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The Dicke model exhibits a variety of phase transitions. The quantum phase transition from the normal
phase to the super-radiant phase is marked by a dramatic change in the scaling of the participation ratio. We
find that the ground state in the super-radiant phase exhibits multifractality manifest in the participation ratio
scaling as the square root of the full Hilbert-space dimension. The thermal phase transition temperature, for
which an exact analytical expression may be obtained using the partition function, is strikingly captured by the
mutual information between two spins. In the excited-state quantum phase transition within the super-radiant
phase, there are two cutoff energies; the central energy bands between the lower and upper cutoff energies show
distinctly different behaviors. While the level statistics of the central band is Wigner-Dyson, the lower and upper
bands show mixed behavior that is closer to Poisson than Wigner-Dyson. This finding is corroborated with the
aid of several eigenvector properties: von Neumann entanglement entropy between spins and bosons, the mean
photon number, concurrence between two spins, and participation ratio.
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I. INTRODUCTION

The Dicke model, which incorporates the interactions
of an ensemble of N two-level atoms via dipole coupling
with a single bosonic mode [1–7], has its origin in quan-
tum optics, but has found application in a wide range
of fields from quantum chaos to quantum entanglement
[8–22] to scrambling and thermalization [23]. Besides pos-
sessing an intimate connection to experiments [24–26], the
Dicke model is a testbed for a variety of phase transi-
tions [27]. Although a lot is known about these different
transitions, the literature presents a rather scattered treat-
ment of them [27–34]. In this paper, we revisit the three
different kinds of phase transitions in the Dicke model,
with the aid of a variety of localization and entanglement
measures.

The nature of the ground state of the Dicke model is
dramatically different depending on the magnitude of the
coupling between the atoms and the field. While for small
coupling, in the normal phase (NP), the average photon num-
ber in the ground state is close to zero, when the coupling is
greater than a critical value, in the super-radiant phase (SP),
the ground-state mean photon number scales linearly with the
number of atoms [27–30]. Entanglement properties [19–21]
offer clear signatures of this quantum phase transition [35–40]
(QPT). Furthermore, a study of level statistics suggests that
the system in fact also undergoes a transition from quasi-
integrable to quantum chaotic [20] at the QPT. However, a
later study by Chávez-Carlos et al. [41] argues that there is no
direct relationship between the QPT and the onset chaos, and
the simultaneous occurrence of these two is a consequence of
the special choice of system parameters. In this paper, with the
aid of a careful study of the participation ratio (PR) [42] of the
ground state, we show how the normal to super-radiant phase

transition is really a localization-to-multifractal transition. We
find that in the super-radiant phase the ground-state partici-
pation ratio scales as the square root of the full Hilbert-space
dimension.

The Dicke model also exhibits a thermal phase transi-
tion (TPT) which was realized many decades ago [31,32].
When the coupling is greater than the critical coupling, as
the temperature is increased, we see a transition back from
the super-radiant to the normal phase [33]. Generalizing the
approach of Wang and Hieo [32], we are able to write down an
exact analytical expression for the transition temperature, as
has also been obtained by other authors [33,43]. We begin by
writing down the partition function as a double integral, which
may then be evaluated, in the thermodynamic limit, using
the method of steepest descent. The transition temperature
is identified to be the point at which the method of steepest
descent breaks down. Furthermore, just like entanglement in
the ground state marks the quantum phase transition, we show
how the mutual information (MI) between atoms offers a
striking signature at the thermal phase transition.

The Dicke model also exhibits an excited-state quantum
phase transition (ESQPT), a term that is used to denote crit-
icality in the excited states of a quantum system [33,34,44–
47]. The ESQPT, which is a generalization of the QPT, and
is characterized by abrupt variations of the energy and other
excited-state properties at a sharp critical value of the energy
[48], must be viewed in the backdrop of the tremendous recent
interest in the properties of excited states [44,49–55] of quan-
tum systems. In the present paper, we uncover how the ESQPT
of the Dicke model affects not only energy levels below a
certain lower cutoff but also the top-lying energy levels above
a second upper cutoff, a feature that has been recognized in
the literature [33,56–59] but is still not universally accepted
[23,53]. We show how an energy-resolved study of eigenvalue
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properties like level statistics [60] and the consecutive level
spacing ratio [61] helps to clearly separate the nature of the
central band from the top and bottom bands, in the super-
radiant phase. Strikingly, in contrast to prior studies, we are
able to identify these features with the aid of several eigenstate
properties: von Neumann entanglement entropy (VNEE), the
mean photon number, concurrence, and PR.

