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Resonance distribution in the quantum random Lorentz gas
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The multiple scattering model of a quantum particle in a random Lorentz gas consisting of fixed point
scatterers is considered in arbitrary dimension. An efficient method is developed to numerically compute the map
of the density of scattering resonances in the complex plane of the wave number without finding them one by
one. The method is applied to two collision models for the individual scatterers, namely a resonant model, and a
nonresonant hard-sphere model. The results obtained with the former are compared to the literature. In particular,
the spiral arms surrounding the single-scatterer resonance are identified as proximity resonances. Moreover, the
hard-sphere model is used to reveal previously unknown structures in the resonance density. Finally, it is shown
how Anderson localization affects the distribution of resonance widths, especially in the one-dimensional case.
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I. INTRODUCTION

The propagation of waves in a disordered ensemble of
small scatterers is a widely studied topic in physics. Among
the fundamental tools, a remarkable one is the multiple scat-
tering method which consists in solving the self-consistent
equations based on the free-space Green function. This
method, which we develop in the companion paper in the
case of a matter-wave quantum particle [1], is commonly used
in many fields of application including optics, underwater
acoustics [2–5], and electronic band computations in solid
state physics [6,7]. This method enjoys great freedom in the
choice of the collisional and geometrical properties for the
scatterers, such as their positions. Another advantage is the
relatively weak influence of the number of spatial dimensions
in the formulation of the problem, as it is also valid in one
dimension. The main limitation is the number of scatterers
which can hardly exceed a few tens of thousands even with
powerful computing resources [2].

An additional tool to study the propagation of a quan-
tum particle is the resonance spectrum which extends in the
complex plane of the frequency or the wave number. The
resonance spectrum provides the knowledge of the time scales
controlling the propagation of waves in the medium of inter-
est. In particular, the imaginary parts of the resonances, that is,
the resonance widths, are inversely proportional to the decay
time of the wave within the medium, and so provide useful
information about the dynamical processes taking place in the
system. A notable example of a phenomenon which can be
evidenced by the distribution of resonance widths is Anderson
localization [8–11]. This phenomenon is characterized by the
reduction or disappearance of diffusion of waves in random
media, especially when the wavelength is larger than the scat-
tering mean free path. It is known to play a more significant
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role in low-dimensional systems and is considered universal
in one dimension [10,12].

If the quantum particle propagating in the random medium
is only weakly coupled to open channels, then the reso-
nances can be approached by the eigenvalues of an effective
non-Hermitian Hamiltonian. This approach was pioneered by
Porter and Thomas in their work on nuclear reactions [13,14].
In this way, the resonance distribution can be obtained by
exploiting the techniques of random matrix theory [15–19].
However, little is known about the resonance distribution in
strongly open systems such as the random Lorentz gas model.

In the special case of strongly resonant scatterers, it was
shown by [20,21] that certain resonances may be given by the
eigenvalues of the Green matrix. Their approach reveals spiral
structures in the resonance distribution which are interpreted
as proximity resonances [22,23]. The resonance spectrum was
later studied in more details by the authors of Refs. [24–29]
applying techniques of random matrix theory to the Green
matrix.

In this exploratory paper, we develop a method, which we
call the resonance potential method, to calculate the distribu-
tion of complex resonances in the general case of an arbitrary
collisional model for the individual scatterers. First, in the
special case of resonant scatterers, this method is compared
to the eigenvalue method from the literature. The existence of
additional resonances, which are due to nonresonant transport,
is brought to light. Second, it is applied to the nonresonant
hard-sphere scatterers of our previous paper [1]. The hard-
sphere model is valid over a wider range of wave numbers
than the resonant model, and reveals previously unknown
structures in the resonance distribution.

This paper is organized as follows. Section II presents
the multiple scattering model of point scatterers in arbitrary
dimension, as introduced in our previous paper [1]. The reso-
nance potential method used to compute the resonance density
is established in Sec. II D. This method is then applied to two
typical scattering models for the individual scatterers, namely
the resonant model in Sec. III, and the hard-sphere model in
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Sec. IV. The eigenvalue method used in the literature to study
the resonant model is discussed in Sec. III A. Supplemental
calculations regarding the Green function can be found in the
Appendix.

Throughout this paper, we use the notations d ∈ N�1 for
the number of spatial dimensions, and

Vd = π
d
2

�
(

d
2 + 1

) and Sd = Vd d = 2π
d
2

�
(

d
2

) , (1)

respectively, for the volume and the surface area of the ball of
unit radius in Rd . In Eq. (1), �(z) denotes the Gamma function
[30].

II. MULTIPLE SCATTERING MODEL

We consider a scalar quantum particle of mass m propagat-
ing in a Lorentz gas made of N point scatterers pinned to the
random positions xi for i ∈ {1, . . . , N}. We assume that the
positions of the scatterers are contained in a d-ball of radius
R. The radius R is chosen so as to ensure a uniform density for
the gas

N

Vd Rd
= 1

ςd
. (2)

In Eq. (2), ς (sigma) is the mean interscatterer distance that
we treat as the unit length of the problem. The stationary wave
function ψ (r) of the quantum particle obeys the Schrödinger
equation

[∇2 + k2 − U (r)]ψ (r) = 0, (3)

where ∇2 is the Laplace operator in Rd , and k = 2π/λ is the
wave number in free space. The potential U (r) in Eq. (3) is
defined as the sum

U (r) =
N∑

i=1

u(r − xi ), (4)

where u(r) denotes the potential associated with a single
scatterer, and the sum runs over the random positions of the
scatterers. Due to the pointlike nature of the scatterers, the
spatial range of u(r) is neglected in front of all other character-
istic lengths of the problem, especially the wavelength λ and
the mean interscatterer distance ς . An important consequence
of this assumption is that the collisions with the scatterers
involve only s waves.

A. Single scatterer

In order to solve Eq. (3), one efficient way is to use the
Green function method [7,10,31–36]. The Green function,
denoted as G(k, r), is defined as a solution of the Schrödinger
equation with a point source term at the origin (r = 0):

(∇2 + k2)G(k, r) = δ(d )(r). (5)

Two linearly independent solutions can be found out of
Eq. (5). In arbitrary dimension d , they read

G±(k, r) = ± 1

4i

(
k

2πr

) d−2
2

H±
d−2

2

(kr). (6)

The function G+(k, r) is known as the outgoing Green func-
tion, and G−(k, r) is the incoming Green function [31]. The
behavior of these functions is better highlighted by the asymp-
totic approximation

G±(k, r)
r→∞−−−→ ± 1

2ik

(∓ik

2πr

) d−1
2

e±ikr . (7)

Regarding the complex plane of k, the two Green functions
G±(k, r) possess a branch cut on the negative real axis of k in
even dimensions d ∈ {2, 4, . . .}. It turns out that this branch
cut does not satisfy the symmetry properties

G±(−k∗, r)∗ = G±(k, r),

G±(−k, r) = G∓(k, r), (8)

which are generally expected for scattering observables
[31,32]. In order to restore the symmetry properties (8), we
choose to move this branch cut on the imaginary axis of k.
This can be done with the modified Bessel function Kν (z) [30].
We have

G±(k, r) = − 1

2π

(∓ik

2πr

) d−2
2

K d−2
2

(∓ikr). (9)

In this paper, since we deal with arbitrary dimensions, in-
cluding even ones, we prefer to define the Green functions
as in Eq. (9), for convenience. So the possible branch cut of
G+(k, r) lies on the negative imaginary axis (arg k = −π

2 ),
and the branch cut of G−(k, r) on the positive imaginary axis
(arg k = +π

2 ). We will come back to this important aspect in
Secs. II D and IV A.

