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Role of weak values in strong measurements
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The physical meaning of the quantum weak value still remains a matter of debate. Originally introduced by
Aharonov et al. [Phys. Rev. Lett. 60, 1351 (1988).] as another counterintuitive feature of quantum mechanics,
it eventually evolved into a practical tool that is widely used. The theoretical framework in which weak values
were introduced was given by von Neumann’s model of quantum measurements. In this model, a system is
submitted to measurement by coupling it to a “pointer,” or meter. In the weak-coupling regime, one may perform
a low-order Taylor expansion for the evolution operator of the system and meter. This standard approach ties
weak values with weak couplings and weak measurements. We report closed-form expressions that can be used
to untie weak values from weak measurements. The regime of strong measurements thereby becomes accessible
to weak values, without leaving the framework in which the latter were originally introduced. The reported
results should also help us to better understand the physical meaning of weak values.

DOI: 10.1103/PhysRevA.105.042202

I. INTRODUCTORY REMARKS ON WEAK VALUES

Since their introduction in 1988 by Aharonov et al. [1],
weak values have been and still remain a matter of debate. As
up to now, one could say that “the quantum weak value has
had an extensive and colorful theoretical history” [2]. This
might have been caused by the way weak values were orig-
inally introduced, making reference to ontological views that
were not actually captured by their mathematical definition.
Indeed, the quantum weak value is defined as follows. Given
an observable Â and two states, |i〉 and | f 〉, the weak value of
Â is the complex-valued quantity

Aw = 〈 f |Â|i〉
〈 f |i〉 . (1)

As can be seen, despite the name and notation, there is noth-
ing “weak” associated with the above definition, for which
a more appropriate notation would be A f i. State |i〉 is called
the “preselected” state, and | f 〉 is called the “postselected”
state. To make sense of these names, one should consider the
two states as being involved in a prepare-and-measure exper-
iment [2], for which the probability of detecting | f 〉 when |i〉
was prepared is given by P = |〈 f |i〉|2. The name “weak” is,
in turn, justified when, instead of Â, one considers the unitary
operator Û (ε) = exp(−iεÂ) acting on |i〉 and asks once again
for the probability of detecting | f 〉. This probability is now
given by Pε = |〈 f | exp(−iεÂ)|i〉|2. The case when ε is very
small then corresponds to a weak measurement [2]. In such
a case, one may perform a Taylor series expansion to lowest
order in ε, i.e., Û (ε) = Î − iεÂ + · · · , out of which various
properties of weak-value measurements have been derived.

States |i〉 and | f 〉 belong to some Hilbert space HS . Con-
sider now that HS is a subspace of a larger space HS ⊗
HP. This is the framework of Aharonov et al. [1]. Here,
HS corresponds to the system being measured, and HP

corresponds to the measuring device, the “pointer” or me-
ter. In this case, Â turns out to be part of the operator that
rules the system-pointer interaction, i.e., a Hamiltonian Ĥ
that acts on HS ⊗ HP. Following von Neumann’s treatment
of quantum measurements, one assumes that Ĥ = gÂ ⊗ P̂,
where g is a coupling constant and P̂ has the meaning of an
impulse operator, conjugate to the position degree of freedom
that fixes the pointer’s readout: [X̂ , P̂] = i (in units of h̄ = 1).
In strong measurements, P̂ shifts the pointer’s position to a
place that is unambiguously correlated with an eigenvalue of
Â. In this context, the unitary Û (ε) acquires the meaning of
an evolution operator Û (ε) = exp(−iεÂ ⊗ P̂), where ε = gτ
and τ is the pulselike interaction time. If we start with the
system and meter being in an uncorrelated state |ψ〉S ⊗ |x =
0〉P, under the action of Û (ε) the system and meter get en-
tangled [3]. Indeed, setting |ψ〉S = ∑

