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This comment on the paper by Karlovets and Pupasov-Maksimov [Phys. Rev. A 103, 012214 (2021)] addresses
their criticism of the combined experimental and theoretical study by Remez et al. [Phys. Rev. Lett. 123,
060401 (2019)]. We show, by means of simple optical arguments as well as numerical simulations, that the
arguments raised by Karlovets and Pupasov-Maksimov do not hold in the experimental regime reported by
Remez et al. Further, we discuss a clarification for the theoretical derivations presented by Karlovets and
Pupasov-Maksimov, as they hold only when the final state of the emitting electron is observed in coincidence
with the emitted photon. Although this scenario is feasible and may stimulate new experimental regimes that do
correspond to the predictions reported by Karlovets and Pupasov-Maksimov, it is not the common scenario in
cathodoluminescence, where only the light is measured. Upon lifting the concerns regarding the experimental
regime reported by Remez et al., and explicitly clarifying the electron postselection, we believe that the paper
by Karlovets and Pupasov-Maksimov may constitute a valuable contribution to the problem of spontaneous
emission by shaped electron wave functions, as it presents new expressions for the emission rates beyond the
ubiquitous paraxial approximation.
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I. INTRODUCTION

The new derivations presented in Ref. [1] are novel and
interesting, and address quantum-mechanical corrections to
radiation by free electrons beyond the paraxial approximation
for electron beams, which is often employed in the literature.
This research follows the path of previous papers on the topic
of spontaneous emission by free-electron wave functions with
orbital angular momentum [2,3].

However, in the start of their paper, the authors express
doubts regarding the experimental results and conclusions in
a combined experimental and theoretical work published by
Remez et al. [4], where no dependence on the transverse
part of the electron wave function was reported upon spon-
taneous emission of Smith-Purcell radiation from a uniform
grating. Further, we believe the authors of Ref. [1] should
clarify that their calculations hold for the physical scenario
of postselection (or coincident detection) of the electron and
the light.

The main point of controversy is the interpretation of the
free-electron wave function in the Smith-Purcell effect [4].
In particular, Ref. [1] argues against the validity of the ex-
perimental parameters and conclusions reported in Ref. [4].
We identify the two assumptions in Ref. [1] that lead to (i)
criticism regarding the validity of the far-field measurements
in Ref. [4] and (ii) different treatment of quantum decoher-
ence of the Smith-Purcell effect in the experiment, and any
free-electron radiation process. These assumptions, which we
believe do not hold for the experiment in Ref. [4], explain the
conflicts between Refs. [1,4]. Below, we explain what in our
opinion are the necessary physical assumptions in two ways:
using simple optical considerations, and numerical simula-
tions, both clarifying why the conclusions in Ref. [4] hold.

II. RECAP OF REMEZ et al. [4]

Before we delve into the quantitative estimate, we make
a short reminder about the context of the study reported
by Remez et al. [4]. The experiment and complementing
theory aimed to decide between two possible interpretations
of the role of a free electron’s wave function in the pro-
cess of spontaneous emission from that electron: (1) the
semiclassical interpretation: the electron emits light coher-
ently as a smeared-out charge density given by e|ψ (r)|2;
(2) the quantum interpretation: the electron effectively
“collapses” to a point r upon emission with probability
|ψ (r)|2, and then emits light incoherently from different
points (or, localized regions of size much smaller than the
emitted wavelength). In Ref. [4], it was found that both
experiment and QED-based theory agree with the second
interpretation.

III. THEORY

(1) Semiclassical:
In the semiclassical theory, the electron current density is

written as

j(r, t ) = ev0δ(z − v0t )|ψT (rT )|2. (1)

According to Jackson [5] the emitted power spectrum mea-
sured by an observer in a direction n̂ is

d2P

d�dω
=

∣∣∣∣
∫

d2rT |ψT (rT )|2e−i ω
c n̂·r̂T

∣∣∣∣2 d2Pclass

d�dω
. (2)

If the electron state is an incoherent mixture of different
wave functions, each coherent only with itself, an incoherent
summation over a classical probability p(r) is performed (see
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derivation in Appendix A):

d2P

d�dω
=

∫
d2r0 p(r0)

∣∣∣∣
∫

d2rT |ψT (rT − r0)|2e−i ω
c n̂·r̂T

∣∣∣∣2

× d2Pclass

d�dω
. (3)