Another useful function related to the Green functions is
their imaginary part

I (k, r) = − Im[G+(k, r)] = −G+(k, r) − G−(k, r)

2i
. (10)

This function comes up in many expressions, in particular
those concerning the scattering amplitude and the probability
conservation law [1]. Note that, in contrast to G+(k, r), the
function I (k, r) behaves as a constant in the neighborhood of
the point r = 0. At the point r = 0 itself, it reduces to

I (k, 0) = π

2

Sd

(2π )d
kd−2. (11)

Using the Green function (9), we can solve Eq. (3) in the
special case of a single scatterer (N = 1). If we assume that
the particle collides with the scatterer in the plane-wave state
φ(r) = eik�0·r of initial direction �0, we can write

ψ (r) = φ(r) + F (k)G+(k, ‖r‖). (12)

In Eq. (12), F (k) denotes the scattering amplitude of the
scatterer. It is related to the s-wave phase shift δ(k) by

F (k)−1 = I (k, 0)[i − cot δ(k)]. (13)

As long as the phase shift value is real, a scattering amplitude
of the form (13) ensures probability conservation during the
collision. This conservation condition can also be expressed
as

Im[F (k)−1] = I (k, 0) ∀k ∈ R. (14)
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FIG. 1. Total cross section of a single scatterer in three dimen-
sions for the resonant model of Eq. (17) with p = 0.5 − 0.01 i, and
the hard-sphere model of Eq. (18) with α = 1. The gray vertical line
highlights the position pr of the resonance. The dashed line depicts
the maximum cross section of Eq. (16).

The total cross section of the scatterer is related to F (k) by

σpt (k) = 1

k
I (k, 0)|F (k)|2. (15)

The conservation condition (14) requires the total s-wave
cross section to be smaller than the upper bound [1]

σmax(k) = 1

k I (k, 0)
. (16)

In this paper, we will consider two different models for
F (k). We will first consider a resonant model for the single
scatterer described by a Breit-Wigner profile [20,22,37,38].
In the vicinity of the resonance pole p = pr + ipi, this model
reads in our notations

Frs(k)−1 = I (k, 0)

(
i − k − pr

pi

)
. (17)

It is assumed that the resonance pole is located in the lower
half plane (pi < 0). The second model that we will consider
is the hard-sphere model for s-wave scattering derived in our
previous paper [1]

Fhs(k)−1 = −I (k, 0)
G+(k, α)

I (k, α)
, (18)

where α is the scattering length. The parameter α can be
interpreted as the radius of a hard sphere, hence its name, but
it has a more general meaning according to scattering theory
since it may also be negative [31,32]. It turns out that this
parameter describes the universal behavior of the s-wave scat-
tering amplitude when the scatterer is much smaller than the
wavelength [1,39–41]. In this regard, the domain of physical
validity of Eq. (18) is thus |k| � α−1.

The total cross sections associated with both models (17)
and (18) are graphically compared in Fig. 1. In contrast to the

resonant model, the hard-sphere model does not display any
resonance pole for k ∈ C. The oscillations of the hard-sphere
model observed in Fig. 1 for αk > 1 are due to nonphysi-
cal cancellations of the scattering amplitude Fhs(k), inherent
to this model [1]. On the other hand, only the hard-sphere
model exhibits the expected low-energy behavior for |k| �
α−1. Since α can be made arbitrarily small, this domain of
validity thus extends in a wider range of wave number than
Eq. (17) which is limited to the neighborhood |k − pr| � |pi|
for |pi| 
 |pr|. In short, model (17) has one resonance but not
the expected low-energy behavior, and conversely model (18)
has no resonance but the expected low-energy behavior. In this
regard, both models will provide complementary view points
on the resonance distribution.

B. Many scatterers

When there are more than one scatterer, the particle wave
function can be expressed outside the scatterers as

ψ (r) = φ(r) +
N∑

i=1

aiG
+(k, ‖r − xi‖), (19)

where ai denotes the complex scattered amplitude one the ith
scattering site [1]. These amplitudes satisfy the self-consistent
Lippmann-Schwinger equation describing the scattering be-
tween all the scatterers. This equation reads

ai = F (k)

(
φ(xi ) +

N∑
j( �=i)

a jG
+(k, ri j )

)
, (20)

where ri j = ‖xi − x j‖ is the distance between all pairs of
scatterers. The amplitudes ai are thus the solution of the linear
system

M(k) a = φ, (21)

where a = (a1, . . . , aN )ᵀ and φ = (φ(x1), . . . , φ(xN ))ᵀ.
Therefore, the multiple scattering problem is completely
described by the matrix M(k) defined as

Mi j (k) = F (k)−1δi j − G+(k, ri j )(1 − δi j ). (22)

We refer to this matrix as the multiple scattering matrix. In
scattering theory, it may be interpreted as the inverse of the
transition matrix [1,7]. It is worth noting that M(k) is a com-
plex symmetric matrix but is not Hermitian for k ∈ R. This
matrix-based method is sometimes known as the Foldy-Lax
method [42,43], or, in the framework of solid-state physics
when higher-order partial waves are included, as the Kohn-
Korringa-Rostoker method [6,7].

Furthermore, according to Eq. (21), the scattered am-
plitudes read a = M(k)−1φ. This expression predicts the
existence of infinite-norm solutions for a at the singular values
of k given by the determinantal equation

det M(k) = 0. (23)

This equation for k ∈ C also gives the poles of the transition
matrix, and is the central equation of this paper. Another way
of understanding Eq. (23) is to look for the nontrivial solu-
tions of Eq. (21) which exist in the absence of incident wave
(φ = 0). Indeed, the linear system (21) is then homogeneous
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and takes the form of a nonlinear eigensystem. It is nonlinear
because M(k) does not depend linearly on the “eigenvalue,”
a role played here by the complex wave number k. Once the
value of k canceling the determinant of M(k) is found, the
corresponding eigenvector, a, can be physically interpreted as
a meaningful state.

The solutions of Eq. (23) may be split in two categories and
interpreted differently depending on their location in the com-
plex plane of k. The solutions with negative imaginary part
(ki < 0) are interpreted as resonances, and the solutions one
the positive imaginary semiaxis (arg k = π

2 ) are interpreted
as eigenstates [31,32]. In addition, the imaginary part of the
resonances given by Eq. (23) is directly related to the tem-
poral properties. Indeed, if we consider a complex resonance
located at k = kr + iki with ki < 0, the imaginary part of the
frequency ω(k) given by the dispersion relation reads

Im[ω(kr + iki )] = v(kr )ki + O
(
k3

i

)
, (24)

where v = ∂ω/∂k is the group velocity of the wave [35].
Equation (24) assumes a relatively small value of ki in general,
but is exact for both linear or quadratic dispersion relations.
The square modulus of the wave function thus behaves in time
as

|ψ (t )|2 ∝ |e−iω(k)t |2 = e2 Im[ω(k)]t = e2vkit = e−�t . (25)

In Eq. (25) one can identify the quantity

� = 2v(kr )|ki|, (26)

as the characteristic escape rate of the particle from the system
when starting in the resonant state k = kr + iki [37]. Expres-
sion (26) shows that the imaginary part of the resonance
position is always proportional to the escape rate, whichever
the dispersion relation given by ω(k).