II. HAMILTONIAN AND OBSERVABLES

The Hamiltonian of the Dicke model is

H = ωa†a + ω0Jz + g√
2 j

(a + a†)(J+ + J−) (1)

where a and a† are bosonic operators, ω is the single-mode
frequency of the bosonic field while ω0 is the level splitting
of the atoms, and g is the coupling strength of the light-matter
interaction. We work in units where h̄ = 1 and ω = ω0 = 1,
thus the bosonic commutation relation is [a, a†] = 1. The
angular momentum operators J±,z = ∑2 j

i=1
1
2σ

(i)
±,z correspond

to a pseudospin with length j, composed of N = 2 j spin- 1
2

atoms described by Pauli matrices σ
(i)
±,z acting on site i and

satisfy the commutation relations [Jz, J±] = ±J±, [J+, J−] =
2Jz. The basis of the full Hilbert space of the system is
{|n〉 ⊗ | j, m〉} where |n〉 are the bosonic basis states satis-
fying a†a|n〉 = n|n〉 and | j, m〉 are the Dicke states satisfy-
ing J±| j, m〉 = √

j( j + 1) − m(m ± 1)| j, m ± 1〉, Jz| j, m〉 =
m| j, m〉. In our paper, we take N to be even, and consider
the symmetric subspace which fixes j = N

2 , and thus m takes
the (N + 1) values (−N

2 , . . . , 0, . . . , N
2 ). We also truncate the

bosonic mode to take the values n = 0, 1, . . . , nmax. Thus
the dimension of the Hilbert space is given by ND = (N +
1)(nmax + 1). In the thermodynamic limit the system shows a
second-order quantum phase transition from the NP to the SP
at g =

√
ωω0

2 (= gc) [20]. In the units that we work in through-
out this paper, the critical coupling strength is gc = 0.5.

Next we briefly describe the observables that will be stud-
ied ahead.

A. Inverse participation ratio and multifractal dimension

The inverse participation ratio (IPR) [62] of an eigenstate
|ψ〉 = ∑ND

j ψ j | j〉 [where ND is the Hilbert-space dimension
and we continue to work in the {|n〉 ⊗ | j, m〉} basis, as men-
tioned right after the system Hamiltonian in Eq. (1)] is defined
as

P−1 =
ND∑
j=1

|ψ j |4. (2)

It is useful to quantify the degree of delocalization of the
eigenstate. A finer understanding of the localization proper-
ties may be obtained by studying the multifractal dimension
[63,64]:

Dq = Sq

ln(ND)
(3)

where Sq = 1
1−q ln (

∑ND
j=1 |ψ j |2q) is known as the q-

dependent participation entropy. In the Shannon limit (q = 1),

S1 = ∑
j |ψ j |2 ln (|ψ j |2), while q = 2 is related to the usual

IPR with S2 = − ln(P−1). S∞ is determined by the maximum
value of the densities pmax = max j |ψ j |2 and D∞ = − ln(pmax )

ln(ND ) .
For a perfectly delocalized state Sq = ln(ND) (when ND is
large) and hence Dq = 1 for all q. On the other hand for
a localized state Sq = const and Dq = 0. In an intermedi-
ate situation, wave functions are extended but nonergodic
with Sq = Dq ln(ND) where 0 < Dq < 1 and the state is
multifractal.

B. Q measure, von Neumann entanglement entropy,
concurrence, and mutual information

The so-called Meyer and Wallach Q measure [52,65–67],
defined as

Q = 2
[
1 − Tr

(
ρ2

1

)]
, (4)

is a measure of how mixed a single spin is, and has proven to
be a useful marker of a quantum phase transition.

The standard measure of entanglement [68] when the over-
all state is pure is the VNEE [19]. For our model, it is
convenient to study the VNEE between spins and bosons
given by

S = −Tr(ρboson log2 ρboson), (5)

where ρboson = Tratomρ is the reduced density matrix of the
bosonic part.

The concurrence [69–72] between (any) two atoms is given
by

C = max{0, λ1 − λ2 − λ3 − λ4}, (6)

where λi are the square roots of the eigenvalues of the matrix
product, ρ̃12 = ρ12(σ1y ⊗ σ2y)ρ�

12(σ1y ⊗ σ2y), in descending
order (λ1 > λ2 > λ3 > λ4). Here ρ�

12 denotes complex conju-
gation of ρ12, and σiy are Pauli matrices for two-level systems.
Concurrence is a good measure of entanglement in both pure
and mixed states. Therefore, for the Dicke model, it is useful
to study concurrence between any two spins in the eigenstates
of the model, in time-evolved states of quench dynamics and
also thermal mixed states.