n cn|an〉S , with Â|an〉 =
an|an〉, we get Û (ε)[|ψ〉S ⊗ |x = 0〉P] = ∑

n cn|an〉S ⊗ |x =
εan〉P. Measuring X̂ on subsystem P means reading out the
pointer’s position. The readout of the pointer’s position dis-
entangles the system-pointer state. Let us assume that the
pointer’s initial state |x = 0〉P is centered in x = 0 with a
standard deviation σ . Whenever σ is much smaller than the
spacings between an’s, the pointer’s readout leaves subsystem
S in a well-defined eigenstate of Â, whose corresponding
eigenvalue unambiguously correlates with the pointer’s posi-
tion. This is the limit of strong measurements, i.e., when the
pointer’s wave function 〈x|φ〉P consists of a series of nonover-
lapping “spikes,” whose centers coincide with the an’s [4].
The opposite limit refers to a weak measurement. In this case,
the pointer’s state is a superposition of strongly overlapping
distributions, e.g., Gaussians, so that the pointer’s readout is
ambiguous, compatible with more than one eigenvalue an. A
useless regime at first sight, the weak limit provides, in fact, a
very powerful tool that has been variously exploited (see [2]
and references therein). For example, it has been used as an
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amplifier of very low signals [5]. It has also enabled the direct
measurement of both the real and imaginary parts of quantum
states [6], and it has helped to address counterintuitive features
of quantum mechanics [7–9].

As already mentioned, various results related to weak val-
ues have been derived by going to lowest order in the Taylor
expansion of Û (ε). For example, the real and imaginary parts
of Aw can be related to shifts in the conjugate pointer vari-
ables [3]:

Aw = 1

ε
(〈X̂ 〉 + i4σ 2〈P̂〉), (2)

where the expectation values of X̂ and P̂ refer to the fi-
nal pointer state. Because these conjugate variables do not
commute, they cannot be measured simultaneously. Hence,
Re Aw and Im Aw were first obtained from separate subensem-
bles [6,10], and only recently were they simultaneously
measured using two pointers, thereby avoiding noncommu-
tativity [3,11].

Another example comes from considering the probabilities
Pε and P mentioned above. One can show [2] that

Pε

P
= 1 + 2ε Im Aw − ε2

(
Re A2

w − |Aw|2) + O(ε3). (3)

The above expression, which is second order in ε, contains
a second-order weak value A2

w. Generally, on using (1), nth-
order weak values are defined as [2]

An
w = 〈 f |Ân|i〉

〈 f |i〉 . (4)

Already at second order in the Taylor expansion, some issues
show up that should prompt us to seek an alternative approach.
For example, if we choose | f 〉 = |i〉, then Aw = 〈i|Â|i〉, so
that Im Aw = 0, and the lowest-order contribution of ε to
Eq. (3) is second order. This contribution involves generally
not only the real and imaginary parts of Aw but also the weak
value of Â2 as well. Hence, the simple choice | f 〉 = |i〉 has
notorious consequences for Pε/P, even though the definition
of Aw does not prescribe any particular choice for states |i〉
and | f 〉. The meaning of Aw—and of related quantities such
as Pε/P—should be independent of our choices of |i〉 and | f 〉.
The approach based on a Taylor expansion could then induce
us to misinterpret the meaning of Aw in some cases. Besides
this rather technical issue, we also notice a more physical one.
Indeed, if we set Â equal to some Hamiltonian Ĥ , taking again
| f 〉 = |i〉 and setting ε = �t , Eq. (3) reads

P(�t ) = 1 − (�t/τZ )2, (5)

where τ−2
Z ≡ (�Ĥ )2 = 〈i|Ĥ2|i〉 − 〈i|Ĥ |i〉2. Put in this form,

Eq. (3) acquires a physical meaning that has no essential
links to weak values. Equation (5) lies, indeed, at the basis
of the quantum Zeno effect [12]. Consider repeating the mea-
surement of |i〉 N times. The probability P(N )(N�t ) that the
system is found in |i〉 at time N�t approaches a value of 1
for large N . In that case, the system remains “frozen” in the
initial state. This Zeno effect bears no meaningful connection
to weak values.

There is, however, a very meaningful connection between
quantum and classical weak-value measurements. The first
experimental realization of a weak-value measurement was

made using classical light [13]. More than a decade later,
the first quantum weak-value measurement was reported [14].
While in previous cases the system and meter were repre-
sented by two degrees of freedom of the same physical object,
be it a photon or a classical light beam, in [14], two entangled
photons were used. However, this proves only that weak val-
ues can also be measured on quantum objects, not that they
are a unique quantum feature.

