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Quantum walks function as essential means to implement quantum simulators, allowing one to study complex
and often directly inaccessible quantum processes in controllable systems. In this contribution, the notion of
a driven Gaussian quantum walk is introduced. In contrast to typically considered quantum walks in optical
settings, we describe the operation of the walk in terms of a nonlinear map rather than a unitary operation,
e.g., by replacing a beam-splitter-type coin with a two-mode squeezer, being a process that is controlled and
driven by a pump field. This opens previously unattainable possibilities for quantum walks that include nonlinear
elements as core components of their operation, vastly extending their range of applications. A full framework
for driven Gaussian quantum walks is developed, including methods to dynamically characterize nonlinear,
quantum, and quantum-nonlinear effects. Moreover, driven Gaussian quantum walks are compared with their
classically interfering and linear counterparts, which are based on classical coherence of light rather than quan-
tum superpositions. In particular, the generation and boost of highly multimode entanglement, squeezing, and
other quantum effects are studied over the duration of the nonlinear walk. Importantly, we prove the quantumness
of the evolution itself, regardless of the input state. A scheme for an experimental realization is proposed.
Furthermore, nonlinear properties of driven Gaussian quantum walks are explored, such as amplification that
leads to an ever increasing number of correlated quantum particles, constituting a source of new walkers during
the walk. Therefore, a concept for quantum walks is proposed that leads to—and even produces—directly
accessible quantum phenomena, and that renders the quantum simulation of nonlinear processes possible.
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I. INTRODUCTION

For more than a century, quantum physics has reshaped our
understanding of nature. Today this theory informs previously
inconceivable advancements of science and technology, such
as quantum information theory that is based on superposi-
tions of quantum bits rather than employing classical bits [1].
Equivalent to the notion of a universal quantum computer
is the concept of a quantum simulator [2] that is able to
model any quantum processes, including quantum compu-
tations [3,4]. To realize such a desired simulation device,
random walks that model classical processes have been ele-
vated to the notion of quantum walks [5–7], again overcoming
the restrictions of their classical counterparts.

In optics, quantum walks are commonly implemented us-
ing photons and coherent light as the walker and linear optical
elements, such as beam splitters (BSs), as coin-toss and step
operations to realize the walk [8,9]. Regardless of the input
state, the underlying network, being the core of any simulator
platform, is typically confined to linear optics which cannot
increase the quantum properties of the system; this is because
this class of optical elements relies only on operations which
are considered as classical mode transformations from the per-
spective of quantum optics [10–12], unable to exceed classical
interference phenomena [13–16]. More generally speaking,
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even today, it is hard to draw a clear line between analog, yet
classical computers—exploiting classical interference—and
true quantum simulators [17,18].

Despite this hurdle, remarkable experimental and theo-
retical progress has been made since early proof-of-concept
experiments of quantum walks [19]. For example, differ-
ent transport phenomena, including disorder and various
diffusion regimes, have been simulated through optical quan-
tum walk implementations [20–23]. Larger coin spaces
and time-dependent coins nullify restriction to static binary
heads-or-tails values to determine the walkers propagation
direction [24,25]. Different geometries on which the walker
can evolve have been realized, including walks on circles
with periodic boundary conditions [25–27]. Quantum cor-
relations in various quantum walk scenarios have led to a
much deeper understanding for how quantum features can
propagate, with entanglement being the most prominent and
most useful quantum correlation property [28–33]. Other suc-
cessful applications include studying topological phases [34],
measurement-induced coherence effects [35], phase-space-
based characterizations [36], the ability to dynamically create
and annihilate photons (i.e., walkers) [37], nonlocalized in-
put states [38], large-scale fiber-assisted quantum walks [39],
single- and multiphoton interference [40–42], etc. These ex-
amples showcase the overall success of quantum walks as
a versatile tool in theoretical and experimental physics, in
general, and in optical implementations, in particular.
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Additionally and gradually, the untapped potential of non-
linear components has been recognized as a means to advance
quantum walks even farther where already weak nonlinearities
can have a significant impact [43,44]. Such approaches, for
example, place the entire walk in a nonlinear medium [45],
consider enhancement through externally driven cavities [46],
and exploit feed-forward mechanisms [47]. Other recent ap-
proaches lay the fundamentals to embed quantum walks in
nonlinear waveguide arrays [48,49]. However, owing to the
inherent complexity of nonlinear systems, what is common to
most proposals is that a comprehensive framework is missing,
including a way to predict and quantify the emerging quantum
features in such nonlinear simulators. Also, nonlinearities are
often considered as an addition—and not a key functional
component—of otherwise linear walks.

An essential, nonlinear component in quantum op-
tics is the squeezing operation, leading to the notion of
squeezed light [50]. This operation is, for example, achieved
through parametric down-conversion (PDC) [51]. See, e.g.,
Refs. [52–54] for thorough introductions. Since squeezed
light’s defining feature is a field fluctuation below vacuum
fluctuations, squeezed states are not only highly relevant
from a fundamental point of view but also from a prac-
tical perspective [55–57]. For instance, in metrology, such
states allow for a sensitivity that exceeds classical boundaries,
e.g., finding applications in gravitational wave detectors to
monitor minuscule spacetime perturbations [58–60]. Quan-
tum communications also benefit from squeezed light as
a means to establish quantum key distribution [61–63].
Proof-of-concept protocols that outperform any classical sim-
ulations, such as boson sampling [64], can be realized using
squeezed states as well [65,66]. This method can be further
enhanced by dynamically producing photons within the bo-
son sampler [67], dubbed driven Gaussian boson sampling.
In multimode scenarios, squeezed light provides an excel-
lent basis to realize and study complex forms of multipartite
entanglement [68,69], exceeding bipartite quantum correla-
tions [70]. See also Ref. [71] for a detailed review about
multimode squeezed states in theory and practice. For the
aforementioned reasons, squeezed states play a key role for
continuous-variable quantum information processing [55,56].
Consequently, for our purpose, PDC can be considered as an
ideal, first candidate for a nonlinear operation to significantly
extend linear quantum walks.

In this contribution, we establish and comprehensively
investigate the notion of a driven Gaussian quantum walk
(DGQW). By replacing ordinary BSs with PDC-type op-
erations, we advance the function of quantum walk to the
nonlinear regime. It is shown that prominent quantum fea-
tures, such as entanglement, squeezing, and photon-number
correlations, are introduced and amplified through this added
functionality itself, without requiring sophisticated, nonclas-
sical input states. Our DGQW architecture is compared with
its linear counterparts, demonstrating a superior quantum per-
formance. A full framework for DGQWs is developed, which
applies to nonlinear coin and step operations for arbitrary
coin dimensionalities and geometries on which the walker
can propagate. To exemplify the benefits of DGQWs, a com-
prehensive and exact analysis of the evolution of a quantum
walker on a line with a biased coin and periodic boundary

conditions is carried out. Measurable means to quantify the
quantum effects in DGWQs are formulated. Our research
further includes the dynamical study of nonlinear features,
such as amplification and unavoidable noise contributions.
Generalizations of our approach are briefly discussed and
a proposal for an experimental implementation is outlined.
Therefore, a theoretical method is put forward that is based
on existing experimental techniques and leads to interesting,
previously unexplored quantum effects in the nonlinear evo-
lution of quantum walks with practical relevance for future
quantum simulator platforms.

II. PRELIMINARIES AND EXTENDED MOTIVATION

In this section, we firstly introduce a fine-grained separa-
tion of walk-based simulators. Specifically, not only do we
distinguish between random walks and quantum walks, but we
also introduce the notion of a coherent walk as an intermediate
stage, which is based on general interference; i.e., a coherent
walk can be realized, for example, within classical wave the-
ories, too. Secondly, we then consider what happens when the
linear coin operation that describes the walk is replaced by a
distinctively different nonlinear coin, foreshadowing nonlin-
ear, quantum, and quantum-nonlinear effects of the evolution
we comprehensively study in the following sections.

A. Coherent walks: The different origins of interference

Random walks present a uniquely useful tool for simulat-
ing classical transport phenomena. As one example, we may
explore the random motion on a looped linear chain with d
nodes; see Fig. 1 (top, left). A walker that is initialized at
position x = 0 tosses a fair coin and determines whether to
make a step in a clockwise (coin value c = +) or counter-
clockwise (c = −) direction. The question now is where the
walker is found after t iterations of coin tosses and steps.
When averaging over multiple runs, this yields a probability
distribution P(x) over the position x which eventually covers
all vertices of the graph. To quantify the spread on a periodic
geometry, one can determine the circular variance [72], which
reads 1 − |∑d−1

x=0 P(x)e2π ix/d | in our case. In the asymptotic
limit, t → ∞, the random walker is uniformly spread over
all nodes of the looped graph (Fig. 1, bottom), resulting in
the maximal value one for the circular variance as this walk
describes a diffusive transport scenario.

While the classical walker can be treated as a particle,
quantum walks interpret the walker as a quantum particle,
including its ability to interfere [6,7]; see middle, center plot
in Fig. 1. Thus, a quantum walk is now able to simultaneously
explore the whole—often rather complex—geometry, rather
than requiring multiple runs as in incoherent random walk.
This feature of being in a superposition of all positions x
of a network is central for the function of many quantum
simulation approaches [13,14].

Nonetheless, common experiments use linear optics and
classical coherent light alone to achieve many results that were
initially described in a quantum walk framework [8,9,15,16],
such as Anderson localization [21] and faster spreads than
possible for random walks [24]. Clearly, classical light can
mimic coherent interference effects because of its intrinsic
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FIG. 1. A random walk on a graph (top, left) with d = 11
vertices—position labels x ∈ {−5, . . . , 5} mod d—is carried out.
The output probability P(x) (middle, left) for a time t is encoded
in the depicted brightness (top, right). Since d is odd, even and odd
positions can gain a nonzero probability after five steps when the
walker, who is initialized at x = 0, crosses the periodic boundaries
at x = ±5 mod d . The circular variance (bottom) as a measure of
random walk’s spread increases with the number of steps and eventu-
ally saturates at the maximum value one. The position probabilities
of a quantum walk (middle, center) with a single-photon input and
a polarization-based Hadamard coin on the same graph is depicted.
This walk is identical to the intensity distribution—always normal-
ized to the total intensity—of a coherent walk, e.g., with coherent
input amplitudes α(x=0,c=+) = √

10 = iα(x=0,c=−) and α(x,c) = 0 oth-
erwise; thus, on average

∑
x,c |αx,c|2 = 20 photons propagate in the

optical network. The circular variance (bottom) oscillates with t for
the coherent walk (likewise the single-photon walk), clearly demon-
strating interference. Last, a DGQW (middle, right) is shown with a
nonlinear coin that is a seeded PDC process with infinite squeezing
and with the same input as the coherent walk. While the initial step
increases the circular variance (bottom) rather significantly, subse-
quent steps show a smaller increment than classical random walks,
but without exhibiting signs of oscillations like coherent walks. Yet
we claim—and are going to prove—that the DGQW exhibits stronger
quantum superposition features than the coherent walk.

wave properties. In particular, this can be achieved by re-
placing the probability amplitudes of quantum states with the
multimode coherent field amplitudes of light, αx,c. Equiva-
lently, the probability distribution is then represented by the
photon-number (or intensity) distribution over the positions
x, P(x) ∝ |αx,+|2 + |αx,−|2, which is normalized to the total
photon number (intensity). See Fig. 1 for a Hadamard walk
that utilizes an unbiased coin that reflects and transmits 50%
of the intensity and utilizing only coherent light.

