crystals. Solid-state nanostructures are
attractive alternatives to atomic single-photon emitters due to
the fact that unlike real atoms, they do not require complex
laser cooling and trapping techniques. In this regard, signifi-
cant progress has been achieved in recent years for solid-state
platforms with three-level QDs and a photonic-crystal cavity
[102–104]. Meanwhile, a substantial number of three-level
QDs have been put forward, which received considerable at-
tention [105–109].

Although diverse three-level quantum dots have been fab-
ricated, none of them conforms perfectly to our qutrit. The
exceptional facet of our model that distinguishes it from pre-
vious ones is its spontaneous decay rate from the excited state
|a〉 to the metastable state |b〉 (i.e., γab). Therefore, the rate γab

is negligible compared to γac (γ ), and the fabricated qutrits
lack the required condition. This controversial but appealing
nature of the model poses a challenge to pondering possible
ways to meet the constraint and find an appropriate quantum
dot for implementation of the qutrit.

One of the neat possible solutions is to consider a quan-
tum dot qubit whose excited state is connected to a level of
another quantum dot via the tunneling effect, which leads to
the formation of a so-called quantum dot molecule [110–114].
Such a quantum dot molecule constitutes a possible solution
to the problem provided that the decay rate of the coupled
level (second quantum dot) is small enough. The experimental
realization of this particular qutrit does not seem far-fetched
and is still open to debate.

Also, it has been demonstrated recently that the interaction
between a superconducting qubit and a microwave photonic
crystal can be utilized for quantum bath engineering [115].
This result suggests that there may be possible extensions to
the control of superconducting qutrits in PBG materials.

VII. CONCLUSIONS

A comparative study of a classically driven three-level
atomic system (qutrit) placed in either free space (Marko-
vian environment) or a photonic-band-gap crystal (structured
environment) has been carried out. The aim of the study is
to assess the impact of a classical driving field on the time
evolution of relevant quantum properties, such as quantum
coherence, non-Markovianity, and quantum Fisher informa-
tion (QFI), which are encoded initially in the qutrit state. The
study provides quantitative evidence that PBG materials can
be employed as an effective environment in which all the
achieved behaviors concerning coherence protection, memory
effects, and quantum parameter estimation supersede those in
the case of free space.

The initial state of the atomic qutrit has been defined by
two angle parameters, namely θ (ruling the probability am-
plitudes) and φ (relative phase between basis states). We have
found that the initial relative phase has a substantial impact on
the steady-state value of coherence. In particular, half of the
initial coherence can be maintained by well-adjusting φ.

The angle parameters of the initial state can be unknown
and therefore subject to precision measurements for their es-
timation. Within this quantum metrology context, we have
investigated the QFI matrix both for single-parameter estima-
tion, namely Fφ and Fθ individually, and for the simultaneous
two-parameter estimation. Interestingly, it has been observed
that Fφ and Fθ exhibit opposite behaviors versus variations
of the intensity of the classical field. In particular, increas-
ing the Rabi frequency of the classical driving field leads to
increasing (decreasing) the steady-state value of Fφ (Fθ ). In
other words, a larger Rabi frequency can enrich the sensi-
tivity of phase estimation (φ) in the steady state; instead, a
more precise estimation of θ occurs as a result of decreasing
the Rabi frequency. Moreover, we have reported that larger
values of the Rabi frequency always lead to deterioration of
simultaneous optimal two-parameter estimation. As a general
trait, we have found that the values of relative phase φ affect
the precision of both single and two-parameter estimation
outcomes.

Previous studies have highlighted the role of photonic-
band-gap crystals as reservoirs capable of enhancing the
quantum properties of an atomic qubit [57–69]. In most of
these studies, the detuning of the atom (qubit) transition fre-
quency from the upper band-edge frequency has revealed
itself as the main parameter controlling the qubit dynamical
behavior. This means that, in order to vary the dynamical
quantum traits of the qubit, one has to adjust the detuning that
requires us to modify either the qubit or the photonic crystal.
On the contrary, our analysis has shown that the adoption
of a qutrit instead of a qubit has the advantage of providing
two convenient control parameters, namely the initial phase
φ and the coupling field strength �. Both of them enable
us to conveniently harness and enhance the desired quantum
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features of the qutrit dynamics without changing the structure
of either the qutrit or the photonic crystal.

We have finally discussed the experimental context where
the findings of this work can be reproduced, showing that
systems made of controlled quantum dots in photonic crystals
appear to be the most promising platforms. Ultimately, we
have demonstrated that the cooperative utilization of a PBG
material as a medium and a classical driving field as part
of the system enhances the quantum features of the qutrit
during the dynamics. In conclusion, our results provide useful

insights toward the development of techniques for preserving
the quantum properties of qutrit-based compounds in a quan-
tum information scenario.
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Zeilinger, Phys. Rev. Lett. 92, 167903 (2004).

[80] S. Gröblacher, T. Jennewein, A. Vaziri, G. Weihs, and A.
Zeilinger, New J. Phys. 8, 75 (2006).

[81] D. Bruß and C. Macchiavello, Phys. Rev. Lett. 88, 127901
(2002).

[82] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys.
Rev. Lett. 88, 127902 (2002).

[83] T. Durt, N. J. Cerf, N. Gisin, and M. Źukowski, Phys. Rev. A
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