The above remarks suggest that the standard approach
to weak values, which is based on a Taylor expansion,
might have distorted somewhat their physical meaning, even
though their usefulness as a versatile tool is beyond doubt.
The purpose of this work is to help us better understand
the essential meaning of weak values. To this end, we will
present closed-form expressions that can be derived from von
Neumann’s model of quantum measurements. Closed-form
expressions are also useful for extending the domain of valid-
ity of weak values to include strong measurements. The latter
were addressed previously [15–22], but mostly using a Taylor
expansion in one form or another. It is worth mentioning
that weak values have been interpreted in terms of forward-
and backward-evolving states, a framework that allows us to
address couplings of finite strength [21] as well as to distin-
guish between weak values and expectation values [23]. By
applying this approach to the case in which the pointer state is
given by a Gaussian distribution, one can derive expressions
for the pointer’s shift which hold to all orders in the coupling
strength [21]. While we also assume a Gaussian distribution
for the pointer’s state, we rely on Eq. (1) as an operational
definition of weak values, giving the symbols it contains their
standard meaning.

The rest of this paper is organized as follows. In Sec. II,
we present our main results, the detailed derivations of which
are given in the Appendix. In Sec. III, we present some alter-
native forms of our main results. These forms should provide
additional insight into the meaning of weak values. Section IV
presents possible applications to Stokes polarimetry. The pa-
per then closes with our conclusions.

II. CLOSED-FORM EXPRESSIONS INVOLVING
WEAK VALUES

Let us focus on the emblematic case, originally ad-
dressed by Aharonov et al. [1], in which the system S is
a two-state system. This can be physically realized by, e.g.,
spin-1/2 particles or, alternatively, by polarized light. The
same mathematical formalism applies to all two-state sys-
tems, irrespective of their quantum or classical realization.
Classical Jones vectors and spinors are mathematically the
same, and the operators acting on them can be represented
by two-dimensional matrices. We will use Dirac’s notation,
without implying that our treatment is limited to the quantum
case.

Let us consider a Hamiltonian Ĥ and a system operator Â
given by

Ĥ = gP̂Â, Â = n · σ ≡ σ̂n, (6)

where n is a unit vector and σ is the triple of Pauli matrices.
For brevity, we drop, here and henceforth, the tensor-product
symbol in operators and vectors that refer to HP ⊗ HS . The
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initial system-meter state |i〉|ψ〉 is given by

|i〉 = cos(α/2)|+〉 + eiβ sin(α/2)|−〉,

〈x|ψ〉 = ψ (x) = 1

(2πσ 2)1/4
exp

(
− x2

2σ 2

)
, (7)

where σz|±〉 = ±|±〉. The state |i〉 is thus a general one whose
representation on the Poincaré or Bloch unit sphere is the
point (cos β sin α, sin β sin α, cos α), while ψ (x) represents a
Gaussian distribution centered on x = 0, with σ being the rms
width of |ψ (x)|2.

We are interested in obtaining a closed-form expression for
the unitary operator Û (ε) = exp(−iεP̂σ̂n). To this end, we use
the following results, the derivations of which are given in the
Appendix. First, it holds that

exp(−iθσ̂n) = 1
2 {(e−iθ + eiθ )Î + (e−iθ − eiθ )σ̂n}, (8)

where θ is any quantity that commutes with σ̂n. The second
result reads

∞∑
k=0

(−ε)k

k!

∂kψ

∂xk

=
√

2σ (2π )1/4 exp

[
− ε2

4σ 2
+ εx

2σ 2

]
G(x, σ

√
2), (9)

where G(x, σ ) = |〈x|ψ〉|2. On setting θ = εP̂ in (8) and con-
sidering that 〈x|P̂|ψ〉 = −i∂ψ/∂x, we can use (9) to get

〈x| exp(−iεP̂σ̂n)|ψ〉

=
√

2σ (2π )1/4 exp

(
− ε2

4σ 2

)

× G(x, σ
√

2)
{

cosh
( εx

2σ 2

)
Î + sinh

( εx

2σ 2

)
σ̂n

}
. (10)

The above equation yields

〈 f |〈x| exp
(−iεP̂σ̂n

)|ψ〉|i〉
〈 f |i〉

= F (x, ε, σ )
{

cosh
( εx

2σ 2

)
+ sinh

( εx

2σ 2

)
σw

n

}
, (11)

where F (x, ε, σ ) = √
2σ (2π )1/4 exp(−ε2/2σ 2)G(x, σ

√
2)

and σw
n is the weak value of σ̂n, as defined in (1).

Equations (10) and (11) are two central results of this paper.
They hold true, no matter how large ε might be, which means
that σw

n can show up also in strong measurements. There is
then hardly any reason to call σw

n a weak value. However, we
will keep adhering to the standard nomenclature.