C. Case of two scatterers

We consider the special case of a system containing only
two scatterers separated by a variable distance s. This case
gives valuable qualitative information about the influence of
the model parameters on the resonance positions, especially
the dimension. If N = 2, then the multiple scattering matrix
(22) reads

M(k) =
(

F (k)−1 −G+(k, s)
−G+(k, s) F (k)−1

)
. (27)

The complex resonances of the problem are given by the
values of k which satisfy det M(k) = 0 or, equivalently, which
send at least one eigenvalue of M(k) to zero. This leads to the
equation for k ∈ C:

G+(k, s) = ±F (k)−1. (28)

Albeit unsolvable for general F (k), approximations of certain
solutions to Eq. (28) can nevertheless be obtained for ks 
 1.
Indeed, in this regime, the Green function behaves as

G+(k, s) = A(k, s)eiks, (29)

according to Eq. (7). Expression (29) separates the rapid vari-
ations of eiks from the slowly varying envelope A(k, s). In
this way, it is possible to isolate k from the exponential. This

operation results in an infinite number of roots for Eq. (28)
given by

kns = nπ − i ln

(
F (kn)−1

A(kn, s)

)
, (30)

for n ∈ Z. If, in addition, one assumes that F (k) is neither
infinite nor zero in the region of interest, then the second term
of Eq. (30) is relatively small compared to nπ . Note that this
assumption excludes the possible presence of a resonance pole
for F (k) in this region. This allows to use the approximation
kn � nπ/s for large n in the right-hand side of Eq. (30). The
solutions of Eq. (30) can thus be approximated by

kns � nπ − i ln

(
F (nπ/s)−1

A(nπ/s, s)

)
. (31)

Equation (31) predicts the existence of a quasiperiodic band
of resonances for almost any scattering model F (k) under
the stated assumptions. It also applies, for instance, to the
resonant model (17) far away from the resonance pole. More-
over, when the number of scatterers N increases, this band is
expected to fill with extra resonances until it becomes nearly
continuous. This structure is a universal property of the mul-
tiple scattering model, as we will see later.

In the special case of the hard-sphere s-wave model of
Eq. (18), additional simplifications can be carried out in
Eq. (31). Under the assumption that the scattering length is
much smaller than the wavelength (αk 
 1), one has

I (k, α)

I (k, 0)
= 1 − (αk)2

2d
+ O[(αk)4]. (32)

Expression (31) then becomes

kns � nπ − i
d − 1

2
ln

(
s

α

)
− i

2d

(
α

s
nπ

)2

. (33)

The approximate resonances from Eq. (33) are compared to
the solutions of Eq. (28) in Fig. 2. The resonances move
away from the real k axis as d increases, which means that
the particle escapes faster from the system in higher dimen-
sions. According to Eq. (26) the escape rate corresponding to
Eq. (33) is approximately given by

�n � v

s
(d − 1) ln

(
s

α

)
+ v

sd

(
α

s
nπ

)2

. (34)

Similar logarithmic behaviors of the escape rate was obtained
in Ref. [44] in the context of the quantum scattering on three
hard disks.

Note that the escape rate (34) decreases with the separation
distance between both scatterers. This may be seen paradoxi-
cal because the particle is less tightly enclosed when s → ∞.
This decrease is due to the factor τ = s/v in Eq. (34), which
can be interpreted as half the round-trip time of the particle.
As s → ∞, the round-trip rate falls, hence the decrease of the
escape rate �n.

In the one-dimensional case, the very small rate �n �
O(vα2/s3) is due to the fact that the particle cannot escape
the corral formed by the two scatterers without crossing them.
This strongly contrasts with the higher dimensional cases
for which the periodically bouncing trajectory is classically
unstable, leading to much larger escape rates.
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FIG. 2. Positions of the complex resonances for two point scat-
terers in the first three dimensions (d = 1, 2, 3) using the hard-sphere
s-wave scattering model (18) with α/s = 0.05. In red filling, the
exact resonances calculated from Eq. (28), and, in white filling, the
approximations given by Eq. (33).

D. Resonance potential method

The main concern of this paper is to find the complex
scattering resonance poles of the random Lorentz gas for
k ∈ C satisfying the determinantal equation (23), especially
for a large number of scatterers (N → ∞). First, it should be
noted that one cannot in general solve Eq. (23) as a simple
eigenvalue problem for k due to the nonlinear dependence of
M(k) in k. This heavily complicates the study of the solutions
of this equation. Despite this, there are several computational
ways to locate the resonance poles in the complex k plane.
One can, for instance, consider using root-finding methods to
locate them one by one. According to our numerical investi-
gations, it appears that such an algorithm can be noticeably
accelerated applying the root-finding method on the smallest
eigenvalue of M(k) obtained through inverse power iteration,
instead of det M(k). This is because det M(k) behaves expo-
nentially for k ∈ C, hence dramatically slowing down any
Newton-type root-finding method [30]. On the contrary, the
smallest eigenvalue of M(k) does not vary so much for k ∈ C,
which makes it more suitable for root finding.

However, these direct approaches are flawed. First, the
computational time of collecting a significant amount of roots
to achieve a statistical analysis can be prohibitive. Second,
given the presumably high density of roots of det M(k), it
is hard to ensure that all the roots of a certain region of
the complex k plane will have been effectively found by the
algorithm. Indeed, since det M(k) has infinitely many roots for
k ∈ C, starting from initial guesses may bias the observed root
distribution due to missing roots. In this section, we propose a
more reliable method to address these issues.

Instead of looking for the individual resonances from
Eq. (23), it seems more efficient to compute a distribution
function. In this regard, we define the joint resonance density

in the complex k plane as

ρ (2)(k) = 1

N

〈 ∞∑
j=1

δ(2)(k − k j )

〉
, (35)

where the sum runs over the roots of det M(k), denoted
as k j , and δ(2)(k − k j ) = δ(Re k − Re k j )δ(Im k − Im k j ) is a
notation for the two-dimensional Dirac delta. The average
of Eq. (35) is taken over the random configurations of the
scatterer positions. In order to compute the density (35), we
introduce the ancillary function � : C → R defined as

�(k) = 1

N
〈ln |det M(k)|〉, (36)

that we refer to as the resonance potential. Many equivalent
expressions can be written in place of Eq. (36) exploiting the
property, ln |z| = Re ln z, and the Fredholm-Plemelj formula,
ln det M = Tr(ln M) [45–47], for instance.

We can show that the density (35) can be derived from
Eq. (36). First, note that this method is restricted to the domain
of analyticity of det M(k). Since the singularities of det M(k)
are the same as those of the matrix elements F (k)−1 and
G+(k, r), this domain reads

D =
{{

k ∈ C | F (k) �= 0 ∩ arg k �= −π
2

}
for even d,

{k ∈ C | F (k) �= 0} for odd d.