When the overall state is mixed, the MI between two sub-
systems A and B is a useful measure of the total correlations
between A and B. Specifically, we define the mutual informa-
tion IAB [73–76] as

IAB = SA + SB − SAB, (7)

where SA,B = −Tr[ρA,B ln(ρA,B)] and SAB = −Tr[ρAB ln(ρAB)]
are the corresponding von Neumann entropies of the states
ρA, ρB, and ρAB respectively. For the Dicke model, we will
see that it is particularly convenient to study the mutual infor-
mation between two spins, which we denote by I12.

We emphasize that to calculate the Meyer and Wallach
Q measure and the mutual information we have written the
system Hamiltonian in the spin product space basis. The size
of the Hamiltonian matrix is ND × ND where ND = (nmax +
1) × 2N .

III. QUANTUM PHASE TRANSITION

A. Statics

In Fig. 1(a) we exhibit the Q measure for the ground
state of the system as a function of coupling parameter g.
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FIG. 1. (a) The Meyer and Wallach Q measure of the ground state as a function of coupling, g. Number of spins N = 8. (b) Mutual
information between two spins. (c) Mutual information between two spin subsectors. Here we divide the spins into two subsectors with spin
number LA and LB. The total number of spins can be broken into N = 8 = LA + LB = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4. For panels (b) and (c)
nmax = 10.

Here ρ1 is the single atomic reduced density matrix and
it can be calculated by tracing out the bosonic part first
and then over the N − 1 atoms. Q is close to zero for g <

gc (NP) and close to 1 for g > gc (SP) with a transition
near the critical point. It goes to zero when Tr(ρ2

1 ) ≈ 1,
i.e., in the NP the single atom reduced density matrix be-
haves like a pure state having the two eigenvalues close
to 1 and 0. On the other hand Q ≈ 1, when Tr(ρ2

1 ) ≈
0.5 < 1, hence ρ1 is nearly a maximally mixed state in
the SP.

To calculate the mutual information between two groups of
spins, we first take a partial trace of the total density matrix
over the bosonic part followed by a partial trace over one
group of the spins. Figure 1(b) shows the mutual information
between two spins of the Dicke model. I12 is close to zero
in the NP and close to 1 in the SP with a transition near
the critical point. Hence we can say that the total correlation
between two spins is zero in the NP whereas in the SP the
correlation is maximum. Thus I12 significantly depends on the
spin boson coupling g. Figure 1(c) shows the mutual informa-
tion between two groups of spins A and B, in which group
A contains LA spins while group B contains the remaining
LB = N − LA spins. Because of the symmetry in the coupling
it does not matter which LA spins are considered. We see
that this quantity too shows similar behavior as I12. From
Fig. 1(a) we conclude that in the NP each spin is separately
in a pure state, so there are no quantum correlations at all.
On the other hand in the SP, we see that all the correlations
are very high. Specifically, the correlations between two spin
groups containing LA and LB spins are all high no matter what
value LA takes.

Figure 2(a) shows an exact diagonalization study of the
IPR of the ground state as g is varied; we observe that it is
close to 1 in the NP and close to zero in the SP. Thus we
see that the ground state is localized in the NP whereas it is
extended in nature in the SP. The inset of Fig. 2(a) illustrates
the participation ratio PR (which is the inverse of the IPR) as
a function of the coupling g and it shows a phase transition
from the NP where it takes values close to zero to the SP with
a sharp transition to a nonzero value at the critical coupling.
We plot the PR for different atom number N and notice that in
the SP the value of PR increases with N .

In Fig. 2(b) we show D1, D2, and D∞ for the ground state
as a function of the coupling parameter g. In the NP Dq ≈ 0
and hence we can say that the ground state is localized in the
NP. Contrastingly in the SP, 0 < Dq < 1 with D1 > D2 > D∞
(D1 ≈ 0.58, D2 ≈ 0.55, D∞ ≈ 0.47), with a sharp transition
at the critical point. In the inset of Fig. 2(b) we show that at
g = 4.0 the PR goes as the square root of the Hilbert-space
dimension. Hence we find that the SP is neither perfectly
delocalized nor localized, and in fact displays multifractal
character [63]. Given the intense current interest in multifrac-
tal states [77–79], this discovery in a familiar model is an
exciting finding.

B. Dynamics

We next describe how the quantum phase transition in the
Dicke model is usefully studied with a quenching protocol
[80]. In a quantum quench, we prepare a closed system in an
eigenstate of one Hamiltonian H0 and then have the system
evolve dynamically in time under a different Hamiltonian

(a) (b)

FIG. 2. (a) The IPR of the ground state as a function of coupling g. The inset shows a similar plot for the PR. (b) Multifractal dimension
Dq (q = 1, 2, ∞) of the ground state as a function of g. The inset shows the scaling of PR with atom number N for the ground state at g = 4.0.
In all the figures, we set N = 512, nmax = 32.
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FIG. 3. (a) Concurrence between two atoms as a function of time C(t ) for different coupling strengths. (b) Saturation value of concurrence
at time t = 105 as a function of coupling strength g. The parameters for panels (a) and (b) are N = 128, nmax = 32. (c) Quench dynamics of
concurrence C, at time t = 106. C(t = 106) as a function of coupling parameter g and n (index for the eigenstates of the decoupled Hamiltonian
H0 accordingly). Green color denotes NP and blue color denotes SP. Parameters are N = 128, nmax = 16.