So far, we have worked in the x representation; that is,
we have projected the pointer on the state |x〉. In connection
with the protocol discussed in [1], this is often referred to
as the step in which one performs a “strong” measurement.
The system itself is instead subjected to a weak measurement.
In the present context, such a distinction appears to be rather
artificial. Anyhow, we can also project on an eigenstate |p〉 of
the impulse operator. Following steps analogous to those used
before, we get

〈p| exp(−iεP̂σ̂n)|ψ〉 = ψ̃ (p){cos(εp)Î − i sin(εp)σ̂n}, (12)

where ψ̃ (p) = 〈p|ψ〉 is the Fourier transform of ψ (x), i.e.,
also a Gaussian. The above equation yields

〈 f |〈p| exp(−iεP̂σ̂n)|ψ〉|i〉
〈 f |i〉 = ψ̃ (p){cos(εp) − i sin(εp)σw

n }.
(13)

As we can see, the complex-valued quantity σw
n appears

in both Eqs. (11) and (13). The left-hand sides of these equa-
tions have been the point of departure for various Taylor-series
expansions. For instance, the probabilities Pε and P referred to
before can be calculated as follows.

In the x representation, we get

Pε

P
= |〈 f |〈x| exp(−iεP̂σ̂n)|ψ〉|i〉|2

|〈 f |i〉|2|ψ (x)|2

= exp

[
− ε2

2σ 2

]{
cosh2

( εx

2σ 2

)
+ sinh

( εx

σ 2

)
Re σw

n

+ sinh2
( εx

2σ 2

)
|σw

n |2
}
. (14)

In the p representation, we get

Pε

P
= |〈 f |〈p| exp(−iεP̂σ̂n)|ψ〉|i〉|2

|〈 f |i〉|2|ψ̃ (p)|2
= cos2(εp) + sin(2εp) Im σw

n + sin2(εp)|σw
n |2. (15)

Taylor-series expansions of (14) and (15) yield, to lowest
order in ε,

Pε

P
≈ 1 + ε

x

σ 2
Re σw

n , (16)

Pε

P
≈ 1 + 2εp Im σw

n . (17)

The above expressions were reported in [2] and consti-
tute a basis, together with Eq. (2), for obtaining Re σw

n
and Im σw

n from measurements performed in the x and p
spaces, respectively. We see, therefore, that Taylor-series ex-
pansions can be misleading. They can lead us to conclude
that the position variable has some inherent link with the
real part of σw

n and, similarly, that the momentum variable
has an inherent link with the imaginary part of σw

n . Equa-
tions (11) and (13) [or (14) and (15)] show that said links are
not physically meaningful, just a coincidental consequence
of the Taylor expansion. Furthermore, Eqs. (11) and (13)
show that Taylor expansions in powers of ε do not involve
different powers of σw

n . The commonly performed Taylor
expansion of exp(−iεP̂σ̂n) links εk with the kth-order weak
value 〈 f |σ̂ k

n |i〉/〈 f |i〉. Regarding weak-value measurements,
this may be seen as an artifact of the Taylor expansion. More-
over, the approach based on a series expansion can inspire
generalizations that, while being fruitful [24], might contain
limitations that derive from the approach itself rather than
from the underlying physics. In contrast, analytic expressions
can help a great deal in clarifying the true physical meaning
of weak values [18,20,25].
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FIG. 1. Gaussian wave packets of a probe system that is used as
pointer in von Neumann’s measurement model. Left: weak-coupling
regime. The coupling strength between the probe and measured sys-
tem is weak: ε 	 σ . There is an overlap between probe distributions,
so that they do not unambiguously correlate with the eigenvalues of
the system’s observable. Right: strong-coupling regime, with ε 
 σ .
Each pointer’s readout is unambiguously correlated with one of the
observable’s eigenvalues.

III. ALTERNATIVE FORMS OF OPERATORS
AND PROBABILITIES

Equations (10) and (12) can be written in an alternative
form:

〈x| exp(−iεP̂σ̂n)|ψ〉 = F (x, ε, σ ) exp
( εx

2σ 2
σ̂n

)
, (18)

〈p| exp(−iεP̂σ̂n)|ψ〉 = ψ̃ (p) exp (−iεp σ̂n). (19)

Equation (18) shows the effect of projecting the pointer on
x space. The resulting operator on HS is, up to a factor, an
element of the group SL(2,C). Physically, the latter represents

the action of a filter on a two-level system. By projecting the
pointer on p space, Eq. (19) shows that the resulting operator
on HS is, up to a factor, an element of SU(2). Physically, the
latter represents the action of a rotation on a two-level system.