(37)
So D almost completely encompasses the complex k plane,
except for the isolated zeros of F (k) for k ∈ R, and the
branch cut of G+(k, r) for arg k = −π

2 in even dimensions.
As a reminder, this branch cut has been placed on the nega-
tive imaginary k axis in Eq. (9) to impose the symmetry of
imaginary axis (k ↔ −k∗) that is generally encountered for
observables in scattering theory [1]. Furthermore, according
to the Weierstrass product theorem [30], det M(k) admits a
factorization of the form

det M(k) =
∞∏
j=1

(k − k j )e
f j (k), ∀k ∈ D, (38)

where f j (k) ∀ j is some sequence of analytic functions in D.
Inserting Eq. (38) into the resonance potential (36) leads to

�(k) = 1

N

〈 ∞∑
j=1

f j (k)

〉
+ 1

N

〈 ∞∑
j=1

ln |k − k j |
〉
. (39)

Now we can use the fact that the logarithm is the solution of
the two-dimensional Poisson equation(

∂2

∂k2
r

+ ∂2

∂k2
i

)
ln |k| = 2πδ(2)(k). (40)

This implies that the Laplacian of the resonance potential
gives the sought resonance density (35) up to a factor(

∂2

∂k2
r

+ ∂2

∂k2
i

)
�(k) = 2πρ (2)(k). (41)

Note that the Laplacian of the functions f j (k) ∀ j in Eq. (39)
is equal to zero for k ∈ D due to the Cauchy-Riemann
equations [30] and the fact that the functions f j (k) are
analytic in D.
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Note that, according to the Poisson equation (41), �(k) can
be geometrically interpreted as a fictitious two-dimensional
electrostatic potential generated by point charges located at
the complex resonances. In fact, similar methods are used in
random matrix theory to study the distribution of the complex
eigenvalues of non-Hermitian matrices [27]. The difference,
here, is that the determinantal equation (23) giving rise to the
complex resonances is not linear in k.

Once the resonance potential is computed from Eq. (36) on
a rectangular lattice, we numerically evaluate the resonance
density from the discrete Laplacian of �(k). The advantage
of this method is that the mere computation of �(k) from
Eq. (36) is much more reliable and faster than finding the
roots of det M(k). This allows us to compute average densities
over a large number of random configurations of the scatterer
positions. In addition, this method directly provides the two-
dimensional histogram (35) without resorting to smoothing
kernel techniques.

III. RESONANT SCATTERERS

In this section, we consider a model in which the scattering
amplitude F (k) is given by Eq. (17) and thus displays a res-
onance pole at p = pr + ipi with pi < 0. This model mostly
affects the resonance density of the multiple scattering prob-
lem in the vicinity of the single-scatterer resonance at k = p.
This special case has been broadly studied in the literature due
to the remarkable simplifications that occur near the resonance
[20–22], as we will see. This case also gives us the opportunity
to compare the resonance potential method, which directly
works in the complex k plane (Sec. III B), with the method
previously used in the literature [20–22], but only indirectly
related to the resonances (Sec. III A).

A. Eigenvalue approach of the resonances

The eigenvalue approach, which was originally developed
in Refs. [20–22], consists of the approximation that, in a small
enough neighborhood of k = p, the matrix elements of M(k)
do not strongly vary, except for the diagonal entry F (k)−1

which vanishes. This will be the case if one assumes that the
variation of the wavelength in this neighborhood is smaller
than the maximum distance between two scatterers, denoted
as L. In other words, one has to impose that |k − p| 
 L−1.
If, in addition, one assumes that the single-scatterer resonance
is narrow (|pi| 
 |pr|), then the matrix M(k) can be expanded
near k = pr instead of k = p. Hence, one finds

M(k) � I (pr, 0)

(
k − pr

pi
+ N(pr )

)
, (42)

where N(pr ) is a dimensionless matrix defined for conve-
nience as

Ni j (k) = i δi j − G+(k, ri j )

I (k, 0)
(1 − δi j ). (43)

An important point is that N(k) does not explicitly depend
on the scattering model, in contrast to M(k). Under approx-
imation (42), the determinantal equation (23) reduces to a
simple eigenvalue problem for k. Denoting the eigenvalues
of the matrix N(k) as ν j (k) for j ∈ {1, . . . , N}, one gets the

resonances

k j � pr + piν j (pr ). (44)

Note that a similar approach may be followed to approximate
the eigenstates instead of the resonances. In that case, the pole
is purely imaginary (pr = 0) and the expansion of Eq. (42)
should be carried out near k = ipi. Note, in addition, that
Eq. (44) may be interpreted as a generalization of the splitting
of degenerate energy levels to resonances. The role of the
perturbation is played by the interaction between the scatterers
due to the multiple collisions of the particle.

Equation (44) motivates the interest in the distribution of
the complex eigenvalues of N(k), especially for real values
k = pr . The spectrum of this matrix has been extensively
studied in the three-dimensional case by the authors of
Refs. [24–27] using techniques of random matrix theory. Here
we recall only the main properties of the eigenvalue distri-
bution of this matrix. First, it is important to note that, the
eigenvalues of N(pr ) have a positive imaginary part

Im ν j (pr ) > 0. (45)

This property can be shown using the positive definiteness of
the quadratic form of the total cross section, assuming real
wave numbers [1]. A consequence of Eq. (45) is that the
resonances given by the approximation (44) have the same
sign of their imaginary part as pi. Since we have assumed
that pi < 0, this means that Im k j < 0, as it should be for
resonances [31,32]. Moreover, due to the definition (43), the
average position of the eigenvalues of N(pr ) is exactly located
at

〈ν〉 = 1

N
〈Tr N(pr )〉 = i, (46)

where 〈·〉 denotes the average over the random positions
x1, . . . , xN of the scatterers. Therefore, the average position
of the resonances given by Eq. (44) is 〈k〉 = pr + ipi, and thus
coincides with the single-scatterer resonance k = p.

Regarding the numerical distribution of the eigenvalues of
N(pr ), two cases are observed depending on the number of
scatterers. First, when the number of scatterers is moderate,
the distribution of eigenvalues is shown in Fig. 3. Several
structures are salient: the spiral arms and the circular cluster.
Although Fig. 3 is computed for d = 3, the same structures
can be observed in any dimension d � 2. The pair of spiral
arms in Fig. 3(a) comes from the eigenvalues of the two-
scatterer problem. Indeed, in dimensions d � 2, the Green
function G+(pr, r) displays a singularity at r = 0. So, when
two scatterers located at xi and x j , for i �= j, get closer to
each other, the off-diagonal matrix elements Ni j = Nji tend
to infinity and dominate the rest of the matrix. If one neglects
the other matrix elements, one gets the two-by-two submatrix

N(pr ) ∼
(

i −G+(pr,s)
I (pr,0)

−G+(pr,s)
I (pr,0) i

)
, (47)

with s = ‖xi − x j‖, and thus the approximate eigenvalues

ν±(pr ) = i ∓ G+(pr, s)

I (pr, 0)
. (48)
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FIG. 3. Distribution of the eigenvalues of N(pr ) in a three-
dimensional ball-shaped Lorentz gas for N = 100 and pr = 10 ς−1,
combining 218 random configurations. (a) Full distribution in the
complex ν plane. The spirals are obtained from Eq. (48) for different
separation distances. The circle in solid line is given by Eqs. (46) and
(50). (b) Corresponding marginal distribution p(Im ν ) (solid), and a
fitted Marchenko-Pastur distribution from Eq. (54) (dashed).