To distinguish quantum walks that truly require quantum
physics from scenarios in which any form of interference
suffices, we here refer to the latter as coherent walks and
to the former as genuine quantum walks. Moreover, even if
we have a genuine quantum walk, it is often unclear if an
observed interference effect is a result of the quantumness of
process itself or if it is merely a transformation of the nonclas-
sical properties that were already present in the initial state,
which applies to, e.g., linear single-photon walks [20,38],
two-photon interferences [42], and even other interferometric
schemes [73].

An example of a genuine quantum walk that produces
quantumness via the walk is the DGQW, which is also de-
picted in Fig. 1 (middle, right). However, quantum effects do
not easily manifest themselves in the photon-number distribu-
tion; in fact, when focusing on the depiction in Fig. 1 alone,
a DGQW seems to be more akin to an incoherent random
walk. Thus, higher-order quantum coherence effects are to be
investigated to prove the buildup of quantum phenomena.

In the remainder of this work, we address all points out-
lined above. For this purpose, we establish the notion of a
DGQW. In a quantum-optical setting, this genuine quantum
walk uses a pump field to drive a nonlinear process that
produces nonlocal quantum superposition. Furthermore, we
prove that the evolution itself causes the quantum phenomena.
To this end, a rigorous study of quantum effects in quantum
walks is carried out by formulating higher-order correlation
functions and experimentally accessible (co-)variance-based
quantumness metrics. Thereby, DGQWs provide a conceptual
revision of how we characterize walk processes in terms of the
resulting classical and quantum coherence properties and fur-
ther separating dynamic phenomena from nonclassical input
properties.

B. A nonlinear coin: From classical to quantum interference

Another classification of simulations can be made in terms
of the kind of evolution. For example, the usual optical version
of a coherent walk employs linear optics. Here, however, we
exploit nonlinear components, thus driving a nonlinear quan-
tum walk rather than a linear walk. For sake of exposition,
we focus on nonlinear coin operations for the time being, and
the possibility of nonlinear step operations is embedded in
the general framework as presented in Sec. III. In general,
the transition from a linear to nonlinear interferometry offers
coherence features which are distinctively different from their
linear counterparts [74]. Please note that we use the word coin
as a shorthand for the coin operation, being different from the
quantum state of the coin, the coin state.
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FIG. 2. Selected properties of the nonlinear coin operation. The
top-left plot shows the entanglement between polarizations that is
generated as a function of the squeezing parameter ξ (Sec. III C).
The dashed line depicts the asymptotic behavior. The squeezing in
decibel in the top-right plot is, of course, proportional to the squeez-
ing parameter, with a proportionality constant 2 log10 e ≈ 0.8686
(Sec. III A). Nonclassical photon-number correlations between the
output photons in both polarizations are shown in the bottom-left
plot in terms of negativities (Sec. III B). While the other properties
considered here are invariant under the coherent amplitudes of the
input, particle correlations are not and are specifically shown for
a vacuum input, demonstrating that photon-pair—and correlations
between them—are produced via the PDC coin. Finally, the bottom-
right plot shows the splitting ratio between transmitted and reflected
polatizations RPDC [Eq. (3)]. A value RPDC = 1 is approached for
ξ → ∞ (dashed line), resembling a fair 50:50 coin.

To highlight the advancements that can be achieved by
transitioning from a linear to a nonlinear regime, we com-
pare a single coin operation for linear and nonlinear quantum
walks. In linear optics, all BS-coin maps can be implemented
by waveplates and polarizing BSs when, as we here do, the
coin acts on the polarization of light. Then, for example,
the horizontal and vertical field components can be identified
with the two coin values c = + and c = −, respectively. The
polarization determines the propagation direction for the sub-
sequent shift operation, implemented by a polarizing BS.

For our nonlinear coin, we consider a stimulated non-
linear process, PDC, in which photon pairs are coherently
added to the incident light, the so-called seed of that process.
For the example of vacuum input, this results in the two-
mode squeezed vacuum,

√
1 − |λ|2 ∑∞

n=0 λn|n〉 ⊗ |n〉 (|λ| =
tanh |ξ |), which is entangled and includes the same number
of photons n in both output polarizations. The PDC process
serves as the counterpoint to the BS-based coherent quantum
walk approach in this work. The quantum interference charac-
teristics of a single PDC coin are discussed in the following,
serving as a precursor to a full and general DGQW description
in the next sections. See Fig. 2 for a summary.

In the linear scenario of a BS coin, we map the bosonic
field operators for the coin states + and − as â+ 
→ τ â+ +
ρâ− and â− 
→ −ρ∗â+ + τ ∗â−, respectively, with |τ |2 +
|ρ|2 = 1. The output intensity, represented by the photon

number, is thus obtained through

〈â†
±â±〉 
→ |τ |2〈â†

±â±〉 + |ρ|2〈â†
∓â∓〉

± ρ∗τ 〈â†
−â+〉 ± τ ∗ρ〈â†

+â−〉. (1)

Therein, the first and second terms, respectively, describe the
transmitted (∝|τ |2) and reflected (∝|ρ|2) contributions of the
incident light to the output intensity. The last two terms de-
scribe the interference of the involved quantum fields.

By contrast, the transformation â± 
→ μâ± + νâ†
∓, with

|μ|2 − |ν|2 = 1, captures a two-mode PDC process [52–54],
which depends on the field operator and its Hermitian conju-
gate. This yields the following output photon numbers:

〈â†
±â±〉 
→ |μ|2〈â†

±â±〉 + |ν|2〈â†
∓â∓〉 + |ν|2

+ ν∗μ〈â±â∓〉 + μ∗ν〈â†
±â†

∓〉, (2)

where we used the fundamental commutation relation â∓â†
∓ =

â†
∓â∓ + 1̂ in the expansion. Please recall that â 
→ â† is not

a linear map; specifically, it does not satisfy homogeneity,
(câ)† = c∗â† �= câ† for complex numbers with Im(c) �= 0.
Similarly to Eq. (1), the first two terms in Eq. (2) resemble
transmitted (∝|μ|2) and reflected (∝|ν|2) intensities, respec-
tively, and the last two terms constitute the interference.

We also have a number of profound dissimilarities between
PDC and BS coins. Firstly, |μ|2 � 1 implies that the input
light is amplified upon transmission, which is one quantum-
physical interpretation of the PDC process under study that is
enabled by driving this nonlinear process by a pump pulse.
(Recall that |τ |2 � 1 holds true for BS-type transmitivity.)
Secondly, in the quantum domain, such an amplification is
further connected to a certain amount of excess noise, at-
tributed to the constant third term |ν|2 in Eq. (2) that is not
present in the linear case; see, e.g., Ref. [75] for an in-depth
analysis of the interplay of amplification, loss, and excess
noise. Commonly, one understands this noise as the result of
the amplification of vacuum fluctuations of the input.

Thirdly, the interference in the nonlinear case is determined
through 〈â+â−〉 and 〈â†

+â†
−〉 = 〈â+â−〉∗, contrasting the linear

scenario with 〈â†
+â−〉 and 〈â†

−â+〉 = 〈â†
+â−〉∗. In particular,

those terms lead to different phase relations between the out-
put light fields since each scenario depends on a different
combination of annihilation (â±) and creation (â†

±) operators.
Also, the interference terms for the nonlinear case in Eq. (2)
are preceded by like signs while opposite signs for the + and
− polarizations occur in Eq. (1). This results in a different in-
terplay of constructive and destructive interference; compare,
for instance, the interference patterns in the center and right
plot in the middle row of Fig. 1. Fourthly, various quantum
properties between the output polatizations are generated by a
PDC coin but not by a BS coin; see first three plots in Fig. 2.

Finally, we can relate the transmitted and reflected photon
numbers for each scenario, Eqs. (1) and (2). Specifically, the
respective splitting ratios are

RBS = |ρ|2
|τ |2 = tan2 ϑ and RPDC = |ν|2

|μ|2 = tanh2 ξ, (3)

which means τ ∝ cos ϑ and ρ ∝ sin ϑ as well as μ ∝ cosh ξ

and ν ∝ sinh ξ hold true, while ignoring phases. Clearly, ϑ

defines a coin’s rotation angle of the BS, thus 0 � RBS < ∞.
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The angle θ = π/4, for example, yields a fair coin, RBS =
50%/50% = 1. For the PDC, ξ is the dubbed the squeezing
parameter and determines the coin’s action. In this nonlinear
scenario, we have 0 � RPDC � 1, where the upper bound is
approached for an infinite squeezing, ξ → ∞. We can also
equate both splitting ratios, RBS = RPDC, allowing for a com-
parison of both types of quantum walks with identical splitting
ratios. This applies as long as RBS < 1 is obeyed. The bottom-
right graph in Fig. 2 shows the splitting ratios of the PDC coin
as a function of the squeezing parameter ξ . The asymptotic
case ξ → ∞ can be established by introducing a renormaliza-

tion, μ′ = μ/|μ| and ν ′ = ν/|μ|, such that |μ′|2 = 1
ξ→∞→ 1

and |ν ′|2 = tanh2 ξ
ξ→∞→ 1 remain bounded quantities in the

infinite-squeezing limit. This renormalization was used for the
DGQW in Fig. 1 to ensure a 50:50 PDC coin that is compared
with a fair BS coin for the coherent Hadamard walk that
utilizes a BS operation, RPDC = 1 = RBS.

To summarize, BS and PDC coins are rather distinct
concepts when it comes to their interference characteris-
tics, being essential for implementing quantum simulator
platforms. Specifically, BS operations cannot produce non-
classical outputs [12], but PDC coins intrinsically generate
seminal quantum effects, such as entanglement. In the general
framework we consider next, Secs. III and IV, we show that
the linear case may be embedded in the nonlinear one, indeed.
Consequently, nonlinear interference can include and even ex-
ceed linear ones, allowing one to simulated quantum-physical
processes that are inaccessible in the linear regime. Further-
more, we are going to comprehensively show and analyze
the distinct differences between entire quantum walks using
BS-type operations and PDC-like processes that are inspired
by the initial considerations conducted here for a single coin
operation.