The above remarks connect with results obtained by Brun-
ner et al. [26], who showed how weak measurements are
incorporated in the daily workings of fiber-optic telecom net-
works. Brunner et al. identified polarization-mode dispersion
(PMD) and polarization-dependent losses (PDLs) as two ef-
fects that can be related to weak measurements. By tuning
PMD, one can go from weak to strong measurements, and by
tuning PDLs, one can postselect either pure or mixed polar-
ization states. Whereas PMD is represented by an element of
SU(2), PDLs are represented, up to a global attenuation factor,
by an element of SL(2,C). Physically, PMD is caused by the
birefringence of optical fibers, and PDLs are caused by optical
devices having a filtering property, with a polarizer being an
extreme case, the one associated with pure states [26]. While
there is a connection between Brunner et al.’s results and
ours, it is important to note that the analysis in [26] was fully
conducted in the time domain. The conjugate, the frequency
domain, was not invoked. Moreover, PMD and PDLs play two
different roles. PMD allows us to move from weak to strong
measurements, and PDLs allow us to postselect pure or mixed
states. In our case, we have focused on pure states, and the
whole process is captured by a single effect, which occurs in
one of the two conjugate spaces, the x space or the p space.

In order to further clarify the scope of our description, let
us rewrite Eqs. (10) and (12) in terms of the eigenprojectors
|n±〉〈n±| of σ̂n, where σ̂n|n±〉 = ±|n±〉. By expressing Î and
σ̂n in terms of the eigenprojectors (see the Appendix), we get

〈x| exp(−iεP̂σ̂n)|ψ〉 = 1√
σ (2π )1/4

{
exp

[
− (x − ε)2

4σ 2

]
|n+〉〈n+| + exp

[
− (x + ε)2

4σ 2

]
|n−〉〈n−|

}
, (20)

〈p| exp(−iεP̂σ̂n)|ψ〉 = ψ̃ (p){exp(−iεp)|n+〉〈n+| + exp(iεp)|n−〉〈n−|}. (21)

Equation (20) allows us to clearly see the two limits, strong and weak, in a von Neumann measurement. With regard to the pointer,
we have two Gaussians, centered at x = ±ε, as shown in Fig. 1. Whenever ε 
 σ , the readout of the pointer is unambiguously
correlated with an eigenvalue of σ̂n. That is, a readout of the pointer that gives, say, x = +ε is accompanied by a “collapse” of
the system to state |n+〉. In the other limit, ε 	 σ , the two Gaussians overlap (see the left panel of Fig. 1), and a readout of
the pointer cannot be unambiguously correlated with an eigenvalue of σ̂n. This weak regime has been associated with the weak
value σw

n . However, as we have seen, σw
n can be associated with both weak and strong measurements.

Equation (20) yields, similar to Eq. (10),

〈 f |〈x| exp(−iεP̂σ̂n)|ψ〉|i〉
〈 f |i〉 = 1√

σ (2π )1/4

{
exp

[
− (x − ε)2

4σ 2

]
w

+ + exp

[
− (x + ε)2

4σ 2

]
w

−

}
, (22)

where w
± are the weak values of the projectors |n±〉〈n±|. Here again, we use the established nomenclature, even though both

weak and strong measurements are equally well described by one and the same expression, Eq. (22).
As for Eq. (21), we can use the explicit expression

ψ̃ (p) =
(

2σ 2

π

)1/4

exp(−σ 2 p2) (23)

to get

〈 f |〈p| exp(−iεP̂σ̂n)|ψ〉|i〉
〈 f |i〉 = exp

(
− ε2

4σ 2

){
exp

[
−

(
σ p + i

ε

2σ

)2]
w

+ + exp
[
−

(
σ p − i

ε

2σ

)2]
w

−

}
, (24)
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FIG. 2. A source emits a Gaussian beam that is collimated by
lens L1. Two quarter-wave plates (QWPs) and one half-wave plate
(HWP) generate any desired polarization state. The birefringent crys-
tal couples the polarization and optical path, the latter playing the
role of the meter in von Neumann’s model. A polarizer (P) fixes the
postselected polarization state | f 〉. Depending on the position of lens
L2, the postselected meter state can be position |x〉 or momentum |p〉.
Setting L2 on position A, one has a p-imaging lens, while setting L2

on B, one has an x-imaging lens. In both cases, images form on the
CCD, where a single-shot readout is performed.