H = H0 + H1. For our problem, we take H0 to be the Dicke
model with g = 0, and the middle excited state of H0 as
our initial state. The value of g is then suddenly changed to
some other nonzero value of g, and the resulting dynamics
of the system is studied. The concurrence (between any two
atoms) as a function of time C(t ) is shown for a range of
values of g in Fig. 3(a). In general, C(t ) starting from zero
remains close to zero up to t ≈ 0.1, after which it increases
up to t ≈ 10. With further increase of time, it tends to saturate
to a constant with some fluctuations. This saturating value
of C(t ) depends on g, and carries information of the quan-
tum phase transition. For g = 0.1 (pink circles) the saturation
value of concurrence is close to zero, but with increasing g,
the saturation value increases gradually until a certain critical
gc. Beyond gc (green squares) we begin to see a saturating
tendency of the saturation value itself with some fluctuations
[see Fig. 3(a)]. This feature is made clearer by a plot of the
saturation value of the concurrence at some late time, say
t = 105 as a function of the coupling parameter g as shown
in Fig. 3(b). We observe that in the NP the saturation value
is increasing with g, but after crossing the critical point gc in
the SP it is almost independent of g, i.e., the value is constant
with some fluctuations. Thus we see that the dynamics too
shows signatures of the quantum phase transition. In Fig. 3(c)
we study the dynamics starting from each of the eigenstates of
the decoupled Hamiltonian, H0 = ωa†a + ω0Jz, and evolving
with the unitary time evolution operator U = e−iHt where H
is the system Hamiltonian. For a particular coupling strength
g, U is fixed but the initial states are changing and hence
|ψi(t )〉 = U |ψi(0)〉 = U |i〉, where {|i〉} are the eigenstates of
H0. We plot the concurrence (between any pair of atoms) with
respect to the time evolved. We see that Fig. 3(c) shows that
the dynamics is sensitive to the quantum phase transition no
matter which eigenstate we start from.

IV. THERMAL PHASE TRANSITION

To compute the partition function [43,81,82] [Z =
Tr(e− H

kBT )] of the Dicke Hamiltonian it is useful to first write
it in units of ω as

H̃ = H
ω

= a†a +
N∑

j=1

ε

2
σ z

j + λ√
N

N∑
j=1

(a + a†)σ x (8)

where ε = ω0
ω

and λ = g
ω

. Following the method of Wang and
Hieo [32] (who studied the Dicke model within the rotating

wave approximation), the partition function can be computed
as

Z (N, T ) =
∑

s1,...,sN =±1

∫
d2α

π
〈s1, . . . , sN |

× 〈α|e−βH̃|α〉|s1, . . . , sN 〉. (9)

The expectation value of the Hamiltonian with respect to the
bosonic modes is obtained in a straightforward manner:

〈α|H̃|α〉 = α∗α +
N∑

j=1

[ε

2
σ z

j + λ√
N

(α + α∗)σ x
j

]
. (10)

Defining

h j = ε

2
σ z

j + λ√
N

(α + α∗)σ x
j (11)

the expectation value with respect to the spins becomes a
product of single-spin expectation values:

〈s1, . . . , sN |〈α|e−βH̃|α〉|s1, . . . , sN 〉
= e−β|α|2�N

j=1〈s j |e−βh j |s j〉. (12)

Thus the computation of the partition function reduces to the
evaluation of a double integral:

Z (N, T ) =
∫

d2α

π
e−β|α|2

(
2 cosh

{βε

2

[
1 + 16λ2α2

ε2N

]1/2})N

(13)

which in the thermodynamic limit (N → ∞), may be carried
out with the aid of the method of steepest descent, within the
super-radiant phase. Tracking the point at which the method
breaks down (see the Appendix), we obtain an exact expres-
sion for the transition temperature:

Tc = 1

βc
=

( ω0

2ω

) 1

tanh−1
(

ωω0
4g2

) . (14)

The critical temperature expression is meaningful only when
g > gc. When g < gc, the system is in the normal phase at
all temperatures. When g > gc, it is only above the critical
temperature that the system is in the normal phase, while for
T < Tc the system is in the super-radiant phase.