In both cases, the radiation divergence will be dom-
inated by the width of |ψT (rT − r0)|2, as the integral∫

d2rT |ψT (rT )|2e−i ω
c n̂·r̂T results in a narrow distribution for

the direction n̂.
(2) Quantum:
Using a quantum electrodynamical calculation, and when

the electron’s final state is not measured, the power spectrum
becomes

d2P

d�dω
=

∫
d2rT |ψT (rT )|2 d2Pclass

d�dω
(rT ), (4)

if the electron is in a pure state with a wave function ψ (r), or,
more generally (see derivation in Appendix B),

d2P

d�dω
=

∫
d2rT ρel,T (rT , rT )

d2Pclass

d�dω
(rT ), (5)

if the electron has a density matrix ρel(r, r′) (i.e., it is in
a mixed state). Note that the two results coincide when
ρel(r, r′) = ψ (r)ψ∗(r′) is a pure state.

IV. EXPERIMENT

To test the hypotheses, the azimuthal radiation pattern of
Smith-Purcell radiation, emitted by narrow and wide electron
beams, was measured. If the semiclassical theory was true,
coherent interference from the charge density e|ψ (r)|2 would
have resulted in collimated light in the far field, with a diver-
gence angle of

θ ∝ λ

d
, (6)

where d is the transverse aperture from which the light is
emitted coherently, corresponding to the width of the single-
electron wave function ψ (r) [see Eqs. (2) and (3) and further
discussion herein]. By changing the width of the beam via
magnification, the transverse coherence of the wave function
is also changed [6], and the divergence of the light should have
changed accordingly.

On the other hand, if the quantum theory was true,
then the light would always be azimuthally divergent,
as it was emitted by a point charge [see Eqs. (4) and
(5)]. Therefore, no change in azimuthal divergence should
be measured when the width of the wave function is
changed.

Note that, since electron beams can be partially coherent
(i.e., comprising a mixture of single-electron wave functions
that are coherent with themselves up to a transverse coherence
length lc), the incoherent width of the entire beam does not
represent the aperture d that is considered above. Instead, the
aperture of light emission from a single electron must be

d = lc, (7)

and, therefore,

θ ∝ λ

lc
, if semiclassical. (8)

This observation is asserted by the semiclassical numerical
finite-difference time domain (FDTD) simulations in Fig. 1.

V. CONDITIONS FOR TESTING THE HYPOTHESES

The hypotheses could be tested only if the following con-
ditions are met:

(1) Enough spatial coherence. The transverse coherence
length lc should be larger than the wavelength (to observe
collimation, if there is one). In the experiment in Ref. [4], the
measured coherence length was indeed

lc =
{

5 μm, for beam width of 300 μm
33 μm, for beam width of 2000 μm � λ = 0.6 μm.

(2) Far-field detection. The distance to the detector zdet

exceeds the Fraunhofer distance (to perform the measurement
in the far field). The Fraunhofer distance zF corresponding to
the transverse coherence length of the beam was

zF = d2

λ
= l2

c

λ

=
{

42 μm, 300 μm beam
1.8 mm, 2000 μm beam � zdet = 25 cm,

and similarly for the coherent interaction length of the electron
with the grating, reported in an earlier experiment [7] on the
same setup and same conditions to be Lint = 10 μm:

zF = d2

λ
= L2

int

λ
= 167 μm � zdet = 25 cm.

See also further discussion on this point in the following
section.

(3) Low current. The current needs to be low enough to
avoid coherent effects from multiple electrons. The experi-
ment of Ref. [4] uses a dc electron beam wherein electrons
are randomly positioned in the beam and the light emission
needs to be ensemble averaged over the random positions. For
the reported current of I = 40.8 nA, less than one electron
interacts with the sample along the coherent interaction length
Lint = 10 μm, and approximately five electrons are interacting
with the sample along the incoherent interaction length of
∼4 mm. However, these electrons are sparsely and randomly
positioned along the beam, and the random distance between
them much exceeds the emitted wavelength. Therefore, co-
herent interference effects are expected to wash out. We assert
this observation using numerical simulations of the ensemble-
averaged beam structure factor in Appendix C and presented
in Fig. 3.