where we have completed squares to put the result in a form
that resembles that of Eq. (22). Despite this formal resem-
blance, we cannot properly say that we have two Gaussian
distributions centered at p = ±iε/2σ 2 because p must be
real. We should, however, note that in the literature on weak
values, for the sake of brevity authors might say that, e.g.,
exp[−σ 2(p − Aw )2] is a Gaussian centered on Aw [4,27] and
that φ(q − gAw ) represents a translation of the wave function
by gAw [28], even though Aw can have complex values.

Instead of writing Eq. (24) in the form of (22), we should
rather stress the difference between the two results, (20)
and (21), from which they derive. This difference reflects
the assumption that our pointer’s readouts are positions, i.e.,
eigenvalues of X̂ . In von Neumann’s model, the interaction
Hamiltonian couples, in this case, the system operator Â with
the meter operator that is conjugate to X̂ , i.e., P̂, because
it is the latter that causes displacements in the eigenvalues
of X̂ . Had we chosen to measure the impulse p with our
pointer, then we would have taken the Hamiltonian Ĥ = gX̂ Â
to describe the system-meter interaction instead of Ĥ = gP̂Â.
In that case, Eqs. (20) and (21) would interchange their roles.

IV. STOKES POLARIMETRY BASED ON WEAK VALUES

As we have seen, weak values are not restricted to appear
in connection with weak measurements. They can also take
part in strong measurements. It would be worthwhile, then,
to review those cases in which weak values were used under
the assumption that the required measurements must be weak.
While such a review goes beyond the scope of this work,
we want to discuss here a simple method for performing po-
larimetry, a method that derives from the weak-value approach
without fully relying on it, as was the case in Ref. [10].

Let us refer to an optical setup that contains all the essen-
tial elements entering weak-value measurements. Following
Dressel et al. [2], we consider the experiment shown in Fig. 2.
The system observable corresponds, in this case, to the po-
larization degree of freedom, irrespective of the classical or
quantum nature of the employed light, e.g., a laser beam or
single photons. The system observable couples to a meter op-
erator, which is realized by a birefringent crystal that displaces
the light beam in a direction that correlates with the horizontal
and vertical components of the polarization state. This is the

optical analog of a Stern-Gerlach experiment with spin-1/2
particles. By tilting the birefringent crystal with respect to the
direction of the incident beam, one can vary the length of
the path traveled by each polarization component inside the
crystal [2]. In this way, one can tune ε and span a range that
includes both weak and strong measurements.

The system operator Â is, in this case, represented by the
Pauli matrix σ̂z = |H〉〈H | − |V 〉〈V |, where H refers to hori-
zontal polarization states and V refers to vertical polarization
states. The initial state is |ψ〉|i〉, where |ψ〉 represents the
transverse beam profile, and |i〉 is the polarization state. The
postselected meter state can be either |x〉 or |p〉, depending on
where we put the imaging lens before the detection device.
This is a CCD camera, the pixels of which register either
the laser intensity or the photon-detection probability. The
location of the imaging lens determines whether each pixel
corresponds to the transverse position x or to the momentum
p. The latter requires the lens to be positioned to work as a
Fourier lens.

Let us take the initial polarization state as |i〉 =
cos(α/2)|H〉 + eiβ sin(α/2)|V 〉 and the final polarization state
as | f 〉 = (|H〉 − |V 〉)/

√
2. Thus, |i〉 is the previously men-

tioned general polarization state [see (7)], whose Stokes
vector is (cos β sin α, sin β sin α, cos α). The initial meter
state |ψ〉 represents the Gaussian beam profile that was
given in (7). We want to obtain the Stokes vector from
our measurements. Such a task is routinely performed with
Stokes polarimetry, in which one measures six intensities (or
probabilities). These correspond to horizontal, vertical, diago-
nal, antidiagonal, circular-right, and circular-left polarization
states. One must change the settings of some optical devices
before recording each intensity. Using the setup in Fig. 2, one
must change only once the placement of the imaging lens. The
polarizer orientation remains fixed to select only the antidiag-
onal state | f 〉. The three retarders, i.e., two quarter-wave plates
and one half-wave plate set before the birefringent crystal, are
there to generate any desired polarization state. Hence, the
setup shown serves for the generation and characterization of
polarization states. If only the latter is of interest, the setup
simplifies to consist of only one imaging lens as an adjustable
element. The other elements, the collimating lens, birefringent
crystal, polarizer, and CCD camera, remain fixed.