III. GENERAL MODEL FOR DGQWS

After studying the impact of one nonlinear coin, we now
elaborate on the general theoretical description of DGQWs.
This includes scenarios in which one can have PDC-type and
BS-type coins at the same time, the possibility of nonlinear
step operations, embedding single-mode squeezers within the
walk, using PDC sources to produce general Gaussian in-
put states, etc. Furthermore, the methodology presented here
applies to arbitrarily dimensional position spaces and geome-
tries, as well as coins that can take more than two values.

For achieving the sought-after broadly applicable model, it
is convenient to introduce vectors of annihilation and creation
operators, �̂a = [âi]i and �̂a† = [â†

i ]i. (We remark that those
tuples of linear matrices can be considered as elements of a
module, i.e., loosely speaking, a vector field based on a ring.)
The index i is a pair, i = (x, c), where x encodes the possibly
high-dimensional position, e.g., on a complex graph structure,
and c assigns one of various coin values. The propagation of
the system after t steps shall be described by a matrix T , which
can combine annihilation and creation operators,[ �̂a

�̂a†

]

→

[ �̂b
�̂b†

]
=

[
U V
V ∗ U ∗

]
︸ ︷︷ ︸

=T

[ �̂a
�̂a†

]
, (4)

where U and V are matrices and “b” denotes bosonic opera-
tors of output modes. Note that second line of the input-output
relation (4) is obtained by Hermitian conjugation of the first
line, (b̂i )†, and the nonlinear character is encoded via V �= 0,
mixing annihilation and creation operators. Of course, the out-
put shall obey fundamental commutation relations, [b̂i, b̂i′ ] =
0 and [b̂i, b̂†

i′ ] = δi=i′ 1̂, where the Kronecker symbol takes the
values δtrue = 1 and δfalse = 0. This is satisfied if and only if

UV T = VU T and UU ∗T − VV ∗T = id (5)

are obeyed, where “id” denotes the identity matrix, being
different from the identity operator 1̂. Similarly, for the sake
of differentiation, we write “∗T” to indicate the Hermitian
conjugate of a matrix, rather than using † that, throughout this
work, is exclusively applied to quantum-physical operators. It
is also worth mentioning that the inverse of T is given by

T −1 =
[

U ∗T −V T

−V ∗T U T

]
, (6)

allowing us to conversely describe input fields through output
modes and which follows from Eq. (5).

It is easy to see [e.g., via Eq. (5)] that V = 0 implies a
purely unitary—thus, linear—evolution. For V �= 0, we mix
the field and its Hermitian conjugate field, defying homogene-
ity of a linear map as mentioned earlier. Thus, our general
DGQW model does fully include linear quantum walks as
a specific instance but also farther extends to nonlinear
scenarios.

Moreover, the above class of operations T are so-called
Gaussian operations [55,56]—further supplemented by dis-
placement operations that are not focused on here. In
particular, such operations map any Gaussian input state to
a Gaussian output state. In this work, we mostly consider
Gaussian inputs, specifically classical and factorizable input
light that is described via multimode coherent states,

|�α〉 =
⊗

i

|αi〉, (7)

with arbitrary field amplitudes αi for the ith input mode. Be-
cause of this choice of initial states, genuine quantum effects
at the output, such as squeezing and entanglement, must be a
result of the nonlinear process under consideration; see Fig. 2
for an example. In fact, it is known that unitary processes
alone (V = 0) are not capable of producing such quantum
phenomena for these kinds of inputs [10–12].

In the continuation of this section, we consider how dif-
ferent measurable quantities propagate under the general
evolution in Eq. (4), whose details are provided in several
Appendices. Thus, we here discuss the results and refer
to the corresponding technical calculation in the relevant
Appendix where and when necessary. Furthermore, we here
describe how we can infer nonlinear and quantum and
quantum-nonlinear features from those measurable quantities
for the general case of DGQWs that harness the potential of
Gaussian operations beyond BS-like unitary maps.

A. Covariance matrix formalism

Gaussian states are wholly described by their first- and
second-order moments [55,56]. We are going to analyze the
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propagation of those quantities for general DGQWs. Before
that, we make a simple observation for the quantum-physical
expectation values of bosonic field operators,

�α = 〈�̂a〉 
→ 〈�̂b〉 = U 〈�̂a〉 + V 〈�̂a†〉 = U �α + V �α∗ = �β, (8)

which is a straightforward consequence of Eq. (4) telling us
that the coherent amplitudes transform accordingly.

The real-valued mean field and its conjugate momentum
can be measured, for example, via balanced homodyne de-
tection [54]. The corresponding quadrature and momentum
operators are

�̂q =
�̂b + �̂b†

√
2

and �̂p =
�̂b − �̂b†

i
√

2
, (9)

jointly describing all output fields. The combination of
quadratures and momenta yields the displacement vector,
which can be obtained from the input displacement as

[〈 �̂q〉
〈 �̂p〉

]
=

=T ′︷ ︸︸ ︷[
Re(U ) + Re(V ) −Im(U ) + Im(V )
Im(U ) + Im(V ) Re(U ) − Re(V )

] [√
2Re(�α)√
2Im(�α)

]
,

(10)

generally constituting a symplectic transformation T ′, simpli-
fying to a rotation for V = 0.

Beyond those first-order moments, the covariances be-
tween quadratures and/or momenta describe the quantum-
noise properties. The variances are described through ex-
pectation values of the form 〈(
q̂)2〉, where 
q̂ = q̂ − 〈q̂〉1̂,
which similarly applies to momentum-type observables, 
 p̂.
Because of the noncommuting nature of the field operators,
[q̂, p̂] = i1̂ �= 0, covariances are described in a symmetrical
manner via the anticommutator [55,56], e.g., 〈{
q̂,
p̂}〉/2 =
(〈q̂ p̂〉 + 〈p̂q̂〉)/2 − 〈q̂〉〈p̂〉. Variances and covariances are then
collected in the covariance matrix, C. For coherent light, such
as our input in Eq. (7), the covariance matrix is the identity
scaled by one half. By applying the detailed calculation in
Appendix A, we further obtain the output covariance matrix

C = T ′ 1
2

[
id 0
0 id

]
T ′T

= 1

2

[
id 0
0 id

]
+

[
Re(UV T) Im(UV T)
Im(UV T) −Re(UV T)

]

+
[

Re(VV ∗T) −Im(VV ∗T)
Im(VV ∗T) Re(VV ∗T)

]
. (11)

The latter two contributions—additional terms when
compared with the input—vanish for a purely linear quantum
walk, V = 0. However, this part is essential to characterize the
buildup of the quantum phenomenon that is squeezing [50].

Squeezing describes the reduction of quantum noise
in certain quadratures and momenta below the value for
vacuum—or classical coherent states that exhibit the same
amount of noise. The multimode covariance matrix C of our
DGQW yields the amount of multimode squeezing through
its minimal eigenvalue, min{eig(C)}. That is, whenever this
eigenvalue is below the vacuum level 1/2, squeezing is veri-
fied. Commonly, the level of squeezing relative to vacuum is

expressed in decibel,

s (dB) = − log10

(
min{eig(C)}

1/2

)
, (12)

where a positive value certifies squeezing and a negative value
describes antisqueezing (i.e., a noise increment). It is addition-
ally noteworthy that when restricting to certain submatrices
of C, the minimal eigenvalue of this restricted covariance
matrix allows one to determine the squeezing for a selection
of modes, such as single-mode squeezing. For a single PDC
coin, the squeezing was shown in Fig. 2 (top, right).

B. Particle-number-based characterization

Simpler than a balanced homodyne detection is a mea-
surement of photon numbers, directly providing the statistics
of the particle number for each mode. Random, coherent,
and quantum walks basically assess the probability of the
occurrence of the walker at a given node of a network through
the (absolute, relative, or otherwise normalized) number of
particles in each mode, which, for light, is proportional to
the intensity. The corresponding photon-number operator is
defined as n̂i = b̂†

i b̂i and allows us to study the photon-number
dynamics in our DGQWs. (Detailed calculations of the photon
number and its correlations can be found in Appendix A.)

The mean photon number for each mode can be combined
in a vector, which is obtained from the input as

〈�̂n〉 = [|βi|2 + (VV ∗T)i,i]i (13)

using the values for �β from Eq. (9) and “(· · · )i,i′” identify-
ing the corresponding entry of a matrix. Again, V �= 0 has
a significant impact on the photon numbers in all modes. In
particular, this yields an extra noise contribution (VV ∗T)i,i,
which is independent of the input light, as a result of the non-
linear operations under study. For example, we can quantify
the overall excess noise by summing over the difference of
the measured photon number and the coherent contribution,∑

i(〈n̂i〉 − |βi|2) = tr(VV ∗T), allowing us further to study the
background level of this noise in the walker’s evolution. While
noise comes with a certain negative connotation, let us em-
phasize here that the addition to the photon number also
means that new walkers in the form of quantum particles are
generated during the walk.

Typically, one focuses on the particle-number distribu-
tion to study transport phenomena in quantum walks, such
as assessed by the position spread of this distribution over
time. For certifying quantum phenomena, however, we can
additionally correlate particle numbers, e.g., between different
positions to infer a nonclassical behavior [76], even beyond
squeezing [77]. To this end, one can utilize normally ordered
moments of the experimentally determined photon-number
distribution, 〈:n̂in̂i′ :〉 = 〈n̂in̂i′ 〉 − δi=i′ 〈n̂i〉 = 〈b̂†

i b̂†
i′ b̂ib̂i′ 〉, being

a factorial moment of the multimode photon-number distribu-
tion and a quantum-optical intensity correlation function [54].
The central moments of such correlations form a matrix of
moments, which is given from the input as

M = [〈:(
n̂i )(
n̂i′ ):〉]i,i′

= [UV T] ◦ [UV T]∗ + [VV ∗T] ◦ [VV ∗T]∗

+ 2Re([UV T]∗ ◦ [�β �βT]) + 2Re([VV ∗T] ◦ [�β∗ �βT]),
(14)
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where “◦” denotes the Schur (i.e., elementwise) product of
matrices; see Appendix A for the derivation. Whenever M
exhibits a negative eigenvalue, nonclassical photon-number
correlations are identified [53,54], which can happen only
if V �= 0 holds true. For example, in Fig. 2 (bottom, left),
we applied this approach, min{eig(M )}, to assess quantum
correlations between the output photons of a single PDC coin.

It is important to emphasize that nonclassical correla-
tions are not accessible via first-order terms, 〈n̂i〉, that are
typically focused on in coherent and linear walks to probe
first-order interference. By contrast, higher-order auto- and
cross-correlations, e.g., 〈n̂2

i 〉 and 〈n̂in̂i′ 〉, form the basis to infer
quantum interference at one and between multiple outputs.