A study of the mutual information between (any) two
spins in the thermal density matrix proves to be profitable.
In Fig. 4(a) we show I12 as a function of temperature at g = 1
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(a) (c)(b)

FIG. 4. (a) MI of two spins as a function of temperature at g = 1.0, with the inset showing the numerical derivative of MI with respect
to temperature dI12

dT . (b) The red line with solid circles denotes the critical temperature as a function of atom number N , while the black line
with a solid square is the theoretical value (Tc = 0.850 181) for g = 1.0. (c) Mutual information of two spins as a function of coupling g and
temperature T . The parameters are N = 6, nmax = 10. The dark region corresponds to the NP, and the bright region corresponds to the SP.
The solid line corresponds to gc and the dashed line denotes the critical temperature theoretically calculated in Eq. (A11). In all the plots
ω = ω0 = 1.

(g > gc). At low temperatures in the SP, I12 takes a value close
to unity while at high temperatures in the NP, I12 drops to
a value close to zero, with a dramatic drop happening at a
temperature close to the transition temperature. For a finer un-
derstanding of the variation of the mutual information across
the transition, we study in the inset of Fig. 4(a) the first-order
temperature derivative dI12

dT , for different atom numbers. We
observe that the temperature at which the derivative takes the
minimum value is consistent with the transition temperature
Tc, denoted by the vertical line. Figure 4(b) confirms that as
the number of atoms is increased the temperature at the mini-
mum does indeed approach the theoretically obtained critical
temperature. From the surface plot of the MI as a function of
g and T in Fig. 4(c), it is clear that for g < gc there is no phase
transition, but for g > gc there exists a critical temperature
Tc at which the system changes from the super-radiant phase
(T < Tc) to the normal phase (T > Tc).

To calculate the mutual information between two spins
we have to take the partial trace of the total thermal density

matrix ρth = e− H
kBT first over the bosonic subspace and next

over the (N − 2) atoms. Hence in this case we have to use the
product space for the atoms, and are thus forced to diagonal-
ize matrices of size (nmax + 1) × 2N . So we end up working
with rather modest system sizes with atom number N = 6
and nmax = 10. However, although the dimension is low here
still our numerics seems to broadly agree with the transition
given by the analytical result. While it is widely known that
entanglement in the ground state signals the QPT, our paper
shows that despite also including classical correlations the
mutual information between atoms offers a striking signature
at the thermal phase transition.

V. EXCITED-STATE QUANTUM PHASE TRANSITION

The Dicke model exhibits an excited-state quantum phase
transition in the super-radiant phase. When g > gc, it has been
reported [23,53] that the eigenvalues above a cutoff energy
Ec behave in a distinctly different manner in comparison with
the eigenvalues below the cutoff. We find that in fact there
is not just a lower cutoff, but also an upper cutoff as has
been recognized in the literature [33,56–59], although it is not
widely appreciated [23,53]. Our data show that we must study
separately the eigenvalues drawn from a central band com-

posed of energy levels between a lower and upper cutoff. The
lower and upper energy bands show different behaviors. While
eigenvalue properties like level statistics and gap ratio provide
supporting evidence, we highlight how eigenstate properties
offer a striking demonstration of this picture.

A. Eigenvalue properties

The onset of ergodic behavior is typically diagnosed by
inspection of the level spacing distribution [60]. Let {En}
denote the energy levels of the DM in ascending order. Under
the assumption that the density of states (DOS) equals unity,
the distribution P(s) of the level spacings sn = En+1 − En is
given by the Poisson distribution P(s) = exp(−s) in the nor-
mal phase [83]. On the other hand, in the super-radiant phase,
the level spacings adhere to the Wigner-Dyson distribution

P(s) = π
2 s exp [ − (π/4)s2] [84]. To study the level statistics

we consider two g values: g = 0.2 < gc and g = 4.0 > gc. For
g < gc we see that the energy spacings are consistent with the
Poisson distribution. For g > gc we study the level statistics
separately in three bands as shown in Fig. 5. While the energy
spacing distribution for levels that lie between the lower and
upper cutoff energies is like the Wigner-Dyson distribution,
the level spacing distributions of the upper and lower energy
bands show mixed behavior, although the distribution looks
more Poissonian than Wigner-Dyson. Evidently, there is a
striking absence of level repulsion in these bands, in stark
contrast to the levels in the central band. While the presence of
the lower cutoff is well known [23,53], our data clearly show
an upper cutoff as well [33,56–59].