Let us now find the critical current for which many-body
effects become dominant, and show that it cannot be realized
with dc currents as in the experiment of Ref. [4]. The critical
current above which many-electron coherent effects become
dominant, and the radiation is dictated by the whole beam
size, is (see Appendix C)

I0 = q2Wev, (9)
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FIG. 1. Numerical FDTD simulations of semiclassical Smith-Purcell radiation by partially coherent electron beams. (a) Illustration of the
Smith-Purcell emission from a partially coherent source—under the semiclassical (charge density) interpretation. The incoherent electron beam
width wbeam is much larger than the wave function coherence length lc. Light with wavelength λ is emitted coherently from each aperture lc,
and the radiation is summed incoherently over the beam width. A far-field observer located at r � l2

c /λ measures the light divergence along the
azimuthal angle φ. If the light emission is semiclassical (i.e., light is emitted coherently from a smeared-out charge density), the observer should
see a divergence that scales with λ/lc. In the experiment reported in Ref. [4] this logic was used to rule out the semiclassical interpretation
in favor of a quantum probabilistic point-charge model, as no change in the divergence was observed for a corresponding change in lc. (b)
FDTD model used for the semiclassical simulations. For each simulation, a coherence length was chosen and the emitted light was summed
incoherently from different parts of the beam width. (c) The angular spectrum along the azimuthal angle as predicted by the semiclassical
interpretation for different coherence lengths [0.2 μm: outermost (blue) line; 1 μm: middle (green) line; and 4 μm: innermost (red) line]. The
semiclassical theory predicts a considerable change in the angular divergence when lc is varied. This result was obtained upon propagating the
near field to a distance of r = 100 μm away from the source, satisfying r � l2

c /λ but at the same time ensuring r � w2
beam/λ—a similar regime

to that reported in the experiment [4]. In contrast, the authors of Ref. [1] considered the Fraunhofer condition to be r � w2
beam/λ, suggesting

that the measurements in Ref. [4] were taken in the near field. They further claim that in this case, the radiation angular divergence should be
wide for all values of lc due to a near-field effect. Our simulations show that this is not fulfilled, and that the radiation patterns strongly depend
on lc even in the regime which the authors of Ref. [1] considered as the near field.

where q is the emitted light wave number and W the full (in-
coherent) beam width. For the parameters of the experiment
in Ref. [4], the critical current I0 is in excess of 1 A, which of
course is orders of magnitude larger than the reported current
of I = 40.8 nA.

While a critical value of 1 A seems rather large, note,
however, that this situation is completely plausible for exper-
iments with electron bunches rather than dc currents. In such
cases, the peak current is I = Q/
t where Q is the bunch
charge and 
t its duration. For example, a bunched-beam
experiment [8] reported a bunch charge Q = 4 pC and bunch
length 
t = 250 fs, giving a peak current of I = 16 A. In
this regime, it is well known [9] that the coherent emission
of radiation is dictated by the structure of the bunch rather
than by the single-electron wave packet.

(4) Paraxiality. To avoid corrections due to the beam be-
ing nonparaxial, the variance of the transverse momentum
should be much smaller than the carrier momentum of the
wave packet along the azimuthal direction. In other words, the
convergence angle should be small. The experiment in Ref. [4]
was performed in parallel illumination of the transmission

electron microscope (TEM), imaged onto the viewing cham-
ber plane with a convergence angle of less than 0.36 μrad.

VI. VALIDITY OF THE MEASUREMENTS AND
CONCLUSIONS IN REMEZ et al. [4]

A. Semiclassical and quantum theories of spontaneous
emission by free electrons

Reference [1] claims that a semiclassical interpretation
could still explain the physics of the experiment reported in
Ref. [4]—and that its results cannot reject the semiclassical
interpretation. The main reason cited by the authors of Ref. [1]
is that the experiment in Ref. [4] was performed in near-field
conditions. It is the purpose of the following section to show
that the experiment reported in Ref. [4] rejects the semiclas-
sical theory and that it was performed in the far field as
claimed in Ref. [4]. We explicitly show that the semiclassi-
cal and quantum interpretations predict dramatically different
radiation patterns. To do this, below we first consider the pre-
dictions made by the semiclassical interpretation—removing
the ambiguity suggested by Ref. [1]—and then explain how,
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based on the measurements reported in Ref. [4], the semiclas-
sical interpretation can be rejected in favor of the quantum
interpretation.