C. Entanglement verification

Another archetypal quantum phenomena between multi-
ple quantum particles or quantized modes is entanglement,
which provides a central resource for the function of quantum
communication protocols [78]. To probe entanglement that is
generated through a DGQW in arbitrary degrees of freedom,
we can construct the following test operator (see Appendix C)
in terms of the total input photon number [see Eq. (6)]:

L̂ =
∑

i

â†
i âi =

∑
j, j′,i

(Uj,iU
∗
j′,ib̂

†
j b̂ j′ + V ∗

j,iVj′,ib̂ j b̂
†
j′

− Uj,iVj′,ib̂
†
j b̂

†
j′ − V ∗

j,iU
∗
j′,ib̂ j b̂ j′ ), (15)

where the latter expansion yields the quantum correlations be-
tween the output fields. For finding this output entanglement,
we now seek the minimal expectation value of L̂ for separa-
ble (i.e., nonentangled) output states; this separable bound is
denoted as gmin. Thus, satisfying the inequalities

〈L̂〉 < gmin ⇔ 0 < gmin − 〈L̂〉 (16)

determines entanglement of the output states, which are lo-
cally described by b̂ j and b̂†

j for the jth subsystem.
For calculating the sought-after bound gmin, the method of

separability eigenvalue equations can be applied [79]. For the
class of operators under consideration, L̂, those equations have
been solved analytically, using field-quadrature operators and
their conjugated momenta, and applied to experiments with
highly multimode Gaussian quantum light [69,70]. For our
purpose, the solutions can be recast into the form

gmin = 1

2

∑
j

(
√

(1 + 2[VV ∗T] j, j )2 − 4|[UV T] j, j |2 − 1)

(17)

for our formulation in terms of creation and annihilation
operators. It is noteworthy that this bound is attained for a
squeezed state that is a tensor-product vector of all output
subsystems,

⊗
j |ψ j〉. See Appendix C for technical details.

In addition, it is also worth mentioning that a displacement
〈b̂i〉 �= 0 does not affect the entanglement because it describes
a local transformation [69,79]. Consequently, and without a
loss of generality, we can substitute b̂ j by 
b̂ j = b̂ j − 〈b̂ j〉1̂
in the above definition of L̂, which especially preserves the
separable bound gmin [79]. Therefore, the expectation value of
the displaced L̂ is 〈L̂〉 = ∑

i〈(
âi )†(
âi )〉 = 0, using the in-

put light from Eq. (7) for which 〈â†
i âi〉 = |αi|2 and 〈âi〉 = αi =

〈â†
i 〉∗ hold true. Hence, our entanglement criterion simplifies

in Eq. (16) to 0 < gmin − 0. In fact, the initial choice of L̂
was made in a manner to achieve this accessible entanglement
metric for DGQWs; see also Refs. [80,81] in this context. We
also remark that the inequality cannot be satisfied using only
BS-type operations since gmin in Eq. (17) is zero for V = 0.
We applied this approach in Fig. 2 to assess the entanglement
from a single PDC coin operation.

In conclusion, we described general DGQW in terms of a
general process matrix T , Eq. (4), combining input creation
and annihilation operators at the output. In particular, the
submatrix V that encompasses the nonlinear contribution was
vital for accessing and assessing quantum properties, such as
entanglement, squeezing, and particle-number correlations, in
experiments. The common coherent walk is based on V = 0,
thus unable to dynamically produce any of those quantum
features. Nevertheless, quantum effects in coherent walks
can occur because of input nonclassicality. For example, it
is well known that nonclassical photon-number inputs for a
purely unitary evolution produce an equal amount of output
entanglement [12]. However, this output quantumness is a
consequence of the distributed input nonclassicality and not
a feature of the process itself [82]. Here we showed that, even
for classical and vacuum inputs, DGQW processes (where
V �= 0) can indeed dynamically produce quantum features.

IV. DYNAMICS OF DGQWS

After providing general and exact input-output relations,
including experimentally accessible quantumness metrics for
the full walk, we now proceed to describing the nonlinear
quantum evolution in detail. For sake of comparing coherent
walks with our DGQWs, we explore two specific models in
which all coins are either BS-type or PDC-type operations,
as motivated in Sec. II. We emphasize again that one aim
is to understand the quantumness of a quantum simulator
itself rather than following the common path of considering
input states that already carry some quantum properties. Thus,
the following analysis is paramount to fathom and apply our
DGQW framework as a dynamic means for achieving and
maintaining an advanced quantum performance.

The model from the motivation of the classical random
walk is considered with different coins that can take two
values, + and −. Thus, it is convenient to further separate the
vector of bosonic ladder operators according to the coin,

�̂a =
[�̂a+
�̂a−

]
, with �̂a± = [â(x,±)]x=0,...,d−1, (18)

where x indicates the different vertices on the closed, one-
dimensional graph; see the top-left depiction in Fig. 1. A
separation into more than two vector-valued components can
be done analogously for multilevel coins.

As per usual, each iteration of a quantum walk consists of a
coin and a step operation that depends on the coin value. These
two operations are then repeated t times, giving us the full
evolution of the quantum fields that describe composite coin-
position quantum system. In our scenario, a step one position
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forward, x 
→ x + 1, is given by the matrix

� = (δx′=x+1 mod d )x′,x=0,...,d−1 =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 1

1 . . . 0

0 . . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎦,

(19)

which also accounts for the periodic boundary condition, (d −
1) + 1 = 0 mod d . This applies to the coin modes with c = +.
The backwards step for c = − is consequently described by
�T. Hence, the joined step operation reads⎡

⎢⎢⎢⎣
�̂a+
�̂a−
�̂a†
+

�̂a†
−

⎤
⎥⎥⎥⎦ 
→

⎡
⎢⎢⎢⎣

� 0 0 0
0 �T 0 0
0 0 � 0
0 0 0 �T

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=�±1=diag(�,�T,�,�T )

⎡
⎢⎢⎢⎣

�̂a+
�̂a−
�̂a†
+

�̂a†
−

⎤
⎥⎥⎥⎦. (20)

This Gaussian operation is of a form where U = [� 0
0 �T] and

V = 0 apply. Thus, this particular map can only distribute
quantum features over neighboring positions in each step but
cannot generate quantumness itself.

By contrast, the coin operation can achieve such a
quantumness generation if we chose a PDC-type coin, as
demonstrated in our motivation and analyzed in Fig. 2. When
considering the same PDC process as a coin for all positions,
the 4d × 4d matrix of those nonlinear coins reads

�PDC =

⎡
⎢⎣

μid 0 0 νid
0 μid νid 0
0 ν∗id μ∗id 0

ν∗id 0 0 μ∗id

⎤
⎥⎦. (21)

Since each block is diagonal, this coin mixes coin (i.e., polar-
ization) modes at the same position. Clearly, V = ν[ 0 id

id 0 ] �=
0 holds true for all nontrivial squeezing values, 0 �= |ν|2 =
sinh2 ξ for ξ �= 0. By contrast, the linear, BS-type coin reads

�BS =

⎡
⎢⎣

τ id ρid 0 0
−ρ∗id τ ∗id 0 0

0 0 τ ∗id ρ∗id
0 0 −ρid τ id

⎤
⎥⎦, (22)

where V = 0 applies. Considering our in-depth and broadly
applicable analysis in Sec. III, we can already see at this stage
that a quantum simulator that is based on the nonlinear coin is
the operation that is capable of dynamically producing—and
exploiting in applications—quantum effects.

For both types of coins, we can now compute the t-fold
iteration of firstly coin and secondly step operation to obtain
the full propagator, T = (�±�)t . Because of the periodic
structure, we utilize a Fourier ansatz in Appendix B to provide
a closed formulas for T for both coin configurations. Here, for
the sake of exposition, we focus on real-valued coin parame-
ters, i.e., μ = Re μ, ν = Re ν, τ = Re τ , and ρ = Re ρ, while
positive and negative values might still be possible. Because
of μ2 − ν2 = 1 = τ 2 + ρ2, we can write

μ = cosh ξ, ν = sinh ξ, τ = cos ϑ, and ρ = sin ϑ,

(23)

with a rotation angle ϑ and a squeezing parameter ξ that
define the splitting ratios, Eq. (3). In Appendix B, the solution
for the general complex case can be found for completeness.

A. Analytic solutions

We can now analyze the exact results for T , which
describes the output quantum fields, after t iterations for com-
paring BS and PDC coins. For this purpose, we firstly provide
the results from Appendix B for the propagation before dis-
cussing the quantities the formulas include. In the nonlinear
case, we get

TPDC = (�±�PDC)t

= diag(F ∗, F, F, F ∗)

×

⎡
⎢⎣

APDC 0 0 BPDC

0 APDC BPDC 0
0 B∗

PDC A∗
PDC 0

B∗
PDC 0 0 A∗

PDC

⎤
⎥⎦

× diag(F, F ∗, F ∗, F ), (24)

and, for the unitary coin, we find

TBS = (�±�BS)t

= diag(F ∗, F ∗, F, F )

×

⎡
⎢⎣

ABS BBS 0 0
−B∗

BS A∗
BS 0 0

0 0 A∗
BS B∗

BS
0 0 −BBS ABS

⎤
⎥⎦

× diag(F, F, F ∗, F ∗). (25)

Firstly, F is the unitary d × d matrix of the discrete Fourier
transform, mapping a position, x, to a wave number, k. Sec-
ondly, A and B (including the subscripts “PDC” and “BS”)
denote generally complex-valued and always diagonal d × d
matrices. To further describe these A and B matrices, we
thirdly introduce other diagonal matrices,

� = diag{ln[μ cos(2πk/d )

+
√

μ2 cos2(2πk/d ) − 1]}k=0,...,d−1,

� = diag{arg[τ cos(2πk/d )

+ i
√

1 − τ 2 cos2(2πk/d )]}k=0,...,d−1, (26)

comprising the squeezing parameter and rotation angle for
each wave number k and using arg(eiϑ ) = ϑ . We addition-
ally define Re(�) = diag{cos(2πk/d )}k=0,...,d−1, Im(�) =
diag{sin(2πk/d )}k=0,...,d−1, and � = Re(�) + iIm(�). Fi-
nally, we can express the matrices A and B for all times t as
follows:

APDC = cosh(t�) + i
μ sinh(t�)√

μ2(Re �)2 − 1
Im �,

BPDC = ν sinh(t�)√
μ2(Re �)2 − 1

�,

ABS = cos(t�) + i
τ sin(t�)√

1 − τ 2(Re �)2
Im �,

BBS = ρ sin(t�)√
1 − τ 2(Re �)2

�, (27)
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where all involved functions act entrywise on the d diagonal
matrix elements, and all off-diagonal elements are zero. (See
Appendix B for technical details.) Now, TPDC and TBS describe
the exact transformation of input fields to output fields accord-
ing to Eq. (4) after any number t of repetitions of coin and
step operations. In the following, we discuss these analytic
findings.