The above picture with respect to the energy levels is fur-
ther strengthened by a study of the ratio of consecutive level
spacings, which has now become a standard measure [61,85].
Let sn denote level spacing between two consecutive energies
En+1 and En. The average spacing ratio 〈r〉 is defined as the
average over n of the ratio of consecutive level spacings:

rn = min(sn−1, sn)

max(sn−1, sn)
. (15)

From random matrix theory it is known that [61] 〈r〉 takes
a value 〈r〉 ≈ 0.386 for quasi-integrable Hamiltonians and
〈r〉 ≈ 0.5307 for Hamiltonians from the Gaussian orthogonal
ensemble. g < gc 〈r〉 ≈ 0.386 and g > gc 〈r〉 ≈ 0.5307 for the
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FIG. 5. Level statistics of the spectrum. (a) For g < gc the level spacing distribution is more like Poissonian. For g > gc there are three
bands in the spectrum: below the lower cutoff energy (b), above the upper cutoff energy shown in the inset of panel (b), and the energies in
between (c). The energy spacing distribution in between the lower and upper cutoff is more like Wigner-Dyson. However, in panel (b) the
behaviors are not clear, as they show mixed behavior, although they are closer to Poissonian behavior. (d) ravg value as a function of coupling,
for the different energy bands. Blue triangles are used for energies below the lower cutoff, green squares are used for energies above the upper
cutoff, and red solid circles are used for the middle band energies. Parameters are nmax = 200, N = 60.

central band. For the upper and the lower energy bands 〈r〉
lies in between 0.386 and 0.5307. However, we observe that
as the coupling strength increases, and as the atomic number
becomes large, they tend to resemble the Poissonian ensemble
[see Fig. 5(d)].

B. Eigenvector properties

In Fig. 6(a) we show the VNEE [19] between spins and
bosons for all the eigenstates of the Dicke model. We observe
two cutoff energies: (i) lower cutoff energy (corresponding to
the ground-state energy at g = gc) and (ii) upper cutoff energy
(corresponding to the maximum energy for g = 0). The value
of VNEE is larger in the eigenstates of the central band in
comparison with that of the top and bottom bands. Thus the
eigenstates carry a clear signature of the two excited-state
quantum phase transitions when g > gc. In Fig. 6(b) we show
a similar plot for the mean photon number [20] 〈a†a〉 which
is scaled by the pseudospin length j of the system. It carries
information pertaining to the bosonic part of the eigenstates.
In the middle band the value of the mean photon number is
comparatively lower than that of the other two bands. How-
ever, we observe that neither the VNEE between the atoms
and the bosons nor the mean photon number is able to dis-
tinguish between the g < gc and g > gc regions of the middle
band. A study of the entanglement between atoms provides
useful further perspective.

In Fig. 6(c) we plot concurrence between two atoms for the
whole spectrum as a function of g. We observe that in addition
to showing a signature of the ESQPT in the super-radiant
phase, concurrence is also able to distinguish the eigenstates

of the middle band in the g < gc region and the g > gc re-
gion. In the NP, the concurrence value of the central states is
comparatively smaller than that for the central states of the
SP. Again the value of concurrence in the bottom and top
bands of the super-radiant phase is a bit lower than that of the
central band. Figure 6(d) shows the participation ratio of all
the eigenstates as a function of coupling parameter g. We are
able to identify the ESQPT, which divides the whole spectrum
into three bands: top, bottom, and central. In the NP (g < gc),
the whole region shows a uniform comparatively small value
of PR. On the other hand in the SP (g > gc) while the central
band exhibits a larger value of PR, the top and bottom bands
show mixed behavior, although they resemble the NP more
than the SP.

C. Finite-size scaling

Our data show that the lower and upper bands have quali-
tatively identical behavior and are distinctly different from the
central band in the super-radiant phase. Specifically both the
energy-resolved level statistics and level spacing ratio clearly
indicate that the top band shows different statistics compared
to the middle band. Hence one should separately study the
level statistics in the different energy bands, separated by the
lower cutoff energy and the E∗—we believe that an analysis
that completely ignores the existence of E∗ would be inaccu-
rate. The literature has many studies [23,53] of level statistics
that separately look at energy levels below Ec and above Ec,
but with no mention of the upper cutoff. However, as our data
show, the inclusion of the higher band energies in their level
statistics study would make their Wigner-Dyson results noisy.

FIG. 6. (a) Von Neumann entanglement entropy between the atoms and the bosons as a function of coupling strength g and the energy
density En/N (eigenenergy divided by the atom number N) of the DM. (b–d) Similar plots for mean photon number (b), concurrence between
any two atoms (c), and participation ratio of the eigenstates (d). The parameters for all the four plots are N = 512, nmax = 32.
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FIG. 7. Here Emax is the maximum energy of the system Hamil-
tonian and E∗ is the energy where the von Neumann entanglement
entropy between spin and boson suddenly drops [see Fig. 6(a)].
Energy density (energy scaled by the number of atoms), Emax/N
(open circles) and E∗/N (solid black circles) as a function of atom
number N , keeping nmax = 32 fixed, (a) at g = gc = 0.5 and (b) at
g = 2.0. The insets show similar plots, but as a function of nmax,
keeping the atom number fixed at N = 1024. The red dash-dotted
line in both the insets denotes the straight line ω

N nmax + ω0
2 , which is

seen to capture the E∗/N data for both the cases excellently.