These eigenvalues lead to the spiral arms of Fig. 3(a) when
the separation distance s varies. In the limit s → 0, the spi-
ral arms possess the horizontal asymptotes Im ν+ → 2 and
Im ν− → 0. The eigenvectors of Eq. (47) associated with
Eq. (48) are

v± = 1√
2

(
1

±1

)
. (49)

The state v+ is thus symmetric with respect to the permutation
of both scatterers, and the state v− is antisymmetric. So the
wave functions associated with v+ and v− resemble to s and
p waves, respectively. These spiral structures were first high-
lighted in Ref. [20] where they are referred to as proximity
resonances, a name coined in Ref. [22]. Analogous states are
encountered in the context of superradiance [27,48].

Furthermore, the presence of a nearly circular distribution
in the center of Fig. 3(a) can be understood as a consequence
of the Girko-Ginibre circular law [49–52]. Indeed, when pr

is large enough to destroy any correlation between the matrix

elements of N(pr ), one can assume that the matrix elements
are independent and identically distributed complex random
variables and then apply the theory of non-Hermitian ensem-
ble as a first approximation. According to the circular law, the
density of eigenvalues is approximately constant within the
cluster and the radius ρ of the distribution is given by [27]

ρ2 = 2 Var(ν) � 1

N

〈Tr[G†(pr )G(pr )]〉
I (pr, 0)2

, (50)

where Var(ν) = 〈|ν|2〉 − |〈ν〉|2 is the variance of the spec-
trum, and G(pr ) is the so-called Green matrix [24–27] defined
as

Gi j (k) = G+(k, ri j )(1 − δi j ). (51)

The approximation in Eq. (50) holds for sufficiently large
wave number (kς 
 1). Since all the scatterers are identically
and uniformly distributed in the Lorentz gas, the trace in
Eq. (50) reduces to

〈Tr[G†(pr )G(pr )]〉 = N (N − 1)〈|G+(pr, s)|2〉. (52)

In Eq. (52), 〈·〉 denotes the average over the distance s =
‖xi − x j‖ between any pair of scatterers, xi and x j , in the
gas. In the three-dimensional case, this average reads for real-
valued wave numbers

〈|G+(pr, s)|2〉 =
(

3

8πR

)2

, (53)

as shown in the Appendix. More generally, the average (53)
behaves as |pr|d−3/Rd−1. The circle of center (46) and radius
(50) is compared to the circular cluster in Fig. 3(a). Note that,
under the constraint of unit density (N = Vd Rd ), the radius be-
haves as ρ ∝ N1/(2d ). So, although the density of the Lorentz
gas is kept constant, the circular cluster of eigenvalues still
grows with N .

When the number of scatterers is limited as in Fig. 3, the
marginal distribution of the imaginary parts of ν can be ap-
proximated by the Marchenko-Pastur distribution [24,27,52]

pMP(x) =
√

(λ+ − x)(x − λ−)

Cx
, (54)

for x ∈ [λ−, λ+] where C = π
2 (λ1/2

+ − λ
1/2
− )

2
is a normal-

ization coefficient. This well-known distribution gives the
eigenvalue density of positive-definite random matrices [52].
Its occurrence in this context is due to the constraint (45) on
the eigenvalues. In Fig. 3(b) the Marchenko-Pastur distribu-
tion in dashed is fitted to the numerical data.

In the limit of large system (N → ∞), the eigenvalues
distribution of N(pr ) is shown in Fig. 4 for d = 2. Similar
results can be found in higher dimensions, but this requires
more scatterers. Here the situation is very different compared
to Fig. 3. In particular, the circular cluster has become so large
that it has absorbed the s-wave spiral arm (ν+). The cluster has
also lost its nearly uniform density. As explained in Ref. [25],
this is due to the constraint on the eigenvalues that Im ν > 0
from Eq. (45). In some way, the eigenvalues feel the presence
of the boundary Im ν = 0 and accumulate in this vicinity. The
marginal distribution of the imaginary parts of the eigenvalues
is shown in Fig. 4(b). It reveals that the eigenvalue density
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FIG. 4. Distribution of the eigenvalues of N(pr ) in a two-
dimensional disk-shaped Lorentz gas for N = 1000 and pr = 10 ς−1,
combining 210 random configurations. (a) Full distribution in the
complex ν plane. The black dot in the bottom depicts the average
position (46). (b) Corresponding marginal distribution p(Im ν ).

inside the circular cluster behaves as

p(Im ν) ∝ 1

Im ν
. (55)

Due to Eq. (44), the same behavior is expected for the reso-
nance density in the vicinity of the single-scatterer resonance
k = p. The power law (55) is not obvious, because, at first
sight, it reminds us of the Marchenko-Pastur distribution (54).
However, it turns out that Eq. (54) behaves as x−1/2 for large
variance (λ− → 0), and this is not compatible with the behav-
ior x−1 of Eq. (55).

Distributions going as Eq. (55) were also observed nu-
merically in Ref. [21] and later explained analytically in
Refs. [24,25,27]. To calculate the eigenvalue density, these
authors have used a self-consistent equation for the resolvent
based on the Cholesky-type decomposition of the Green ma-
trix introduced in Ref. [25]. Here we numerically confirm that
the behavior (55) does not depend on the number of spatial
dimensions or the shape of the Lorentz gas. This supports
the idea that this behavior is universal for sufficiently large
N [21,27].

B. Resonance distribution

Although the eigenvalue approach leads to simple expres-
sions for the resonances, it suffers from two drawbacks. First,
this method finds only at most N resonances. It does not give
any hint about the other resonances located outside the cluster
shown in Figs. 3 and 4. A study of the resonance distribution
following this approach is thus limited to a small region of
the complex k plane of the order of L−1. Second, this method
assumes that the single-scatterer scattering amplitude displays
a narrow isolated resonance which may be too restrictive for
some applications. The hard-sphere s-wave model (18), in
particular, has no resonance for k ∈ C. Thus, the eigenvalue
approach will not help us to find all the complex resonances
of the problem, even for the resonant model (17). More gen-
erally, we need to resort to the resonance potential method
presented in Sec. II D.

Full resonance distributions numerically obtained by the
resonance potential method are shown in Fig. 5. These distri-
butions are based on the model of resonant scatterers from
Eq. (17) setting the resonance pole at p = (10 − 0.1 i)ς−1

for Figs. 5(a) and 5(b) and p = (10 − 0.2 i)ς−1 for Fig. 5(c).
In Figs. 5(a) and 5(b) one can see an almost circular cluster
of resonances centered on the position of the single-scatterer
resonance (k = p). The circular cluster in Fig. 5(b) bears
some resemblance to the eigenvalue distribution in Fig. 3(a)
obtained with the same parameters in combination with the
value pi = −0.1 ς−1. The point reflection between Figs. 3(a)
and 5(b) is due to the negative value of pi in Eq. (44).