B. Spectral properties and discussion

From the overall decomposition of TBS in Eq. (25), we
unsurprisingly observe that V = 0 holds true for the unitary
evolution TBS for all times t . This shows that, at no time
t , quantumness can be produced by this linear walk while
general interferences are still possible for this coherent walk.
By contrast, the form of TPDC in Eq. (24) shows that V =
[ 0 F ∗BPDCF
FBPDCF ∗ 0 ] �= 0 generally applies to the nonlinear pro-

cess.
Furthermore, the rotation that is related to the BS-type coin

can be expressed in the list of angles � for each wave num-
ber, Eq. (26), which act on the Fourier superposition modes
that pick up a corresponding phase from each step operation.
Similarly, the PDC coin results in various squeezing levels,
collected in �, that analogously apply to the Fourier modes.
The squeezing parameters on the diagonal of � are depicted in
the top plot of Fig. 3 for one example. Importantly, the rotation
is governed by trigonometric functions, cos(t�) and sin(t�),
while the squeezing operations are formulated in terms of
hyperbolic rotations, cosh(t�) and sinh(t�); see Eq. (27).

The squeezing parameters in Eq. (26) depend on but
are not identical to the coin’s squeezing parameter, μ =
cosh ξ = (eξ + e−ξ )/2. For instance, the cosine of the phase
φ = 2πk/d is also relevant for determining the values in
�. Depending on φ, the discriminant under the square root
can be either positive (and zero) or negative—cf. bottom
plot in Fig. 3. In the former case, the output squeezing
after t iterations is, for example, described via (et�k,k +
e−t�k,k )/2, in which each exponent is t-times scaled ver-
sion of the squeezing value �k,k that is obtained for the
kth mode for t = 1 combination of PDC coin and step.
Thus, we have a t-fold increase of squeezing for that
mode. When, however, the discriminant is negative, we have√

μ2 cos2 φ − 1 = i
√

1 − μ2 cos2 φ, a purely imaginary num-
ber. Then, ln(μ cos φ + i

√
1 − μ2 cos2 φ) = i arg(μ cos φ +

i
√

1 − μ2 cos2 φ) holds true, meaning that the mode for the
correspond wave number k is not squeezed but rotated in-
stead, e.g., cosh(iϑ ) = cos(ϑ ). Also, a phase jump occurs
(see Fig. 3), resulting in a sign change, like cosh(ξ + iπ ) =
− cosh(ξ ). Therefore, the nonlinear process includes sig-
natures of rotations—being related to common coherence
effects—and nonlinear quantum phenomena, e.g., squeezing.
Depending on the input’s field distribution, j 
→ α j , we thus
can generally produce a complex interplay of rotation and
squeezing. In this context, it is also worth pointing out that
position-localized inputs are in a superposition of all wave-
number modes k.

As a general remark beyond aforementioned specific evo-
lution, we may comment on the general decomposition of
a matrix T in terms of U s and V s that obey Eq. (5) and

FIG. 3. Squeezing analysis for invariant wave-number-k
modes. The top plot shows the diagonal entries of
� = diag(�0,0, . . . , �d−1,d−1) in Eq. (26) for μ = √

2 (i.e.,
ξ = ln[

√
2 + 1] and ν = 1) and d = 11. Regardless of the specific

parameters, the real and imaginary parts are always found along
the dashed line. A π -phase shift for k-number modes below the
threshold Re(�k,k ) = 0 occurs. The bottom contour plot shows the
general case as determined through the discriminant μ2 cos2 φ − 1.
White areas describe �’s diagonal elements that correspond to a pure
rotation (no amplification for corresponding k number, Re �k,k = 0).

that describe the propagation at a time t in arbitrary network
geometries and possibly multivalued coins. Namely, the con-
straints in Eq. (5) allows one to write

U = W [id − SS∗]−1/2 and V = W [id − SS∗]−1/2S, (28)

where Z−1/2 denotes a matrix for which Z−1/2ZZ−1/2 = id
holds true (using the usual matrix product), S is a symmetric
matrix (S = ST), and W is a unitary rotation (WW ∗T = id).
Thus, if we were to interpret the results as scalars (e.g.,
via the diagonal matrix from Takagi’s factorization of S),
this would mean that S yields a squeezing parameter, like
|S| = tanh ζ , such that cosh ζ = 1/

√
1 − |S|2 and sinh ζ =

|S|/
√

1 − |S|2 describe Lorentz boosts in Minkowski space.
Therefore, any generic DGQW may include both rota-
tions, via W , and hyperbolic rotations, through S. See also
Refs. [83,84] for related transformation properties in quantum
walks.

In summary, we analyzed the temporal properties of the
nonlinear evolution in this section. Together with the re-
sults from Sec. III, this allows us to characterize the general
quantum-dynamical behavior of DGQWs. In the following,
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FIG. 4. Quantum and nonlinear characteristics of a DGQW on a d = 11-periodic position space (cf. top-left graph in Fig. 1) with a
polarization PDC coin at each vertex that is characterized by μ = √

2 and ν = 1—likewise, a coin squeezing parameter ξ = ln(
√

2 + 1)
and a biased splitting ratio RPDC = 1/2. The classical coherent input state is given through localized coherent amplitudes, α(0,+) = √

10,
α(0,−) = i

√
10, and zero otherwise. The first plot (top, left) shows the generated entanglement. To exemplify that our solutions apply to

intermediate times as well, the full interval 0 � t � 10 of the continuous evolution is depicted. The inset highlights oscillations for small
times. The center-top plot shows the multimode squeezing of the discrete-time DGQW. Interestingly, when restricting to the squeezing between
polarizations only, top-right plot, we observe only antisqueezing that is not a quantum signature and shows fluctuations well above the vacuum
limit. The bottom-left plot certifies the nonclassical photon-number correlations between the quantum particle, regardless of their polarization.
The background noise, summed over all positions and coin values, is shown in the center-bottom plot. Last, the overall amplification of the
nonlinear process, while omitting background noise, relative to the total input photon number is provided (bottom, right).

we can now jointly apply all our general findings to investi-
gate specific examples of the nonlinear quantum evolution of
DGQWs for all times.

V. APPLICATION

We now employ the collection of all our general findings
from Secs. III and IV to study specific DGQWs in greater
detail. In Fig. 4 an overview for one scenario is provided.
Therein, we consider the quantum and nonlinear properties
of the DGQW evolution for classical input light, which we
discuss in detail in the continuation of this section.

A. Quantum features

Firstly, we can consider the generation of entanglement via
DGQWs from a fully factorizable input state, Eq. (7), initially
located at position x = 0. The top-left plot in Fig. 4 shows
the successive—in fact, exponential—buildup of highly mul-
timode entanglement, using the entanglement criterion from
Eq. (16). While a single PDC coin only produces entan-
glement between the polatization (likewise, coin) modes at
each point x (see Sec. II), the step operation then distributes
this entanglement to neighboring positions, x ± 1. With each
application of coin and step operation, t → t + 1, the en-
tanglement is then reestablished between the polarizations at
each position and farther distributed across all positions.

Please note that the depiction of the entanglement evolu-
tion in Fig. 4 is done for a continuous time t to emphasize that

approach applies to continuous evolution and discrete-time
walks alike. For this purpose, the 4d × 4d generator G of
the evolution is given by the matrix logarithm that is obtain-
able through the spectral decomposition considerations from
Appendix B. This results in Heisenberg equations of motion,

∂t

[ �̂b(t )
�̂b(t )†

]
= G

[ �̂b(t )
�̂b(t )†

]
(29)

for bosonic field operators, with G = ln(�±�PDC) and the

initial value �̂b(0) = �̂a, being solved by TPDC from Sec. IV A.
Secondly, and coming back to our discrete-time walk,

squeezing is studied as a quantum phenomena of light that
can manifest itself in a single and multiple modes. The top-
center graph in Fig. 4 shows the multimode squeezing that is
obtained from the full, propagated covariance matrix C, as de-
scribed in Sec. III. In addition, we can analyze the squeezing
when restricting ourselves to a single position, resulting in the
reduced 4 × 4 covariance matrix

C′ =
[ 1

2 〈{(
q̂x,c)(
q̂x,c′ )}〉 1
2 〈{(
q̂x,+)(
 p̂x,c′ )}〉

1
2 〈{(
 p̂x,c)(
q̂x,c′ )}〉 1

2 〈{(
 p̂x,+)(
 p̂x,c′ )}〉
]

c,c′∈{+,−}
(30)

for the coin. Note that this matrix is identical for all positions
x since the coin is the same for all vertices of the considered
graph. The squeezing between the + and − polarization at
each position is shown in the top-right plot in Fig. 4. In
contrast to our considerations in Sec. II where the single coin
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did lead to squeezing, we here observe no squeezing (negative
values) in the polarization. This is because each coin appli-
cation is followed by a step operation, which distributes this
coin’s squeezing to neighboring positions, as discussed for
entanglement. Therefore, the top-center plot in Fig. 4 verifies
that we have a nonlocalized squeezing.

Thirdly, we characterize photon-number correlations in
Fig. 4 (bottom, left). Since a polarization-resolved measure-
ment at each output position might not be possible in all
experiments, we here consider the joint photon number of
both modes, which can be formulated through a transforma-
tion with a rectangular d × 2d matrix, e.g.,

[id id]

[〈�̂n+〉
〈�̂n−〉

]
= 〈�̂n+〉 + 〈�̂n−〉. (31)

Similarly, the matrix of normally ordered moments can be
transformed in this manner, M ′ = [id id]M[id id]T, to
quantify particle-number correlations independently of the
coin degree of freedom. The result of this treatment in shown
in the bottom-left plot of Fig. 4. Note that, in contrast to
Fig. 2, the negative negativity is depicted in Fig. 4, meaning
that a positive value implies nonclassical correlation. Here
nonclassical correlations in positions, being the remaining
degree of freedom in M ′, are verified. Compared to the other
quantumness metrics, however, this nonclassicality is not sim-
ply monotonously increasing; rather, it oscillates, being best
visible for later times t .

B. Nonlinear effects

As discussed previously, it makes also sense to study the
nonlinear effects that originate from the PDC coin. Beyond
that, we want to analyze the quantum-nonlinear properties of
the evolution. Firstly, this enables us tell the different effects
apart that are described by nonlinear PDC-based maps and are
not expected from linear BS-like transformations (cf. Sec. IV).
Secondly, the difference between classical coherence in non-
linear optics and nonlinear quantum effects can be farther
analyzed in this manner, complementing the quantification
of quantum effects in the previous subsection. To this end,
equations of motions for the classical and nonclassical dynam-
ics can be formulated for general nonlinear interactions [82]
whose solutions unveil the distinct differences between a clas-
sical and quantum evolution. Thereby, the quantumness of the
process is investigated.