B. Fraunhofer diffraction condition of light emitted by partially
coherent electron beams

The authors of Ref. [1] claim that the experimental re-
sults reported in Ref. [4] do not agree with their theoretical
prediction because the radiation pattern was presumably not
measured in the far field. Based on this argument, they claim
that the divergence observed in the radiation can still be
accounted for via a semiclassical near-field effect. Put in
other words, the authors argue that the Fraunhofer diffraction
condition r � d2/λ [Eq. (6) in their paper] is not met in
the measurements reported in Ref. [4] (r is the observation
distance, d the aperture diameter, and λ the optical wave-
length). The reason they provide is that the width of the entire
electron beam in the experiment in Ref. [4] is in the range of
d = wbeam = 0.3 to 2 mm, implying that in order to be in the
far field, r must exceed 0.15 and 6.7 m, respectively, wherein
the radiation was observed at a distance of approximately
r = 0.25 m.

Here we explain why the experiment was indeed performed
in the far field. The relevant parameter for calculating the
interference of light emitted from a current source is the
transverse coherence length–denoted by lc–of the source, and
not its total incoherent width (wbeam ) as was assumed in the
calculations of Ref. [1] when claiming against the measure-
ments in Ref. [4]. The incoherent width can be thought of as
a statistical distribution, where each arriving electron appears
at a different location. Each single electron therefore consists
of an independent wave function coherent only with itself, on
a transverse length scale lc. The coherent radiation emitted by
each single electron, therefore, could only depend on a scale
of up to lc, and not wbeam.

This means that the correct effective aperture d from which
the light is emitted in the case of a semiclassical calculation
(as Ref. [1] employs) would be on the order of the transverse
coherence length, i.e., d = lc and not d = wbeam, such that the
Fraunhofer condition reads

r � l2
c /λ.

In the experiment reported in Ref. [4], the transverse
coherence length of the electron was measured to be lc =
5 μm for wbeam = 0.3 mm and lc = 33 μm for wbeam =
2 mm. Consequently, the Fraunhofer condition is easily met
by the measurements, giving r � 50 μm and r � 2.2 mm,
respectively, where the distance in the experiment reported in
Ref. [4] was r = 0.25 m. This implies that Ref. [4] safely
meets the far-field condition. We further note that to avoid
geometrical influence on the measurement (e.g., a parallax)
one needs to ensure that the region of the different sources
(i.e., the beam width wbeam) spans a small angle in the obser-
vation plane, which is also easily met by the experiment since
wbeam/r � 1.

We complement these arguments with a numerical FDTD
simulation of semiclassical Smith-Purcell emission by free
electrons passing near a metallic grating, realizing the
semiclassical equation (3) (see derivation in Appendix A).

For numerical convergence purposes, we scaled down the
problem to scanning electron microscope (SEM) energies
(E = 30 keV) such that the grating length was L = 4 μm
with a periodicity of � = 200 nm for visible emission at
λ = 600 nm for θ = 90◦, and an incoherent beam width of
wbeam = 20 μm. We varied the coherence length lc between
0.2, 1, and 4 μm, adding incoherently the contributions
to the emitted light from different parts of the electron
beam (i.e., adding incoherently 100 simulations with lc =
0.2 μm, 20 simulations with lc = 1 μm, etc.)—see Fig. 1.
We propagated the near field to a distance r = 100 μm.
This distance is larger than the Fraunhofer distance as-
sociated with the coherence lengths (r � l2

c /λ, with l2
c /λ

found to be at most 27 μm for lc = 4 μm), while being
smaller than the Fraunhofer distance associated with the in-
coherent beam width wbeam, i.e., r � w2

beam/λ = 667 μm,
as falsely argued by Ref. [1]. We find that, as expected,
the divergence varies dramatically according to the coher-
ence length lc, even though the beam width wbeam stayed
the same.

C. Ruling out the semiclassical theory

The calculation of spontaneous emission under the semi-
classical interpretation considers a coherent interference from
an extended source defined by e|ψ (r)|2, where the width of
ψ (r) is of the order of lc—thus defining the effective aper-
ture d = lc. At the same time, there is also an incoherent
summation of the field intensities emitted from different parts
of the electron beam, as the incoherent width of the electron
beam wbeam is much wider than lc. Under this interpretation,
a change in lc (between 5 and 33 μm) should, in the far
field, lead to a respective change in the azimuthal divergence

φ ∼ λ/lc. Should no such change be observed, the semiclas-
sical interpretation can be ruled out in favor of the incoherent
pointlike emission, the quantum interpretation, predicted by
quantum electrodynamics.