The spiral curves in of Figs. 5(b) and 5(c) are given by
Eqs. (44) and (48). As explained previously, these resonances
result from the proximity between pairs of scatterers, hence
the name of proximity resonances [20,22,23]. In particular,
one notices that the p-wave resonances, given by ν−, have the
smallest widths and the longest lifetime. These structures are
directly revealed in the complex k plane instead of indirectly
from the eigenvalue method (44).

Furthermore, the resonance potential method highlights ad-
ditional structures of larger widths, such as the resonance band
in Fig. 5(a). This band cannot be predicted by the eigenvalues
of N(k) without considering complex values of k. Although
being of lower density than the main cluster, this band seems
to affect the resonance distribution in the main cluster. This
alteration is already visible in the vertical elongation of the
cluster in Fig. 5(b). The interference effect between the band
and the circular cluster is quite clear in Fig. 5(c) for which
the single-scatterer resonance width is larger. Another effect
is the evanescence of the density in the main cluster as the
imaginary part increases in absolute value. This evanescence
is more significant in Fig. 5(c) than in Fig. 5(b). None of these
interference effects can be explained by the eigenvalue distri-
bution of Fig. 3. This shows the limitation of the eigenvalue
method.

The existence of the resonance band below the cluster in
Fig. 5 was expected from our calculation of the two-scatterer
case in Sec. II C. In fact, this structure is due to the multiple
scattering of the particle in the medium, and not the presence
of the single-scatterer resonance. The position of this band
is thus directly related to the mean escape rate �esc from the
Lorentz gas in the absence of single-scatterer resonance. If
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FIG. 5. Resonance density 2πρ (2)(k) in the complex k plane
for the resonant model (17) in a three-dimensional ball-shaped
Lorentz gas with N = 100. All panels are numerically computed
from Eq. (41) with 28 random configurations of the scatterers.
(a) Distribution for p = (10 − 0.1 i)ς−1 with details shown in panel
(b). (c) Distribution for the wider resonance p = (10 − 0.2 i)ς−1.
The spirals are given by Eqs. (44) and (48).

we require the resonance cluster deriving from the single-
scatterer resonance to be much smaller than the imaginary
coordinate of the resonance band so as to prevent interference
effects between these structures, we obtain a supplementary
validity criterion for the eigenvalue method of Sec. III A,
namely,

|pi|ρ 
 �esc

2v(pr )
, (56)

where ρ is the cluster radius estimate of Eq. (50), and v(k) is
the group velocity. This criterion is quite restrictive since, in
the limit of large system (N → ∞), the ρ tends to infinity and
the escape rate to zero.

IV. HARD-SPHERE s-WAVE SCATTERERS

The resonance potential method offers the possibility of
studying the resonance distribution in the absence of single-
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FIG. 6. Resonance density 2πρ (2)(k) numerically computed
from Eq. (41) for the nonresonant hard-sphere s-wave model (18)
with α = 0.1 ς . (a) One-dimensional Lorentz gas for N = 10 and 215

configurations. (b) Two-dimensonal Lorentz gas for N = 50 and 28

configurations. (c) Three-dimensional Lorentz gas for N = 100 and
28 configurations.

scatterer resonances. It also allows to consider a wider
range of complex wave numbers than the vicinity of the
single-scatterer resonance. In this section, we study the full
distribution of the multiple scattering resonances in a large
area of the complex plane of k. As already stressed above,
the resonant model (17) is not physically meaningful far away
from the resonance pole k = p. This is why, in this section, we
use the more general hard-sphere s-wave model (17) which is
valid for |k| 
 α−1. To ensure this condition, we will set the
scattering length to α = 0.1 ς in all the figures. The figures are
not significantly affected by this precise choice.

A. Full resonance distribution

Numerical resonance densities obtained from Eq. (41) in
the three commonest dimensions are shown in Fig. 6. First,
note that the spurious negative densities found in Figs. 6(a)
and 6(b) are mainly due to the nonanalytic singularities of
det M(k) and are not meaningful. These negative densities
are located in the regions excluded from the domain D of
Eq. (37), in particular the point k = 0 in one dimension, and
the semiaxis arg k = −π

2 in two dimensions.
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Furthermore, the symmetry of imaginary axis in Fig. 6(b)
is ensured by our definition (9) of the Green function. This
symmetry would not have been maintained if we had defined
the Green function as Eq. (6), because the branch cut is ori-
ented differently.

One striking feature is that Fig. 6(a) looks very different
from the other panels. The resonance density in one dimension
is much more concentrated near the real k axis. This means
that the characteristic escape time is much longer than in
higher dimensions. This is related to the fact that, in one
dimension, the wave function undergoes strong Anderson
localization [8,10], as we will see later again. In addition,
the distribution displays thin stripes having no counterpart in
higher dimensions.

In Figs. 6(b) and 6(c) two different regions are observed: a
low-energy region for Re kς � π with peaks in the resonance
density, and a high-energy region for Re kς � π where the
resonances form an almost horizontal band. At low energy, the
distance between two consecutive peaks scales as the inverse
of the gas radius. Preliminary calculations show that these
peaks are related to the eigenmodes of the average potential
generated by all the scatterers. Indeed, when the wavelength is
larger than the mean inter-scatterer distance, one may expect
that the incident wave feels a continuous potential since it
cannot resolve the individual scatterers.

The resonance band for Re kς � π has the same physical
origin as the band seen in Figs. 5(a) and 5(c). The main
difference is that, in Fig. 6, the resonance distribution is free
from single-scatterer resonant clusters. Only background res-
onances resulting solely from the multiple scattering remain.
Another difference is that the typical depth of the resonance
band with respect to the real k axis is smaller in Fig. 6 than in
Fig. 5. This is due to the larger cross section of the hard-sphere
s-wave model compared to the resonant model, as shown in
Fig. 1. The larger the cross section, the smaller the escape
rate, and the closer the resonance band to the real k axis.

The situation in higher dimensions (d � 4) is very similar
to Figs. 6(b) and 6(c), except that all the resonances move
away from the real k axis, as a consequence of the dimensional
reduction of the gas size for fixed N . A detailed study of all
the structures of Fig. 6 is deferred to future work.

B. Distribution of the resonance widths

One particularly interesting feature is the behavior of the
resonance density in the resonance band (Re kς � π ), espe-
cially for large negative imaginary parts. In this region, the
resonance potential as well as the density no longer depend so
much on Re k but mainly on Im k. As one can see in Fig. 6, the
density smoothly decreases when Im k → −∞. It seems that
this decreasing behavior can be roughly approached by the
upper bound on the resonance potential �(k) that we derive
in this subsection.