Using the results from Ref. [82], we find that the classical
evolution of a second-order nonlinearity, such as PDC in the
quantum domain, can be fully described by �β as a function
of T (thus, a function of t) and the input �α, Eq. (8), which is
equivalent to ignoring all quantum-physical commutation re-
lations. Since the background noise stems from commutators
(Sec. II), the overall background noise can be computed as∑

x,c

(〈n̂x,c〉 − |βx,c|2). (32)

Thereby, we describes this quantum-physical consequence
of the nonlinear process under study when compared to the
classical, yet still nonlinear evolution. The successive increase
of the overall background noise is shown in Fig. 4 (center,
bottom). Please also note that the background noise—again,
because of homogeneity of the coins at all vertices of the

graph that defines the positions—is independent of the posi-
tion x and already present in the DGQW depicted in Fig. 1.

Another consequence of the nonlinear PDC process we
discussed in Sec. II is amplification. To assess the gain in the
signal alone, being applicable to the quantum dynamics and
the classical nonlinear evolution, we can consider the total
photon number without the excess noise, being normalized to
the total input photon number,

∑
x,c |βx,c|2/

∑
x,c |αx,c|2. This

is shown in the bottom-right plot in Fig. 4. Clearly, with each
iteration t → t + 1, the signal is exceedingly amplified with
the help of the nonlinear PDC coin.

C. Combined coins

As a final example, we may combine coins based on PDC
and BS operations to show the general applicability of the
methodology introduced in this work. This coin combination
results in a DGQW that produces the first-order interferences
in the position-based and time-dependent photon-number dis-
tribution, as seen for classical coherent walk in Fig. 1, together
with the quantum characteristics of PDC-based walks we just
discussed.

In Fig. 5 we apply a PDC coin first, before applying a BS-
type coin, jointly described through the coin map

�BS�PDC =

⎡
⎢⎣

μτ id μρid νρid ντ id
−μρ∗id μτ ∗id ντ ∗id −νρ∗id
ν∗ρ∗id ν∗τ ∗id μ∗τ ∗id μ∗ρ∗id
ν∗τ id −ν∗ρid −μ∗ρid μ∗τ id

⎤
⎥⎦.

(33)

In contrast to the PDC coin alone, cf. Eq. (21), this coin also
mixes âx,+ and âx,−. And, contrasting the BS coin in Eq. (22),
it too superimposes âx,+ and â†

x,−. For the specific example in
Fig. 5, we choose splitting ratios RPDC = 1/2 (i.e., 1:2) and
RBS = 1 (a fair coin) between transmitted and reflected light,
bringing together the Hadamard coherent walk in Fig. 1 and
the biased-coin DGQW in Fig. 4.

With this combination of coins, all kinds of classical and
quantum interference effects discussed throughout this work
are jointly governing the DGQW in Fig. 5. (Note that, com-
pared to previous examples, the step operation �± was not
altered for consistency, but the input state was changed for
variety.) Particularly, we show the intensity oscillation in the
d-periodic graph, quantified through the circular variance,
and the ever increasing amount of entanglement. Thereby,
we combine classical and quantum coherence phenomena in
our framework. More generally, a general DGQW, mainly
defined by V �= 0, thus renders a variety of quantum simu-
lations possible, ranging from classical wave phenomena over
propagating quantum particles to the continuous evolution of
quantized fields.

D. Beyond Gaussian walks

In this work, we focused on nonlinear Gaussian processes.
Here let us briefly outline how out methodology can be
extended to higher-order nonlinearities. Non-Gaussian ele-
ments are, for instance, important for implementing universal
continuous-variable quantum information processing [85],
including the possibility to employ non-Gaussian input
states [86] and non-Gaussian detection schemes [87].
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FIG. 5. DGQW in which a PDC coin, with μ = √
2 and ν = 1,

is mixed with a BS coin, τ = 1/
√

2 = ρ, followed by the d-periodic
position change, �±1. This scenario combines the characteristic in-
terference patterns of a coherent walk (cf. Fig. 1), e.g., quantified
through the circular variance, with quantum superposition effects,
e.g., the depicted entanglement, of a genuine quantum walk (cf.
Fig. 4). What is also different to our previous examples is that we
here chose inputs distributed over different positions, α(x=1,c=+) =√

10 and α(x=−1,c=−) = i
√

10 and α(x,c) = 0 otherwise. The bottom
plot exemplifies one normalized intensity distribution—labeled as
P(x) and being distinctively different from an incoherent random
walk—for the 15th iteration (i.e., t = 15) of coins and step oper-
ations. The excess noise of the nonlinear quantum propagation is
indicated as a dashed horizontal line.

For a universal quantum simulator, which is one of the
main applications of quantum walks, the same require-
ment for at least one non-Gaussian component applies.
Here, for instance, we considered photon-number measure-
ments for DGQWs, including their nonclassical correlations
(i.e., fourth-order field correlations), to satisfy the non-
Gaussian demand [87] beyond balanced homodyne detection
which solely addresses the covariance matrix of quadra-
tures and their momenta. From our methodology, we can
also straightforwardly conclude non-Gaussian inputs, such as
photon-number states [86], as a non-Gaussian option. Specif-
ically, an n-photon Fock state can be expressed via coherent
states |α〉 via the relation (n!)−1(∂α∂α∗ )n[e|α|2 |α〉〈α|]α=0 (see,
e.g., Ref. [12]), which analogously applies to multimode
number states. Hence, we can apply the same derivatives to
expectation values of output modes for coherent input states
we already computed to predict the behavior of number states
at the input of DGQWs.

Besides non-Gaussian measurements and input states, one
can also include other nonlinear processes in the walk. Like
with our replacement of BS coin maps to arrive at DGQWs
(cf. Sec. II), one can imagine cross-Kerr effect as a higher-
order nonlinearity as an example, which is modeled by
an fourth-order interaction Hamilton that is proportional to
n̂+n̂− = b̂†

+b̂†
−b̂+b̂−. See Ref. [88] for a related scheme. This

results in the highly nonlinear input-output relation b̂± =
exp[iϕn̂∓]â± for the two coin components, correlating a field
with a phase that depends on the intensity of the other field.
In Ref. [45], it was proposed to replace the linear medium
in which the photons propagate during the walk with a non-
linear (single-mode) Kerr medium, with a Hamiltonian ∝n̂2

±.
By contrast, the cross-nonlinearity here is essential for the
function of the quantum walk itself, rather than constituting
a nonlinear background medium.

E. Proposed experimental scheme for DGQWs

To conclude our work that introduces the concept of
DGQWs, we propose an experimental implementation. The
specific setup we put forward is a combination of a well-
established time-bin-based quantum walk architecture (see,
e.g., Ref. [24]) and cutting-edge loop-operated PDC exper-
iments [89]. This time-multiplexing scheme is depicted in
Fig. 6. Therein, an interferometer (top arms) is looped back
onto itself via the bottom feedback line that includes the PDC
coin.

We begin with the step operation. Positions x are defined
in terms of time bins, containing pulses of light as the walker,
and the coin state is encoded in the polarization, as assumed
throughout this article. Depending on the coin state c = ±,
the light pulse of the xth bin propagates through either the top
two or middle two arms of the interferometer. Because of the
length difference of these arms (Fig. 6), a relative temporal
shift of ±
t is picked up for both polarizations, resulting in
a x ± 1 position change and realizing the step operation [24].
To connect positions x = 0 and x = d − 1, two fibers with a
larger length differentials, ±(d − 1)
t , are used and actively
routed to other fibers by EOMs. That is, the EOM is triggered
such that pulses for positions x = 0 and x = d − 1 experience
an position offset of x ± (d − 1) mod d . This renders it possi-
ble to achieve the periodic boundary conditions for the graph
depicted in the top-left plot of Fig. 1.

The bottom arm in Fig. 6, also connecting output and input,
yields an actual time step. Within this arm, we also find the
PDC coin operation, replacing the common waveplate-based
BS coin of our earlier experiments. The PDC process can be
driven by pulse trains from a pump laser, leading to the seeded
(i.e., stimulated) emission of signal and idler photons in the
two polarizations that are characteristic for second-order non-
linear processes. (Note that the pump light does not further
contribute to the quantum walk, as ensured by dichroic mirrors
in Fig. 6.) We recently demonstrated that it is feasible to
reliably and coherently operate PDC process in a loop-based
configuration in such a manner [89]. In addition, it is notewor-
thy that deterministic in- and out-couplings can be realized in
such otherwise self-contained (i.e., looped) interferometer by
virtue of the EOMs in Fig. 6; see Ref. [35] for details.
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FIG. 6. Proposed scheme for a DGQW on a closed graph with d = 11 vertices, as depicted in Fig. 1. The setup on the left describes
a looped Mach-Zehnder interferometer [24] with a single PDC crystal for all coin operations. So-called time bins encode the position x in
temporally displaced light pulses (right-top plot). Differently shaded circles in the left plot indicate the action of electro-optic modulators
(EOMs), polarizing BSs, and fibers. The latter introduce relative delays in terms of multiples of 
t that separate pulses in time bins. The
bottom PDC process is driven by a pulsed laser that acts on each time bin and which is seeded via the incident polarization (i.e., coin) states.

With the proposed setup, DGQW may be explored in future
experiments. As we laid out, the individual components of
the scheme are available, such as time-multiplexed quantum
walks and operating a PDC element in loops, in our own
experiments.

VI. CONCLUSION

In summary, we introduced and explored the concept of
DGQWs. We in particular showed that this type of quantum
simulator does produce genuine quantum effects over its non-
linear evolution, setting it apart from linear quantum walks
and even coherent walks.

In the first step, we formulated the notion of a coherent
walk, an intermediate stage between classical random walks
and genuine quantum walks. Specifically, superposition—
regardless of the classical or quantum origin—suffice for a co-
herent walk, which are accessible, for instance, with classical
optics. Thus, a coherent walk goes beyond a random walk but
not necessarily requires quantum superpositions. By contrast,
a genuine quantum walk requires a quantum-physical treat-
ment. This also means that the evolution itself is the origin of
quantum effects, and not the input state’s features. We proved
that a DGQW satisfies these demands. In addition, a DGQW
is an example of a nonlinear walk, contrasting the most fre-
quently considered scenario of linear walks. For example,
a DGQW actively produces quantum particles in its evolu-
tion because of stimulated emission of photon pairs whose
quantum properties are even further amplified with each sub-
sequent iteration of steps. Thus, even vacuum can constitute a
useful input state that produces pronounced quantum effects.