The experiment in Ref. [4] did not observe any change in
the measured divergence, even though the coherence length lc
was varied by more than 6 times. Further, the observed diver-
gence was more than an order of magnitude larger than that
predicted by the semiclassical theory. This evidence therefore
implies that we can reject the semiclassical interpretation in
favor of the quantum interpretation, suggesting an invariant
divergence.

VII. MODELING OF SPONTANEOUS EMISSION BY FREE
ELECTRONS: THE ROLE OF ELECTRON

POSTSELECTION

The key point is that Ref. [1] derives emission rates that
depend on the final electron quantum state. This derivation
corresponds to a postselection of the electron (or coincidence
measurement of the electron and photon), which does not hap-
pen in the experimental setup of Ref. [4]. Such a postselection
is experimentally feasible [10] and can be relevant to new
experimental regimes of cathodoluminescence—wherein, the
predictions presented in Ref. [1] can be of great importance.
However, this is not the common situation in free-electron
radiation (e.g., see the literature on cathodoluminescence
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FIG. 2. Illustration of light emission by postselected and traced-out electron final states. (a) Free-electron emission from an initial electron
momentum state ki that scatters due to the emission into a postselected final state k f , where the emitted light has a wave vector q, and the
emission is mediated by the grating momentum κ . Momentum and energy conservation impose entanglement between the electron and photon.
Postselecting electron final states allows the light emitted from different initial states of the wave function to interfere, making the emission
wave function dependent. (b) When the electron final state is not measured, the entanglement between all possible final states and all possible
photonic modes leads to quantum decoherence. In this case, the emission is wave function independent; i.e., light interference from different
initial states of the electron wave function is washed out.

[11,12]), where only the light is measured, nor was it the case
in the experiment in Ref. [4].

In Appendix B, we derive the emitted power spectrum in
this manner, where we trace out the electron degrees of free-
dom by summing incoherently over all final momentum-space
electron states eikf ·r. However, in Ref. [1] this incoherent
summation is not performed. Instead, the paper mentions that
the situation corresponding to not measuring the electron is
analogous to specifying the final state of the electron to be a
plane wave [1]. However, specifying the final electron state as
a plane wave eikf ·r means that it is postselected (with momen-
tum kf ). This can be done by a momentum-resolved electron
energy loss spectroscopy (EELS), but that did not happen in
the experiment in Ref. [4].

We note that there is now strong evidence [2,4,13] that in
the case of paraxial and perturbative free-electron radiation
from transversely uniform media, with no electron postselec-
tion, the radiation does not depend on the initial electron wave
function, due to the underlying electron-photon entanglement
leading to decoherence [14,15]. Figure 2 illustrates this prin-
ciple by showing that for light emitted by a coherent wave
function, interference is washed out if the electron final state is
not observed (i.e., no postselection of the final state is made).

It is important to also emphasize that there are possible
exceptions to this rule in special situations in which the
electron wave function does matter in spontaneous emission
processes—in which the predictions of Ref. [1] can be valid,
for example, nonparaxial electron wave packets (as thor-
oughly investigated in Ref. [1]). Another example is when the
medium is not transversely uniform, and mediates scattering
of initial electron states into a common final state [16]. This
can be also understood from the overlap integral [Eqs. (4) and
(5)] which will now depend on the probing of the local density
of states by |ψ |2. Other scenarios include nonperturbative

interactions, in which the electron shape can affect the quan-
tum state of light [17]; when measuring optical coherence of
the emitted cathodoluminescence (CL) [18]; or when quantum
recoil corrections [2,19] are dominant.

In this context, it is important to mention that our criticism
does not mean that the calculations presented in Ref. [1] are
not physical. Instead, they correspond to a different physi-
cal scenario where the electron is postselected. Furthermore,
these derivations reveal new kinds of quantum corrections that
are relevant in the sought-after regime of coincident electron-
photon detection, beyond the paraxial approximation.

VIII. CONCLUSIONS

We lift the concerns regarding the experimental parame-
ters used in Ref. [4], raised by the authors of Ref. [1]. We
show both by simple optical arguments as well as numerical
simulations that the measurements reported in Ref. [4] took
place in the far field with respect to the electron transverse
coherence length. From these measurements [4], we conclude
that it is possible to reject the semiclassical theory in favor of
the quantum theory.