Let us refer first to the intensity or detection probability
at pixel x. This is given, up to normalization, by Pε (x) =
|〈 f |〈x| exp (−iεP̂σ̂z )|ψ〉|i〉|2, which can be readily calculated
from (10). As explained in [2], the experimenter can assign
a value x or a multiple thereof (see below) to each pixel and
thus obtain a centroid that, in our case, is given by

Cx =
∫

xPε (x)dx = ε

2
cos α. (25)

By setting the lens to work as a Fourier lens, one ob-
tains the centroid in p space. It corresponds to Pε (p) =
|〈 f |〈p| exp (−iεP̂σ̂z )|ψ〉|i〉|2 and is given by the following
expression, which follows from (12):

Cp =
∫

pPε (p)d p = ε

4σ 2
exp

(
− ε2

2σ 2

)
sin β sin α. (26)
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Similarly, one obtains

Ap =
∫

Pε (p)d p = 1

2

[
1 − exp

(
− ε2

2σ 2

)
cos β sin α

]
.

(27)

One can get the Stokes parameters directly by assigning to
each pixel values of x or p which are conveniently modified
in view of the above equations. For example, regarding (25),
instead of x, one assigns the value 2x/ε to each pixel and then
averages with Pε (x) [2], thereby obtaining cos α directly. One
proceeds similarly with (26). Alternatively, one can obtain the
Stokes parameters as follows:

exp

(
ε2

2σ 2

)
(1 − 2Ap) = cos β sin α, (28)

4σ 2

ε
exp

(
ε2

2σ 2

)
Cp = sin β sin α, (29)

2

ε
Cx = cos α. (30)

From the beam profile one gets σ , while the tilting of the bire-
fringent crystal fixes ε. These two device parameters should
be determined beforehand, following some appropriately de-
signed calibration protocol. We stress that ε does not need to
be small, a fact that illustrates the usefulness of addressing
a model in terms of what it actually contains. Neither weak
measurements nor even quantum measurements are necessar-
ily involved when applying von Neumann’s model. We see
that this model applies beyond its originally intended domain.

V. CONCLUSIONS

The closed-form expressions reported in this work should
help us understand the meaning of weak values, a concept that
is still under debate. We showed that the standard approach to
weak values might be unnecessarily restricted. This approach
is based on Taylor expansions of the unitary operator that de-
scribes the system-meter interaction in von Neumann’s model
of quantum measurements. Said Taylor expansions naturally
tie together the coupling constant of the interaction Hamil-
tonian and a system’s observable. In the Taylor expansion,
increasing orders of weak values are tied to increasing powers
of the coupling constant. The closed-form expressions involve
only the first-order weak value, which appears as a factor
of expressions that contain the coupling parameter. One can
then tune large values of the coupling parameter, i.e., perform
strong measurements, while still addressing the chosen weak
value. In other words, in order to address a weak value, one
is not restricted to remain within some weak-measurement
regime. The results of this work, which are based on closed-
form expressions, complement those of other studies that
addressed weak values in connection with strong measure-
ments [15–22].

We stress that most of our findings hold for both quantum
and classical systems. Even though the first experimental re-
alization of weak values was conducted with classical light,
the prevailing view is that weak values are a purely quantum
feature. A similar view probably still prevails about entangle-
ment, despite much theoretical and experimental evidence to
the contrary [29–40]. This evidence led Eberly and coworkers

to identify in the very definition of entanglement “a vector-
space property, present in any theory with a vector-space
framework” [41]. We subscribe to this view and argue that
the same should hold for weak values.
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APPENDIX: CLOSED-FORM EXPRESSIONS
OF MATRIX EXPONENTIALS

Let Â be a Hermitian operator with eigenvalues an and
eigenvectors |an〉, and let f (z) be an analytic function. It then
holds that f (Â), which is defined in terms of the series expan-
sion of f (z), can also be written as f (Â) = ∑

n f (an)|an〉〈an|.
Consider the Pauli operator σ̂n = n · σ, whose eigenvectors
we denote by |n±〉. We have then that θσ̂n|n±〉 = ±θ |n±〉. Let
θ be a quantity that commutes with σ̂n. Then, setting Â = θσ̂n

in the formula above, we get

f (θσ̂n) = f (θ )|n+〉〈n+| + f (−θ )|n−〉〈n−|. (A1)