Prominent examples of quantum phenomena we investi-
gated are squeezing, particle-number correlations, and en-
tanglement. Those effects are highly relevant in experiments
and applications, e.g., squeezing for quantum metrology

and entanglement for quantum communication. We provided
measurable criteria to verify the presence—as well as the
buildup—of such quantum phenomena over the DGQW’s
evolution. Moreover, the nonlinear nature of the process under
study offered access to nonlinear quantum-optical effects, too,
such as amplification that results in comparably bright output
light. We also characterized the excess noise as an imperfec-
tion that is a joint result of the nonlinear amplification and
vacuum quantum fluctuations.

We compared DGQWs with prime examples of coherent
walks, especially quantum-optical networks with coher-
ent light and linear optical components as coin operators.
Thereby, we proved the superior quantum performance of
DGQWs, offering a quantum evolution that is not accessible
with classical interference alone. We also found that a coher-
ent walk can be considered as a special instance of our general
DGQW framework. For the sake of exposition, our focus was
on replacing the coin operation from a coherent walk with a
nonlinear coin. But the broader framework introduced here
even allows for considering nonlinear processes at any point
of the quantum walk, including the possibility of a nonlinear
step operation. Moreover, the general methodology is not
limited to processes that are homogeneous in time, simple
one-dimensional geometries, two-level coins, etc. For exam-
ple, changing the driving pump of the process that governs
the nonlinear process renders it possible to actively control
the quantum light’s evolution. By ignoring quantum-physical
commutation relations, we were additionally able to compare
nonlinear, but only coherent walks with our DGQW.

The model devised in this work is mainly based on the
Gaussian formalism for bosonic multimode quantum fields.
Although we concentrated on relatively pure and ideal scenar-
ios for the purpose of the introduction of the concept presented
here, the formalism allows one to describe experimentally
relevant impurities (e.g., losses, thermal noise, etc.) rather
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straightforwardly [55,56]. In fact, we previously considered
how losses and nonlinear processes interact [75]. For instance,
one can use that approach to balance loss and quantum am-
plification, while keeping excess noise low. Additionally, a
comprehensive study of imperfections in related Gaussian
boson sampling scenarios can be found in Ref. [90].

The continuous-variable approach that is at the heart of
our DGQW methodology also renders few-photon approxi-
mations superfluous. The involved Hilbert state is of infinite
dimensionality and can consist of an arbitrary number of
quantized modes. By adapting our time-multiplexed quantum
walk platform, we proposed a scheme for implementing the
specific scenario under study, harnessing a PDC coin in a
looped Mach-Zehnder interferometer. We also foresee that a
promising architecture for implementing DGQWs are non-
linear waveguide arrays [48,91] that can embed the linear
and nonlinear elements rather efficiently. This renders our
approach practicable with state-of-the-art quantum devices.

Therefore, a versatile framework for nonlinear quantum
walks has been established and explored in this work. This
allows one to tap this potential to study nonlinear quantum-
physical transport phenomena. Also, dynamical quantum
communication scenarios in complex networks can benefit
from the nonlinear character of the evolution and the continu-
ous buildup of quantum correlations reported here.
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APPENDIX A: FIELD MOMENTS AND THEIR
TRANSFORMATIONS

In this Appendix, we formulate the exact input-output rela-
tions for different properties of quantum field, especially their
moments. For convenience, we introduce the abbreviations

ûi =
∑

j

Ui, j â j and ŵi =
∑

j

V ∗
i, j â j (A1)

such that we can decompose the output annihilation operator
as b̂i = ûi + ŵ

†
i . The following commutation relations apply

to this representation:

ûiû
†
i′ − û†

i′ ûi = xi,i′ =
∑

j

Ui, jU
∗
i′, j = x∗

i′,i,

ŵiŵ
†
i′ − ŵ

†
i′ŵi = yi,i′ =

∑
j

V ∗
i, jVi′, j = y∗

i′,i,

ûiŵ
†
i′ − ŵ

†
i′ ûi = zi,i′ =

∑
j

Ui, jVi′, j = zi′,i.

ŵiû
†
i′ − û†

i′ŵi = z∗
i′,i =

∑
j

V ∗
i, jU

∗
i′, j = z∗

i,i′ , (A2)

also introducing the symbols x, y, and z which essentially are
the entries of the products of the transformation matrices U
and V , thus too obeying their properties in Eq. (5). Applying
the above commutation relations, we obtain second-order out-
put field correlations,

b̂ib̂i′ = ûiûi′ + ŵ
†
i ûi′ + ŵ

†
i′ ûi + ŵ

†
i ŵ

†
i′ + zi,i′ ,

b̂†
i b̂i′ = û†

i ûi′ + ŵiûi′ + û†
i ŵ

†
i′ + ŵ

†
i′ŵi + yi,i′ . (A3)

In particular, the equality for i = i′ describes the output
photon-number operator for the ith mode, b̂†

i b̂i = û†
i ûi +

ŵiûi + û†
i ŵ

†
i + ŵ

†
i ŵi + yi,i. The normally ordered second-

order photon-number correlation is given by the fourth-order
term

b̂†
i b̂†

i′ b̂ib̂i′ = |zi,i′ |2 + yi,iyi′,i′ + yi,i′yi′,i + z∗
i,i′ (ûiûi′ + ŵ

†
i ûi′ + ŵ

†
i′ ûi + ŵ

†
i ŵ

†
i′ ) + zi,i′ (û

†
i û†

i′ + û†
i′ŵi + û†

i ŵi′ + ŵiŵi′ )

+ yi,i(û
†
i′ ûi′ + û†

i′ŵ
†
i′ + ŵi′ ûi′ + ŵ

†
i′ŵi′ ) + yi′,i′ (û

†
i ûi + û†

i ŵ
†
i + ŵiûi + ŵ

†
i ŵi ) + yi,i′ (û

†
i′ ûi + û†

i′ŵ
†
i + ŵi′ ûi + ŵ

†
i′ŵi )

+ yi′,i(û
†
i ûi′ + û†

i ŵ
†
i′ + ŵiûi′ + ŵ

†
i ŵi′ ) + û†

i û†
i′ ûiûi′ + û†

i û†
i′ŵ

†
i ûi′ + û†

i û†
i′ŵ

†
i′ ûi + û†

i û†
i′ŵ

†
i ŵ

†
i′

+ û†
i′ŵiûiûi′ + û†

i′ŵ
†
i ŵiûi′ + û†

i′ŵ
†
i′ŵiûi + û†

i′ŵ
†
i ŵ

†
i′ŵi + û†

i ŵi′ ûiûi′ + û†
i ŵ

†
i ŵi′ ûi′ + û†

i ŵ
†
i′ŵi′ ûi + û†

i ŵ
†
i ŵ

†
i′ŵi′

+ ŵiŵi′ ûiûi′ + ŵ
†
i ŵiŵi′ ûi′ + ŵ

†
i′ŵiŵi′ ûi + ŵ

†
i ŵ

†
i′ŵiŵi′ . (A4)

Please also note that quadrature- and momentum-based expressions are obtained from the above calculations as well because of
q̂i = (b̂i + b̂†

i )/
√

2 and p̂i = (b̂i − b̂†
i )/(i

√
2).

For a coherent input state, which is studied throughout this work,
⊗

j |α j〉, the above expressions reduce to the following
output expectation values:

〈b̂i〉 = 〈ûi〉 + 〈ŵ†
i 〉 =

∑
j

(Ui, jα j + Vi, jα
∗
j ) = βi, 〈b̂ib̂i′ 〉 = βiβi′ + zi,i′ , 〈b̂†

i b̂i′ 〉 = β∗
i βi′ + yi,i′ ,

〈b̂†
i b̂†

i′ b̂ib̂i′ 〉 = |zi,i′ |2 + yi,iyi′,i′ + yi,i′yi′,i + z∗
i,i′βiβi′ + zi,i′β

∗
i β∗

i′ + yi,i|βi′ |2 + yi′,i′ |βi|2 + yi,i′β
∗
i′ βi + yi′,iβ

∗
i βi′ + |βi|2|βi′ |2, (A5)

using the output coherent amplitude βi for brevity although it is completely expressed in terms of the input state (see the first line
of the equation). We then also find the central field moments as 〈(
b̂i )(
b̂i′ )〉 = zi,i′ and 〈(
b̂i )†(
b̂i′ )〉 = yi,i′ . Furthermore,
normally ordered photon-number moments are

〈n̂i〉 = |βi|2 + yi,i, 〈:(
n̂i )(
n̂i′ ):〉 = |zi,i′ |2 + |yi,i′ |2 + z∗
i,i′βiβi′ + zi,i′β

∗
i β∗

i′ + yi,i′β
∗
i βi′ + y∗

i,i′β
∗
i′ βi. (A6)
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For quadrature and momentum moments and their covari-
ances, we analogously find the relations 〈q̂i〉 = √

2Re(βi ) and
〈p̂i〉 = √

2Im(βi ), as well as

1
2 〈{
q̂i,
q̂i′ }〉 = Re(yi,i′ ) + Re(zi,i′ ) + 1

2δi=i′ ,

1
2 〈{
p̂i,
p̂i′ }〉 = Re(yi,i′ ) − Re(zi,i′ ) + 1

2δi=i′ ,

1
2 〈{
q̂i,
p̂i′ }〉 = Im(yi,i′ ) + Im(zi,i′ ). (A7)

APPENDIX B: PROPAGATION

Our scenario of a one-dimensional quantum walk with
periodic boundaries consists in both cases of the step op-
eration �±, Eq. (20). In particular, a step x 
→ x + 1 mod d
is described by the operator � in Eq. (19). This map obeys
� = �∗ and �−1 = �T. The step x 
→ x − 1 mod d is given
through �T. The two distinct coin operations can be ex-
pressed via the matrices �BS [Eq. (22)] and �PDC [Eq. (21)].
Both include submatrices that obey 1 = det[ τ ρ

−ρ∗ τ ∗] =
det[ τ ∗ ρ∗

−ρ τ ] = det[μ ν

ν∗ μ∗], showing that the two eigenvalues
are reciprocals to each other. Furthermore, a combination of
coin and step operation yields a single time step of the walk
protocol,

T1,BS =

⎡
⎢⎢⎢⎣

τ� ρ� 0 0
−ρ∗�T τ ∗�T 0 0

0 0 τ ∗� ρ∗�
0 0 −ρ�T τ�T

⎤
⎥⎥⎥⎦ (B1)

and

T1,PDC =

⎡
⎢⎢⎢⎣

μ� 0 0 ν�

0 μ�T ν�T 0
0 ν∗� μ∗� 0

ν∗�T 0 0 μ∗�T

⎤
⎥⎥⎥⎦. (B2)

Applying a spectral decomposition, the target is now to ex-
press the evolution matrix T after t time steps, i.e., T = T t

1 ,
for both families of coins. Similarly, for G = ln T1, we have
T = exp(tG) for the continuous case, with T = id for t = 0.