First, we know that the determinant of any positive-definite
matrix can be bounded by its trace. So we can write

det(M†M)
1
N � 1

N
Tr(M†M). (57)

In terms of the eigenvalues of M†M, this is a consequence of
the fact that the geometric mean is always smaller than the

corresponding arithmetic mean [30]. Inequality (57) leads to
the following upper bound on the resonance potential (36)

�(k) = 1

2N
〈ln det(M†M)〉 � 1

2

〈
ln

(
1

N
Tr(M†M)

)〉
. (58)

In addition, we also know that 〈ln X 〉 � ln〈X 〉 for any
positive-definite random variable X . This is also due to the
inequality of arithmetic and geometric means [30]. Therefore,
a slightly weaker bound than Eq. (58) is

�(k) � 1

2
ln

(
1

N

〈
Tr(M†M)

〉)
. (59)

Using Eq. (22), the trace in Eq. (59) can be expressed in terms
of the matrix elements as〈

Tr(M†M)
〉 = N |F (k)−1|2 + N (N − 1)

〈|G+(k, s)|2〉. (60)

According to Eqs. (18) and (10), the asymptotic behavior of
F (k)−1 for large negative Im k reads

F (k)−1 ki→−∞−−−−→ 2iI (k, 0). (61)

Therefore, |F (k)−1|2 behaves as the power law |k|2(d−2), and
is negligible in front of the second term in Eq. (60) which
increases exponentially for ki → −∞. Indeed, as shown in
the Appendix, this term asymptotically behaves as

〈|G+(k, s)|2〉 ki→−∞−−−−→ d2|k|d−3

(2π )
d−1

2 Sd Rd−1

e−4kiR

(−4kiR)
d+3

2

. (62)

Therefore, in the limit ki → −∞, the upper bound (59) varies
as

�(k) � d − 3

2
ln |k| − 2kiR − d + 3

4
ln(−kiR) + const.

(63)
The result (63) means that the resonance potential does not
increase faster than linearly with −ki as ki → −∞. This con-
strains the behavior of the resonance density to power laws

ρ (2)(k)
ki→−∞−−−−→ (−ki )

−β ∀β > 1. (64)

Indeed, the limit case β = 1 corresponds to the potential
�(k) ∝ O[−kiL ln(−kiL)], which is superlinear and exceeds
the bound (63). However, Eq. (64) does not exclude a possible
exact cancellation of the density beyond a certain value of
−ki. This would correspond to β → +∞ which is allowed
by β > 1.

When the upper bound (63) is used as an approximation of
�(k) and inserted into Eq. (41), the power law(

∂2

∂k2
r

+ ∂2

∂k2
i

)
�(k) ≈ d + 3

4k2
i

(65)

is obtained for the distribution of the resonance widths at
Re kς � π . The approximation (65) is compared to the nu-
merical resonance density for a two-dimensional Lorentz gas
in Fig. 7(a). This figure depicts the cross-sectional view of the
density and the potential along the vertical axis kr = 10 ς−1.
We have chosen this value as a compromise to avoid, on
one hand, the distortion of the density due to the low-energy
structures in Fig. 6 and, on the other hand, the continuous
decrease of the single-scatterer cross section with kr .
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FIG. 7. Cross-sectional view of the complex k plane for a 2D
Lorentz gas with N = 1000 and α = 0.1 ς along the vertical axis
kr = 10 ς−1. The curves are averaged over 28 configurations. The
scale parameter is nσR � 7.04. (a) Resonance density given by
Eq. (41) (solid) and the approximation (65) (dashed). The vertical
dotted line is the diffusion approximation (68). The rightmost peak
is a numerical artifact. (b) Corresponding resonance potential (solid)
and the upper bound (59) (dashed).

It should be noted that our method suffers from significant
numerical round-off errors when the imaginary part of k is
too negative. This is also a consequence of the exponential
increase of the matrix elements of M(k). One may expect
that the method is valid as long as the condition number of
M(k), denoted as κ , is smaller than 1/ε, ε � 10−16 being
the machine epsilon in double precision [30]. The condition
number of M(k) can be roughly estimated as the ratio between
the largest and the smallest matrix elements

κ ≈ |G+(k, L)|
|G+(k, ς )| ≈ e−kiL, (66)

where L = 2R is the largest distance between two scatterers.
The range of validity of our method is thus

ki > −kimax = ln ε

L
. (67)

The value of kimax is highlighted by the vertical gray line in
Fig. 7. Given the restriction (67), the existence of the right-
most peak in Fig. 7 cannot be confirmed. This structure is
probably a numerical artifact and should be ignored. In spite
of this, the plotting regions in Fig. 8 are fully contained in the
validity domain (67). So, the curves are not too much affected
by round-off errors.

One remarkable point in Fig. 7 is that the density approxi-
mately decreases as k−2

i . This behavior is quite different from
the power law |ki|−1 obtained in Fig. 4 for the cluster of single-

FIG. 8. Cross-sectional view of resonance densities for a one-
dimensional Lorentz gas with α = 0.1 ς and kr = 10 ς−1. The
vertical dotted line is the diffusion approximation (68). (a) Density
for N = 10 averaged over 222 configurations. (b) Density for N = 50
averaged over 219 configurations.

scatterer resonances. Indeed, the resonances of the horizontal
band originate in the many collisions themselves, and not in
existence of a single-scatterer resonance as in Fig. 5.

The behavior as k−2
i seems to be known for weakly open

systems in the diffusive regime [17]. It suggests that the reso-
nances of the random Lorentz gas model could be approached
by an effective non-Hermitian Hamiltonian. However, it is
not possible to cast the nonlinear determinantal equation (23)
into a linear eigenvalue problem for all k ∈ C. Therefore,
the connection between the behavior k−2

i and the literature
[15–18] is not obvious.

Besides of this, it turns out that the abscissa of the left
peak in Fig. 7(a) approximately corresponds to the escape rate
associated with classical diffusion [10,34], that is,

kidiff = − �

2d

( j d−2
2

R

)2

, (68)

where � = (nσpt )
−1 is the scattering mean free path, and j d−2

2

denotes the first zero of the Bessel function J d−2
2

(z). This
means that the propagation of the quantum particle is mostly
diffusive and little affected by Anderson localization. This
results from the large value of k� � 25 compared to 1 given
the scattering mean free path � � 2.5 ς . In this regime, lo-
calization is not expected to be significant [10,34]. However,
Anderson localization could nevertheless be observed in two
dimensions when k � �−1.

Finally, resonance densities in a one-dimensional Lorentz
gas are shown in Fig. 8 for two different numbers of scatterers.
In this case, the approximation (65) largely overestimates the
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actual density. In contrast to the other dimensions, the overall
look of the distribution is greatly influenced by the number of
scatterers. When N is small enough, as in Fig. 8(a), the density
displays a peak near diffusion rate kidiff given by Eq. (68). This
peak disappears for moderately large N , letting the resonances
to accumulate themselves on the real k axis with density
|ki|−1, as shown in Fig. 8(b). In this case, the escape time
tends to infinity and the particle is blocked in the medium.
Accordingly, we interpret this accumulation of resonances
as a consequence of Anderson localization. Indeed, Ander-
son localization is expected to take place in one-dimensional
disordered systems [8–11]. In addition, resonance width dis-
tributions behaving as |ki|−1 are known to be a signature of
Anderson localization [17].

V. CONCLUSIONS

We considered the multiple scattering model of a quantum
particle in a random Lorentz gas made of point scatterers.
In particular, we studied the distribution of scattering reso-
nances in the complex plane of the wave number (k ∈ C).
To this end, we introduced an efficient method to compute
the actual distribution of the resonances in the complex plane
of the wave number without finding them one by one. We
refer to this method as the resonance potential method. We
applied this method for two scattering models for the indi-
vidual scatterers: a resonant model and a hard-sphere s-wave
model. The former displays an isolated resonance at a given
position k = pr + ipi, in contrast to the latter, which has no
resonance. On the other hand, the latter exhibits the expected
behavior at low energy. With the resonant model, two kinds
of structures are observed, namely a cluster surrounding the
single-scatterer resonance, and a resonance band coming from
the multiple collisions themselves. In addition, the resonance
cluster exhibits spiral arms which are interpreted as proximity
resonances [20,22,23]. We showed that, for small enough
|pi|, the resonance cluster is well described by the eigenvalue
distribution of the matrix N(pr ) defined in Eq. (43). This result
confirms the eigenvalue method developed in the literature
[20–22].