We further suggest the authors clarify that the derivations
following Eq. (10) in their paper [1] correspond to an experi-
mental situation where the electron final state (after emission
of light) is postselected (or measured in coincidence with the
light). This is a crucial detail, since in this case the radiation
will be dependent on the electron initial wave function [2,20],
but the physical scenario is completely different. The com-
mon situation for measuring cathodoluminescence involves
only measuring the light (as was done in the experiment of
Ref. [4]), which corresponds to tracing out the electron final
states [21]. This last step is what allows for the incoherent
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summation over many “point electrons” emitting light—the
quantum interpretation—to be correct.

Upon lifting the concerns of Ref. [1], and explicitly noting
the key requirement for electron postselection, we believe
that Ref. [1] may constitute a valuable contribution to the
problem of spontaneous emission by shaped electron wave
functions. Specifically, the novelty of Ref. [1] is in deriving
new expressions for the emission rates beyond the ubiquitous
paraxial approximation and in showing that such rates could
depend on the wave function upon postselection.

APPENDIX A: DERIVATION OF EQ. (3)

The semiclassical current density of an electron beam, for
N electrons in different locations ri in the beam, reads as

j(r, t ) = ev0

N∑
i=1

|ψT (rT − rTi )|2δ(z − zi − v0t ).

From Jackson [5],

d2P

d�dω
= ω2

4π2c2

∣∣∣∣
∫

dt
∫

d3rn̂ × [n̂ × j(r, t )]eiω(t−n̂·r/c)

∣∣∣∣2

,

giving

d2P

d�dω
=

∣∣∣∣∣
N∑

i=1

e−iω zi
v0

∫
d2rT e−iqT ·rT |ψT (rT − rTi )|2

∣∣∣∣∣
2

×
(

d2P

d�dω

)
class

,

since, for a single point particle |ψT (rT − rTi )|2 →
δ(rT − rTi ) with N = 1 the term in the absolute value
simplifies to 1.

For N > 1 we expand the absolute value squared:∣∣∣∣∣
N∑

i=1

e−iω zi
v0

∫
d2rT e−iqT ·rT |ψT (rT − rTi )|2

∣∣∣∣∣
2

=
N∑

i=1

∣∣∣∣
∫

d2rT |ψT (rT − rTi )|2e−iqT ·rT

∣∣∣∣2

+
N∑

i=1

N∑
j = 1
j 
= i

e
i(z j −zi )ω

v0

∫
d2rT |ψT (rT − rTi )|2e−iqT ·rT

×
∫

d2r′
T |ψT (r′

T − rT j )|2eiqT ·r′
T .

Now, for a general beam comprising N particles of random
positions one needs to take the ensemble average. For dc cur-
rents below the critical current, following the same arguments
of Appendix C the second term vanishes and we are left with
the first term only:〈∣∣∣∣∣

N∑
i=1

e−iω zi
v0

∫
d2rT e−iqT ·rT |ψT (rT − rTi )|2

∣∣∣∣∣
2〉

=
N∑

i=1

p(ri )

∣∣∣∣
∫

d2rT |ψT (rT − rTi )|2e−iqT ·rT

∣∣∣∣2

,

where p(ri ) is the (classical) probability for an electron posi-
tion at ri, such that for a continuous distribution of electron
positions,〈∣∣∣∣∣

N∑
i=1

e−iω zi
v0

∫
d2rT e−iqT ·rT |ψT (rT − rTi )|2

∣∣∣∣∣
2〉

= N
∫

d2rT 0 p(rT 0)

∣∣∣∣
∫

d2rT |ψT (rT − rT 0)|2e−iqT ·rT

∣∣∣∣2

.

Giving the semiclassical prediction, Eq. (10),(
d2P

d�dω

)
semi

=
∫

d2rT 0 p(rT 0)

×
∣∣∣∣
∫

d2rT |ψT (rT − rT 0)|2e−iqT ·rT

∣∣∣∣2

×
(

d2P

d�dω

)
class

.

APPENDIX B: DERIVATION OF EQS. (4) and (5)

We would like to show that this result is general and
not only restricted to Smith-Purcell radiation. We consider
a relativistic transition current with respect to the interaction
Hamiltonian Hint = ecα · p,

jfi(r, ω) = ecδ

(
ω − Ei − E f

h̄

)
ψ†

f (r)αψi(r),

where ψi(r) and ψf (r) are the initial and final spinor wave
functions of the electron.

The electric field emitted by this transition current is

Efi(r, ω) = iμ0ω

∫
d3r′G(r, r′, ω)jfi(r, ω),

where G(r, r′, ω) is the dyadic Green’s function of the
medium. Note that Efi(r, ω) is the field amplitude for a speci-
fied final electron state.