It is known that the matrix � can be diagonalized using
a discrete Fourier transform, F = [ωkx/

√
d]k,x=0,...,d−1 = F T,

with the constant ω = exp(2π i/d ) and the inverse F−1 =
F ∗T = F ∗. That is, we can write

� = F ∗�F, where � = diag(ω0, . . . , ωd−1). (B3)

Note that � = �∗ holds true; hence, we can equivalently write
� = F�∗F ∗. For the transposed step matrix, we have �T =
F�F ∗ = F ∗�∗F . Those identities enable us to rewrite our
single-step transformations as

T1,BS = diag(F ∗, F ∗, F, F )

×

⎡
⎢⎣

τ� ρ� 0 0
−ρ∗�∗ τ ∗�∗ 0 0

0 0 τ ∗�∗ ρ∗�∗
0 0 −ρ� τ�

⎤
⎥⎦

× diag(F, F, F ∗, F ∗) (B4)

and

T1,PDC = diag(F ∗, F, F, F ∗)

×

⎡
⎢⎣

μ� 0 0 ν�

0 μ� ν� 0
0 ν∗�∗ μ∗�∗ 0

ν∗�∗ 0 0 μ∗�∗

⎤
⎥⎦

× diag(F, F ∗, F ∗, F ). (B5)

It is noteworthy that the block diagonals that include the
Fourier matrices have different orders of those matrices and
their conjugates ones for both coin types. Because the central
matrix between the Fourier matrices includes only diagonal
blocks, we can now focus on the submatrices of the form

T̃1,BS =

⎡
⎢⎣

τ̃ ρ̃ 0 0
−ρ̃∗ τ̃ ∗ 0 0

0 0 τ̃ ∗ ρ̃∗
0 0 −ρ̃ τ̃

⎤
⎥⎦ (B6)

and

T̃1,PDC =

⎡
⎢⎣

μ̃ 0 0 ν̃

0 μ̃ ν̃ 0
0 ν̃∗ μ̃∗ 0
ν̃∗ 0 0 μ̃∗

⎤
⎥⎦, (B7)

where μ̃ = ωkμ, ν̃ = ωkν, τ̃ = ωkτ , and ρ̃ = ωkρ for any
wave number k ∈ {0, . . . , d − 1}, while still satisfying |τ̃ |2 +
|ρ̃|2 = 1 and |μ̃|2 − |ν̃|2 = 1. The simplified 4 × 4 single-
time-step matrices T̃1,BS and T̃1,PDC further decompose into
2 × 2 submatrices that are given by the invariant subspaces,
easily identifiable via zero entries.

For arbitrary 2 × 2 matrices M̃ and arbitrary analytic func-
tions f , this function acts on the matrix like

f (M̃ ) = f (W̃ + ε) + f (W̃ − ε)

2
id

+ f (W̃ + ε) − f (W̃ − ε)

2ε
(M̃ − W̃ id), (B8)

with

ε =
√

W̃ 2 − det(M̃ ) and W̃ = tr(M̃ )

2
, (B9)

which is a consequence of the Taylor expansion of f and the
fact that [M̃ − W̃ id]2 = ε2id (i.e., a multiple of the identity)
holds true for all 2 × 2 matrices. In addition, we have a re-
movable singularity at ε = 0,

lim
ε→0

f (M̃ ) = f (W̃ )id + f ′(W̃ )(M̃ − W̃ id), (B10)

where f ′ is the derivative of f ; this applies if M̃ has degenerate
eigenvalues. The broader treatment described here is helpful
for our case where f describes the t th power of M̃.

Please further note that the involved arguments W̃ ± ε

are the eigenvalues of M̃. And, if det M̃ = 1 applies, both
eigenvalues are reciprocals to each other because of (W̃ ±
ε)−1 = (W̃ ∓ ε)/ det(M̃ ). Since this is true in our scenarios,
(W̃ − ε)t = (W̃ + ε)−t too holds true. We can addition-
ally use the simple identity ct = exp(t ln c) for complex
numbers c.
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We now apply all above considerations to our invariant subspaces of the 4 × 4 matrices. For our beam splitter coin, we obtain

(T̃1,BS)t = cos[t arg(Re τ̃ + i
√

1 − (Re τ̃ )2)]id + sin[t arg(Re τ̃ + i
√

1 − (Re τ̃ )2)]√
1 − (Re τ̃ )2

⎡
⎢⎣

iIm τ̃ ρ̃ 0 0
−ρ̃∗ −iIm τ̃ 0 0

0 0 −iIm τ̃ ρ̃∗
0 0 −ρ̃ iIm τ̃

⎤
⎥⎦

(B11)

after some straightforward algebra that utilizes the discussion above and the identity Re τ̃ − i
√

1 − (Re τ̃ )2 = [Re τ̃ +
i
√

1 − (Re τ̃ )2]−1. Analogously, the two-mode squeezing coin can be analyzed, yielding

(T̃1,PDC)t = cosh[t ln(Re τ̃ +
√

(Re τ̃ )2 − 1)]id + sinh[t ln(Re τ̃ +
√

(Re τ̃ )2 − 1)]√
(Re τ̃ )2 − 1

⎡
⎢⎣

iIm μ̃ 0 0 ν̃

0 iIm μ̃ ν̃ 0
0 ν̃∗ −iIm μ̃ 0
ν̃∗ 0 0 −iIm μ̃

⎤
⎥⎦,

(B12)

with Re μ̃ −
√

(Re μ̃)2 − 1 = [Re μ̃ −
√

(Re τ̃ )2 − 1]−1. Please note that the square root can become a complex number in some
instances. See the discussion in Sec. IV B for the physical interpretation.

In conclusion, the t-time-step evolution can be analytically described as follows. Firstly, we define diagonal matrices

� = arg{Re(τ�) + i
√

id − [Re(τ�)]2} and � = ln{Re(μ�) +
√

[Re(μ�)]2 − id}, (B13)

where all involved functions are considered to act entrywise on matrices. Then we can write for T = (T1)t and the two coin types

TBS = diag(F ∗, F ∗, F, F )

×

⎧⎪⎨
⎪⎩cos(t�)

⎡
⎢⎣

id 0 0 0
0 id 0 0
0 0 id 0
0 0 0 id

⎤
⎥⎦ + sin(t�)√

id − [Re(τ�)]2

⎡
⎢⎣

iIm(τ�) ρ� 0 0
−ρ∗�∗ −iIm(τ�) 0 0

0 0 −iIm(τ�) ρ∗�∗
0 0 −ρ� iIm(τ�)

⎤
⎥⎦
⎫⎪⎬
⎪⎭

× diag(F, F, F ∗, F ∗) (B14)

and

TPDC = diag(F ∗, F, F, F ∗)

×

⎧⎪⎨
⎪⎩cosh(t�)

⎡
⎢⎣

id 0 0 0
0 id 0 0
0 0 id 0
0 0 0 id

⎤
⎥⎦ + sinh(t�)√

[Re(μ�)]2 − id

⎡
⎢⎣

iIm(μ�) 0 0 ν�

0 iIm(μ�) ν� 0
0 ν∗�∗ −iIm(μ�) 0

ν∗�∗ 0 0 −iIm(μ�)

⎤
⎥⎦
⎫⎪⎬
⎪⎭

× diag(F, F ∗, F ∗, F ), (B15)

where the (hyperbolic) cosine and sine matrices have to be understood as matrix-value factors for each matrix-valued entry of the
following 4 × 4 block matrix. (Since all involved matrices are diagonal, all matrix products within the curled brackets commute.)
These analytic results are used for the simulation of the quantum walks studied in the main text, including their time-dependent
properties, encoded in T , such as entanglement, photon-number correlations, amplification, etc.

APPENDIX C: ENTANGLEMENT TEST

For self-consistency, we recall the known results for our entanglement test in terms of quadratures and momenta [79]. Here,
however, we shall formulate the results in terms of bosonic ladder operators. Our test operator from Eq. (15) expands as

L̂ =
∑
j, j′

(ũ j, j′ b̂
†
j b̂ j′ + ṽ j, j′ b̂ j b̂

†
j′ − w̃ j, j′ b̂

†
j b̂

†
j′ − w̃∗

j′, j b̂ j b̂ j′ ), (C1)

where ũ j, j′ = ∑
i Uj,iU ∗

j′,i, ṽ j, j′ = ∑
i V ∗

j,iVj′,i, and w̃ j, j′ = ∑
i Uj,iVj′,i are introduced for convenience. The goal now is to

determine the minimal expectation value for states that are separated in the output modes,
⊗

j |ψ j〉.
For that purpose, we compute the so-called partially reduced operator for the j0th subsystem by tracing over the remaining

states [79], which is denoted by and expanded as

L̂...,ψ j0−1,ψ j0+1,... = (ũ j0, j0 b̂†
j0

b̂ j0 + ṽ j0, j0 b̂ j0 b̂†
j0

− w̃ j0, j0 b̂†
j0

b̂†
j0

− w̃∗
j0, j0 b̂ j0 b̂ j0 )

+
∑
j �= j0

(ũ j, j〈b̂†
j b̂ j〉� j0 + ṽ j, j〈b̂ j b̂

†
j〉� j0 − w̃ j, j〈b̂†

j b̂
†
j〉� j0 − w̃∗

j, j〈b̂ j b̂ j〉� j0 ), (C2)
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where we used the abbreviation 〈· · · 〉� j0 to indicate expectation values that do not include the j0th component. Moreover, we also
utilized the fact that the minimal eigenvalue is attained for 〈b̂ j〉 = 0 for all js [69]. While the second part of the partially reduced
operator, which includes the sum, is a constant with respect to j0, the first contribution resembles a single-mode squeezing
Hamiltonian. The known minimal expectation value of its (squeezed) ground state |ψ j0〉 is

〈ψ j0 |ũ j0, j0 b̂†
j0

b̂ j0 + ṽ j0, j0 b̂ j0 b̂†
j0

− w̃ j0, j0 b̂†
j0

b̂†
j0

− w̃∗
j0, j0 b̂ j0 b̂ j0 |ψ j0〉 =

ṽ j0, j0 − ũ j0, j0 +
√(

ṽ j0, j0 + ũ j0, j0

)2 − 4
∣∣w̃ j0, j0

∣∣2

2
, (C3)

which holds true for all j0s. Therefore, the minimal expectation value for the full tensor-product states reads

gmin = 〈ψ j0 |L̂...,ψ j0−1,ψ j0+1,...|ψ j0〉 =
(⊗

j

〈ψ j |
)

L̂

(⊗
j

|ψ j〉
)

= 1

2

∑
j

(ṽ j, j − ũ j, j +
√

(ṽ j, j + ũ j, j )2 − 4|w̃ j, j |2) = 1

2

∑
j

(
√

(1 + 2ṽ j, j )2 − 4|w̃ j, j |2 − 1), (C4)

where the relation ũ j, j = 1 + ṽ j, j—being a consequence of Eq. (5)—is applied to express the final formula.
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