The upper cutoff energy has been argued to be of a different
nature in the literature [33,56–59]. One reason is the apparent
extension of the upper cutoff even into the normal phase. In
Fig. 7 we study the finite-size scaling of the upper cutoff point.
Here Emax is the maximum energy of the system Hamiltonian
(for finite N and nmax) and E∗ is the energy where the VNEE
between spins and bosons suddenly drops [see Fig. 6(a)]. We
plot these two energy densities (Emax/N , E∗/N) as a func-
tion of the number of atoms N for two values of g: (i) at
g = gc = 0.5 and (ii) at g = 2.0 (in the super-radiant phase).
In Fig. 7(b) for g = 2.0 (in the super-radiant phase) the gap
between (Emax/N , and E∗/N) remains robust even for large N .
Thus, in the super-radiant phase, the upper cutoff appears as
genuine as the lower cutoff.

On the other hand in the NP, from Fig. 7(a) one can notice
that as N becomes large Emax/N and E∗/N almost overlap and
tend to converge to the maximum energy density at g = 0.
Hence one may be tempted to conclude that the upper cutoff
point in the normal phase is a finite-size effect that disap-
pears in the thermodynamic limit (when N → ∞). However,
a closer look at the finite-size scaling of the energy densities
with nmax is revealing. Although the gap between Emax/N and
E∗/N in the NP appears to vanish for very large N (while
keeping nmax fixed), if we increase nmax (for a fixed atom
number) the gap has an ever widening tendency albeit very
slowly in the NP [inset of Fig. 7(a)]. Interestingly, the energy
density at the upper cutoff (whether it is computed in the NP
or the SP) agrees excellently with the equation

E∗
N

= ω

N
nmax + ω0

2
. (16)

The above equation corresponds to the maximum energy den-
sity for a system of N atoms and with the bosonic mode
truncated at nmax in the g = 0 limit, where the highest energy
is just given by all the spins being up. In the semiclassical
approach of Brandes [56], the upper cutoff is argued to be
exactly at 1

2ω0, which would be consistent with our numerical
data provided the limit N → ∞ is taken before the nmax → ∞
limit. In Fig. 8(a) we show the VNEE (between spins and

(a) (b)

FIG. 8. (a) Similar plot of von Neumann entanglement entropy
between spins and bosons, as Fig. 6(a) but for low atom number and
high nmax. (b) The density of states of the model at g = 0.0, 0.2, 0.5,
and 2.0. Orange dashed line, E/N = −0.5; green dash-dotted line,
E/N = 0.5; blue dash-double dotted line, E/N = 5.5. Here the atom
number N = 40 and nmax = 200.

bosons) as in Fig. 6(a) but for low atom number (N = 40)
and high nmax(= 200). We observe that in the super-radiant
phase the VNEE has one abrupt change at the lower cutoff
around En/N = −0.5, which is identified with the usual ES-
QPT. However, there is also a sudden change in VNEE after
En/N = 5.5 which we call the upper cutoff. This upper cutoff
is not at 0.5 as in the semiclassical approach of Brandes [56].
If we go to the thermodynamic limit (N → ∞) while keeping
nmax finite, then our upper cutoff approaches 0.5.

In Fig. 8(b), we study the density of states of our finite-
sized system using the formula

DOS(E/N ) = 1

ND

ND∑
k=1

δ(E/N − Ek/N ), (17)

for g = 0.0, 0.2, 0.5, and 2.0. For numerical calculation, one
can replace the delta function by a Gaussian with small stan-
dard deviation. In this figure, the orange dashed line denotes
the energy density E/N = −0.5 and the green dash-dotted
line corresponds to E/N = 0.5. One can notice that between
the densities −0.5 and 0.5 the DOS(E/N ) behaves linearly
with E/N , with positive slope. In the literature [33,56,57], the
density of states is argued to be linear from −0.5 to 0.5, and
to be a flat horizontal beyond 0.5. Our own numerical results
suggest that the horizontal part is present only in the normal
phase, and even in this case it begins to fall in linear fashion at
a higher energy density. Moreover in the super-radiant phase,
we see (look at the plot for g = 2) that beyond 0.5, there
is another linear portion with a negative slope up to energy
E/N = 5.5 (blue dashed double dotted line), after which the
DOS behaves nonlinearly with E/N . The density of states
in the central band (from −0.5 to 5.5) has two linear parts,
one with a positive slope and the other with a negative slope.
This is entirely consistent with the Wigner-Dyson statistics
that the levels show for this region. A horizontal portion in the
super-radiant phase would be inconsistent with Wigner-Dyson
statistics, and thus we believe this feature could be an artifact
of the semiclassical analysis of earlier studies [33,56,57]. The
point at which the linear region (with negative slope) of the
DOS ends is identified as our upper cutoff energy. The upper
cutoff tends to 0.5, if the thermodynamic limit is taken while
keeping nmax finite.
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VI. SUMMARY