The emitted power spectrum to the far field measured by a
distant observer at r = rn̂(�) is

d2P

d�dω
= 2r2ε0c

1

2πTint
〈|E(r, ω)|2〉.

To obtain the expectation value of the light intensity, when
only the light is measured, one traces out over all possible
electron final states:

〈|E(r, ω)|2〉 =
∑

f

|Efi(r, ω)|2 = μ2
0ω

2
∫

d3r′′G†(r, r′′, ω)

×
∫

d3r′G(r, r′, ω)
∑

f

j†
fi(r′′, ω)jfi(r′, ω).

In a recently published paper [15], we have shown that for
a single paraxial electron with density matrix ρel(r, r′) and
small photon recoil we have∑

f

j†
fi(r′′, t ′)jfi(r′, t )

= e2v0 v0 δ(r′ − v0t − r′′ + v0t ′)ρel(r′ − v0t, r′ − v0t ),
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which, in the frequency domain, amounts to∑
f

j†
fi(r′′, ω)jfi(r′, ω) = e2ẑẑeiω z′−z′′

v0 δ(r′
T − r

′′
T )ρel,T (r′

T , r′
T ),

where ρel,T (rT , r′
T ) is the transverse part of the density matrix.

Therefore

〈|E(r, ω)|2〉 =
∫

d2r
′
T

∑
α=x,y,z

e2μ2
0ω

2

×
∣∣∣∣
∫

dz′Gαz(r, r′
T , z′, ω)eiω z′

v0

∣∣∣∣2

ρel,T (r′
T , r′

T ),

and

d2P

d�dω
=

∫
d2r

′
T

[
2r2ε0c

1

2πTint
e2μ2

0ω
2

∑
α=x,y,z

×
∣∣∣∣
∫

dz′Gαz(r, r′
T , z′, ω)eiω z′

v0

∣∣∣∣2]
ρel,T (r′

T , r′
T ).

The expression in square brackets is the classical result,
since it is obtained exactly when the electron is a point parti-
cle, giving finally

d2P

d�dω
=

∫
d2rT

d2Pclass

d�dω
(rT )ρel,T (rT , rT ).

APPENDIX C: MANY-BODY EFFECTS USING SECOND
QUANTIZATION

We again consider the emitted power spectrum to the far
field measured by a distanced observer at r = rn̂(�) to be

d2P

d�dω
= 2r2ε0c

1

2πTint
〈|E(r, ω)|2〉,

where

〈|E(r, ω)|2〉 = μ2
0ω

2
∫

d3r′′G†(r, r′′, ω)
∫

d3r′G(r, r′, ω)

×
∑

f

j†
fi(r′′, ω)jfi(r′, ω).

In another recently published paper [22], we have shown
that, using second quantization [promoting the wave function
ψ (r, t ) to an operator ψ̂ (r, t )], we can write

∑
f

j†
fi(x′)jfi(x) = e2v0 v0

⎡
⎣〈ψ̂†(x)ψ̂†(x′)ψ̂ (x′)ψ̂ (x)〉︸ ︷︷ ︸

pair correlation

+ δ(x − x′)〈ψ̂†(x)ψ̂ (x)〉︸ ︷︷ ︸
incoherent single electron

⎤
⎦,

where x = r − v0t and x = r′ − v0t ′.
We define the beam state as

|beam〉 = ∣∣1r1 1r2 . . . 1rN

〉 = a†
r1

a†
r2

. . . a†
rN

|0〉,
where

ari =
∫

d3rϕ(r − ri )ψ (r)

is a wave-packet operator centered at ri, and to avoid com-
plications due to Pauli exclusion, we assume {ari , a†

r j
} = δi j

[equivalent to no overlap between ϕ(r − ri ) and ϕ(r − r j ),
which corresponds to the case of a large incoherent electron
beam size with low transverse coherence, as in our experi-
ment]. The expectation values are found,

〈ψ̂†(x)ψ̂ (x)〉 =
∑

i

|ϕ(x − ri )|2,

〈ψ̂†(x)ψ̂†(x′)ψ̂ (x′)ψ̂ (x)〉 =
∑

i

∑
j 
=i

|ϕ(x − ri )|2|ϕ(x′ − r j )|2,

which, in the frequency domain, amounts to∑
f

j†
fi(r′, ω)jfi(r, ω)

= e2ẑẑeiω z−z′
v0

∑
i

∑
j 
=i

|ϕT (rT − rTi )|2|ϕT (r′
T − rT j )|2

× e−i ω
v0

(zi−z j )

+ e2ẑẑeiω z−z′
v0 δ(rT − r′

T )
∑

i

|ϕT (rT − rTi )|2,

where ϕT is the transverse part of the wave function.
We exemplify the many-body effects using Cherenkov ra-

diation, for which the Green function simplifies

G(r, r′, ω) = ein ω
c r

4πr
(I − n̂n̂)e−i nω

c n̂·r′
.