Furthermore, the resonance potential method gave us the
opportunity to consider the nonresonant hard-sphere model of
scatterers. Indeed, our method does not require the scatter-
ing model to be strongly resonant in the region of interest.
With the hard-sphere model, we mapped large regions of the
complex k plane hence revealing rich structures that, to our
knowledge, were never seen before. In particular, we observed
a collection of peaks at low energy (Re kς � π ), probably
coming from a continuum approximation of the Lorentz gas.
At high energy (Re kς � π ), we highlighted the same kind of
resonance band as with the resonant model, but without the
distortion due to the resonance cluster.

Then, we considered in more details the high energy
regime of the hard-sphere model where the resonance density
does not significantly depend on the real part of the wave
number. We identified the Anderson localization phenomenon
in the one-dimensional case as the accumulation of resonances
on the real k axis with the density | Im k|−1. In higher dimen-
sions, the resonance density exhibits a maximum point and
decreases faster than | Im k|−1 beyond. The absence of reso-

nance accumulation on the real k axis in these cases suggests
the absence of Anderson localization. Finally, in future papers,
we plan to study the intriguing structures of the resonance
density in Fig. 6 to understand their physical origin.
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APPENDIX: AVERAGE OF THE GREEN
FUNCTION IN A BALL

This Appendix aims at calculating the average of the square
modulus of the Green function over two randomly chosen
points uniformly distributed in a ball of arbitrary dimension.
This average can be expressed as

〈|G+(k, s)|2〉 =
∫ L

0
|G+(k, s)|2P(s) ds, (A1)

where P(s) denotes the probability density of the distance
between any pair of points in the domain V , and L is the
maximum distance between them. If we assume that the do-
main V is a d-ball of radius R, then L = 2R and the distance
distribution in Eq. (A1) reads [53]

P(s) = d
sd−1

Rd
I
1− s2

4R2
( d+1

2 , 1
2 ), (A2)

where Iz(a, b) denotes the regularized beta function defined
by [30]

Iz(a, b) = 1

B(a, b)

∫ z

0
ua−1(1 − u)b−1 du. (A3)

In Eq. (A3), the notation B(a, b) = �(a)�(b)/�(a + b) stands
for the beta function. Another useful representation of the
distribution P(s) is

P(s) = d
sd−1

Rd

[
1 − s

R B
(

d+1
2 , 1

2

) 2F1

(
1
2 , 1−d

2
3
2

;
s2

4R2

)]
, (A4)

where 2F1(a, b
c ; z) is the hypergeometric function [30]. Note

again that the distance distribution (A2) corresponds to uni-
formly distributed points in the ball. This distribution behaves
as O(sd−1), at small distance, and vanishes at s = L. Although
the integral (A1) using distribution (A2) is not known in
closed form, accurate approximations can be obtained with
the aid of the following asymptotic behavior for large wave
numbers:

|G+(k, s)|2 |k|s→∞−−−−→ |k|d−3

4(2πs)d−1
e−2kis, (A5)

with k = kr + iki.
In the main text, we consider two special cases for which

Eq. (A1) can be evaluated accurately: real wave numbers
and large negative imaginary wave numbers. In the first case,
which is encountered in Eq. (52), we have ki = 0, and the
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Green function (A5) simplifies. Using the new variable z =
s2/4R2, we can write Eq. (A1) as

〈|G+(k, s)|2〉 = d|k|d−3

2(2πR)d−1

[
1 − 1

B
(

d+1
2 , 1

2

)
×

∫ 1

0
2F1

(
1
2 , 1−d

2
3
2

; z
)

dz

]
. (A6)

The integral in Eq. (A6) has the closed form [30]∫ 1

0
2F1

(
1
2 , 1−d

2
3
2

; z
)

dz = B

(
d + 1

2
,

1

2

)
− 2

d + 1
. (A7)

Then, inserting Eq. (A7) in Eq. (A6) leads to the result

〈|G+(k, s)|2〉 = d �
(

d+2
2

)
2
√

π�
(

d+3
2

) |k|d−3

(2πR)d−1
. (A8)

In the three most common dimensions, Eq. (A8) becomes

〈|G+(k, s)|2〉 =
⎧⎨
⎩

1/(2|k|)2 for d = 1,

2/(3π2|k|R) for d = 2,

9/(8πR)2 for d = 3.

(A9)

So we find in particular Eq. (53). Note that, since the asymp-
totic expansion (A5) is exact for d = 1 and d = 3, the
corresponding expressions in Eq. (A9) are also exact.

In the second case considered near Eq. (60), the imaginary
part of the wave number is very negative (ki → −∞). In this
case, the integral (A1) is not known in closed form, even
with the approximation (A5). So, we have to resort to an
additional approximation based on the behavior of P(s) near
the maximum distance s = L. Indeed, due to the exponentially
increasing behavior of Eq. (A5), the contribution to the in-
tegral (A1) mainly comes from regions near the maximum
distance s = L. It is thus appropriate to expand P(s) near
s = L as follows:

P(s) = A

2R

( s

2R

)d−1(
1 − s

2R

) d+1
2

, (A10)

where A is a constant prefactor which reads

A = d 2
3d+1

2

d+1
2 B

(
d+1

2 , 1
2

) . (A11)

Note that the prefactor (A11) comes from the series expan-
sion of Eq. (A2) near s = 2R but does not ensure the proper
normalization of Eq. (A10). In order to restore the normaliza-
tion of Eq. (A10), we would have to write A = 1/ B(d, d+3

2 )
and Eq. (A10) would then become a beta distribution [30].
Although this detail does not affect very much the results, we
will keep expression (A11).

Now, substituting Eqs. (A10) and (A5) into Eq. (A1) and
using the new variable u = s/2R gives us

〈|G+(k, s)|2〉 = A|k|d−3

4(4πR)d−1

∫ 1

0
e−4kiRu(1 − u)

d+1
2 du

= A|k|d−3

4(4πR)d−1

1
d+3

2

1F1
( 1

d+5
2

; −4kiR
)
, (A12)

where 1F1(a
b; z) denotes the confluent hypergeometric function

[30]. In the special case encountered in Eq. (A12), this func-
tion admits the following asymptotic behavior:

1F1(1
b; z)

z→+∞−−−−→ �(b)ez

zb−1
−

∞∑
n=1

�(b)

�(b − n)zn
. (A13)

Therefore, Eq. (A12) asymptotically behaves as

〈|G+(k, s)|2〉 ki→−∞−−−−→ A|k|d−3

4(4πR)d−1

�
(

d+3
2

)
e−4kiR

(−4kiR)
d+3

2

, (A14)

for large negative imaginary part of the wave number k. Fi-
nally, inserting Eq. (A11) in Eq. (A14) and rearranging the
factors, we obtain Eq. (62).
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