We study the phase transitions (QPT, TPT, ESQPT) of
the Dicke model, with the aid of a number of measures of
localization, entanglement, and mutual information. Different
quantities are more suitable for the different kinds of phase
transitions involved, and a comprehensive look at all of them
helps us obtain an overall big-picture view of the Dicke model.
The IPR for the ground state shows a sharp phase transition at
gc; while in the NP the ground state behaves like a localized
state, the ground state in the SP is not localized. A careful
study of the scaling of the PR (for the ground state in the SP)
with the dimension ND of the full Hilbert space reveals that
the PR scales as

√
ND, suggesting multifractal character. In

the g > gc region there exists some critical temperature Tc,
above which the SP disappears and the system goes into the
NP whereas for g < gc the system remains in the NP for all
temperatures. We obtain a closed-form expression for the tran-
sition temperature in the super-radiant phase, and numerically
verify that the mutual information between two atoms pro-
vides a useful signature at the transition. Thus, at the temper-
ature transition, the mutual information proves to be a worthy
generalization of entanglement, which marks the ground-state
QPT. We find that in the super-radiant phase the spectrum ex-
hibits not only a lower cutoff but also an upper cutoff with the
properties of the central band of energies distinctly different
from the lower and upper bands. While the lower cutoff is an
ESQPT that is well known in the literature, we argue that the
upper cutoff too behaves like an ESQPT. Both these cutoffs
are vividly captured by a number of eigenvector properties:
VNEE, mean photon number, concurrence, and PR. For the
VNEE and mean photon number the whole central band is
uniform, with no distinction between g < gc and g > gc re-
gions. We find that concurrence and PR reveal more structure.
In addition to showing a signature of the ESQPT in the SP,
these quantities are also able to distinguish the eigenstates
of the central band between the g < gc region and g > gc

region. Hence we are able to present various phase transitions
in the DM in terms of several quantities that measure localiza-
tion, multifractality, mutual information, and entanglement. It
would be interesting to extend the ideas in this paper to other
spin-boson models, to open quantum systems that include a
bosonic bath, and models with a periodic drive.
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APPENDIX: THERMAL PHASE TRANSITION

We now show how the analytical expression for the tran-
sition temperature may be obtained. We begin with the

expression for the partition function of the Dicke model writ-
ten in the form of a double integral [Eq. (9)]:

Z (N, T ) =
∫

d2α

π
e−β|α|2 [Tre−βh]N

=
∫

d2α

π
e−β|α|2

(
2 cosh

{βε

2

[
1 + 16λ2α2

ε2N

]1/2})N
.

(A1)

Here α is real, so |α| = |α∗|. Now∫
d2α

π
=

∫ ∞

0
rdr

∫ 2π

0

dθ

π
= 2

∫ ∞

0
rdr. (A2)

Defining y = r2

N and

φ(y) = −βy + ln
(

2 cosh
{βε

2

[
1 + 16λ2y

ε2

]1/2})
, (A3)

we have

Z (N, T ) = N
∫ ∞

0
dy exp[Nφ(y)]. (A4)

Since we are interested in the thermodynamic limit where
N → ∞, we can invoke Laplace’s method [86], and the in-
tegral is given by

Z (N, T ) = N
C√
N

max
0�y�∞

exp{N[φ(y)]} (A5)

where C is some constant. To find the maximum of the func-
tion φ(y), we compute its derivative:

φ′ = −β + β4λ2

ε

1

η
tanh

(βεη

2

)
(A6)

where

η =
[
1 + 16λ2y

ε2

]1/2
. (A7)

Putting

φ′ = 0, (A8)

we get

η = 4λ2

ε
tanh

(βεη

2

)
. (A9)

The hyperbolic tangent function is a monotonically increas-
ing function and is bounded above by unity. Since η � 1
by definition [Eq. (A7)], if 4λ2 < ε, there is no solution for
Eq. (A9). On the other hand, for 4λ2 > ε, the solution de-
pends on the value of β. The critical value of the inverse
temperature βc can be computed by putting η = 1 and is given
by

βc = 2

ε
tanh−1

( ε

4λ2

)
. (A10)

Thus substituting ε = ω0
ω

and λ = g
ω

, we have an exact expres-
sion for the transition temperature:

Tc = 1

βc
=

( ω0

2ω

) 1

tanh−1
(

ωω0
4g2

) . (A11)
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