Substituting to the above equation we find

d2P

d�dω
= h̄ωαβ

2π
sin2θδ

(
cos θ− 1

nβ

)
[N+N (N−1)S(ω, n̂)],

where we define the structure factor of the beam:

S(q) =
∣∣∣∣
∫

d2rT e−iqT ·rT |ϕT (rT )|2
∣∣∣∣2

1

N (N−1)

∑
i

∑
j 
=i

e−iq·(ri−r j ).

Note that

FIG. 3. Numerical simulation of the normalized emission rate
from a beam of N electrons as a function of the azimuthal angle
cos φ. The beam current is varied between a value much lower than
the critical current I0 to a higher value, resulting in a superradiant
effect. Each simulation is carried out with 100 repetitions. For values
much lower than I0 (as in Ref. [4]), the emission is azimuthally
uniform.
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(1) For point electrons, |ϕT (rT )|2 → δ(r − rT ), this for-
mula converges to the classical result [9].

(2) For dc currents, the electron wave packets are ran-
domly positioned in the beam.

We can write the emission rate simply as

� = N�0[1 + (N − 1)S(q)],

where �0 is the single-electron emission rate. The number of
electrons in the beam, for a given current, total (incoherent)
beam length L, and electron velocity v is

N = IL

ev
.

The critical number of electrons in the beam Nc above
which many-body correlations are important, is the one for
which the area per electron becomes comparable to the wave-
length squared. If W is the total (incoherent) beam width, then
the average area per single electron is W L/N , and comparing
this value to the emitted wave vector we obtain

Nc = q2W L.

Note that

N

Nc
= λ2

4π2Wev
I = I

I0
,

where

I0 = q2Wev

is the critical current.
To show this, we numerically compute the structure factor

using Monte Carlo simulations,

〈S(q)〉 = 1

N (N − 1)

〈∑
i

∑
j 
=i

e−iq cos θ (xi−x j ) cos φe−i ω
v

(zi−z j )

〉
,

for Cherenkov radiation, and plot the value of �/N�0 as a
function of cos φ for variable currents I/I0. See Fig. 3.
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Y. Lereah, M. Soljačić, I. Kaminer, and A. Arie, Spectral and
spatial shaping of Smith-Purcell radiation, Phys. Rev. A 96,
061801(R) (2017).

[8] K. Nanbu et al., Bunch length measurement employing
Cherenkov radiation from a thin silica aerogel, Particles 1, 305
(2018).

[9] A. Gover, R. Ianconescu, A. Friedman, C. Emma, N. Sudar,
P. Musumeci, and C. Pellegrini, Superradiant and stimulated-
superradiant emission of bunched electron beams, Rev. Mod.
Phys. 91, 035003 (2019).

[10] D. Jannis, K. Müller-Caspary, A. Béché, A. Oelsner, and
J. Verbeeck, Spectroscopic coincidence experiments in trans-
mission electron microscopy, Appl. Phys. Lett. 114, 143101
(2019).

[11] F. J. García de Abajo, Optical excitations in electron mi-
croscopy, Rev. Mod. Phys. 82, 209 (2010).

[12] A. Polman, M. Kociak, and F. J. García de Abajo, Electron-
beam spectroscopy for nanophotonics, Nat. Mater. 18, 1158
(2019).

[13] Y. Pan and A. Gover, Spontaneous and stimulated emissions of
a preformed quantum free-electron wave function, Phys. Rev. A
99, 052107 (2019).

[14] C. Mechel et al., Quantum correlations in electron microscopy,
Optica 8, 70 (2020).

[15] A. Karnieli, N. Rivera, A. Arie, and I. Kaminer, The coherence
of light is fundamentally tied to the quantum coherence of the
emitting particle, Sci. Adv. 7, eabf8096 (2021).

[16] L J. Wong, N. Rivera, C. Murdia, T. Christensen, J. D.
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