Moreover,

Î = |n+〉〈n+| + |n−〉〈n−|, (A2)

σ̂n = |n+〉〈n+| − |n−〉〈n−|. (A3)

Hence, we can write (A1) in the form

f (θσ̂n) = 1
2 [ f (θ ) + f (−θ )]Î + 1

2 [ f (θ ) − f (−θ )]σ̂n. (A4)

We are interested in the evolution operator U (ε) =
exp(−iεP̂σ̂n) ≡ exp(−igτ P̂σ̂n) of the interaction Hamiltonian
Ĥ = gP̂ ⊗ σ̂n. Here, P̂ and σ̂n commute with one another
because they act on different subspaces (strictly, P̂ ⊗ Î com-
mutes with Î ⊗ σ̂n). Thus, as long as the system S is
concerned, a meter operator θ ≡ εP̂ behaves as a c number
rather than as a q number. Hence, (A4) holds for f (θσ̂n) =
exp(−iθσ̂n), so that

exp(−iθσ̂n) = 1
2 {(e−iθ + eiθ )Î + (e−iθ − eiθ )σ̂n}. (A5)

P̂ acts as a derivative in the x representation: 〈x|P̂|ψ〉 =
−i∂ψ/∂x. Hence, 〈x| ± iθ |ψ〉 = ±ε ∂ψ/∂x, so that Taylor
expansion of e±iθ leads to

〈x|(e−iθ ± eiθ )|ψ〉 =
∑

k

[
(−ε)k

k!

∂kψ

∂xk
± εk

k!

∂kψ

∂xk

]
. (A6)

In our case, ψ (x) = 〈x|ψ〉 = (2πσ 2)−1/4 exp(−x2/4σ 2). It is
convenient to define

G(x, σ ) = |ψ (x)|2 = 1

σ
√

2π
exp(−x2/2σ 2). (A7)

The kth derivative of G(x, σ ) is proportional to the kth Her-
mite polynomial Hk (x):

∂kG(x, σ )

∂xk
=

( −1

σ
√

2

)k

Hk

(
x

σ
√

2

)
G(x, σ ). (A8)
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From this, it follows that
∞∑

k=0

(∓ε)k

k!

∂kψ

∂xk
=

√
2σ (2π )1/4

∞∑
k=0

(±ε/2σ )k

k!
Hk

( x

2σ

)
G(x, σ

√
2). (A9)

We recall that Hermite polynomials can be defined through their generating function:

exp(−t2 + 2tx) =
∞∑

k=0

t k

k!
Hk (x). (A10)

On comparing (A10) and (A9), we see that
∞∑

k=0

(∓ε)k

k!

∂kψ

∂xk
=

√
2σ (2π )1/4 exp

[
−

( ε

2σ

)2
± εx

2σ 2

]
G(x, σ

√
2). (A11)

Equation (A11) can be used in (A6) to obtain

〈x|(e−iθ + eiθ )|ψ〉 = 2
√

2σ (2π )1/4 exp
[
−

( ε

2σ 2

)2]
G(x, σ

√
2) cosh

( εx

2σ 2

)
, (A12)

〈x|(e−iθ − eiθ )|ψ〉 = 2
√

2σ (2π )1/4 exp
[
−

( ε

2σ 2

)2]
G(x, σ

√
2) sinh

( εx

2σ 2

)
. (A13)

The above results, together with (A5) and (A6), lead to

〈x| exp(−iθσ̂n)|ψ〉 =
√

2σ (2π )1/4 exp

(
− ε2

4σ 2

)
G(x, σ

√
2)

{
cosh

( εx

2σ 2

)
Î + sinh

( εx

2σ 2

)
σ̂n

}
. (A14)

As for the p representation, we have

〈p|(e−iθ + eiθ )|ψ〉 = 〈p|(e−iεp + eiεp)|ψ〉 = 2〈p| cos(εp)|ψ〉, (A15)

〈p|(e−iθ − eiθ )|ψ〉 = 〈p|(e−iεp − eiεp)|ψ〉 = −2i〈p| sin(εp)|ψ〉. (A16)

Hence,

〈p| exp(−iθσ̂n)|ψ〉 = ψ̃ (p){cos(εp)Î − i sin(εp)σ̂n}. (A17)
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