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Long-time Bell states of waveguide-mediated qubits via continuous measurement
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In this paper we consider a scheme for achieving long-time sustainable Bell states of two distant qubits
mediated by a one-dimensional waveguide whose outputs are subjected to time-continuous photon counting
or homodyne detection. In both of the detection cases, it is shown that different Bell states can be obtained, for
different initial states, in the long-time regime. In particular, we find that, in the case of photon counting, a cyclic
jump among Bell states can be formed once the first photon is registered. While in the homodyne-detection case
we further reveal that any steady Bell state can be achieved independent of detection efficiency, with a probability
of 50% . The underlying physical reason for this is also analyzed. Our scheme is advantageous over previous
studies in which only transient or intermittent Bell states can be generated. The long-time Bell states of distant
qubits can be used for constructing quantum networks.
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I. INTRODUCTION

Apart from fundamental interests of research, entangle-
ment has nowadays become a core resource of quantum
informatics [1]. Bell states, as maximally entangled two-qubit
states, have perfect quantum correlations and are therefore
especially important for realizing various high-efficient quan-
tum tasks, such as quantum teleportation [2]. Many kinds of
protocols were designed to generate Bell states in different
quantum matters, like atomic systems, quantum dots, su-
perconducting qubits, and the magnon-photon system [3–6].
Compared to such short-distance entanglement, long-distance
entanglement is of importance for distributing and transmit-
ting quantum information among distant quantum nodes in
quantum networks [7,8]. To this end, new light was recently
shed on waveguide QED systems, which are excellent integra-
tion platforms for generating long-distance entanglement and
building waveguide quantum networks, owing to their charac-
teristics of controllable interactions between matters and light
and combining them with open propagation directions [9–22].

The studies for generating entanglement between two dis-
tant quantum emitters (qubits) mediated by, e.g., photonic,
plasmonic, and magnonic waveguides have been carried out
[23–27]. However, the only results are mixed entangled states
due to the unavoidable decoherence process, such as spon-
taneous emission. As we know, the spontaneous emission
process can be envisaged as an ensemble of trajectories of
time-continuous quantum weak measurements on the environ-
ment induced by the decoherence process [28–32], pure Bell
states of some trajectory may be generated via measurements,
e.g., continuous photon counting and homodyne detection
[33–37]. For example, it has recently been shown that short-
time Bell states of quantum trajectories can be achieved by
continuously homodyning the outputs of a beam splitter on
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which the spontaneous fluorescences from two qubits are in-
cident [36]. It was also shown that entangled states of two
remote qubits connected with fiber can be achieved via homo-
dyne detection [37]. The measurement provides information
on the total spin of the two qubits such that the entangle-
ment can be postselected. Experimentally, the entanglement
of quantum trajectories of homodyne detection on two distant
qubits has been demonstrated [38]. Nevertheless, the entan-
gled states just appear in the transient regime and moreover
the Bell states merely exist at some time points since the
qubits initially prepared in excited states inevitably relax to
ground states. To pull the qubits back to the excited states,
one can employ a classical strong driving field. For instance,
Zhang et al. [39] recently proposed a scheme for the heralded
generation of the Bell state of waveguide-mediated qubits
driven by a classical laser via continuous photon counting.
However, the Bell state is merely present in an intermittent
manner since it takes time for the qubits to revert back to
excited states, and moreover the conditional Bell state almost
collapses even when the detection efficiency deviates from the
unit slightly.

In this paper, we consider a scheme for achieving long-term
sustainable Bell states of two distant waveguide-mediated
qubits via photon counting or homodyne detection. The sys-
tem under our consideration consists of two laser-driven
identical emitters in the � configuration which are coupled to
a one-dimensional waveguide via off-resonant Raman scatter-
ing. The outputs of the waveguide are subject to continuous
photon counting or homodyne detection. In both of these
cases, it is shown that different types of Bell states can be
realized in the long-time regime. For the photon-counting
case, we find that a cyclic jump among Bell states is formed
once the first photon is detected, meaning that different Bell
states appear alternately, conditioned on the occurrence of
subsequent photon-detection events. While for the homo-
dyne detection case, we show that initial-state-dependent Bell
states can be obtained in the regime of steady states, with a
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FIG. 1. (a) A schematic plot of the system. Two identical �-
type emitters are located at the positions x1,2 along the waveguide
and coupled to the left and right propagating waveguide modes bl,r

with wave numbers kl,r . The output fields bout
l,r of the waveguide are

subject to photon counting or homodyne detection, as shown in (c).
(b) Energy level diagram of the �-type emitters, in which the ground
state |g〉 and excited state |e〉 are coupled to the auxiliary state |i〉
through the driving fields of frequency ωa,b and the waveguide modes
of frequency ω.

probability of 50%. Moreover, this is independent of homo-
dyne detection efficiency.

The remainder of the paper is organized as follows. In
Secs. II and III, the system and the working equations are
presented. In Sec. VI, we investigate in detail the properties
of the entanglement of trajectories via photon counting and
homodyne detection. In the last section, the summary is given.

II. SYSTEM AND EQUATIONS

As schematically shown in Fig. 1(a), our system consists
of two identical emitters in the � configuration coupled to
a one-dimensional waveguide with distance d . Each emitter
is driven by classical fields with frequencies ωi (i = a, b)
and simultaneously coupled to the left and right transmitting
waveguide modes b̂λ (λ = l, r) with frequency ω and wave
vector kλ, as depicted in Fig. 1(b). The total Hamiltonian of
our system is given by [40]

Ĥsys = Ĥ0 + ĤI , (1)

with

Ĥ0 =
∑
j=1,2

(ωgσ̂gg + ωwσ̂ee + ω̂iσii )

+
∑
λ=l,r

∫
ωb̂λ(ω)†b̂λ(ω)dω, (2)

ĤI = i
∑
λ=l,r

∑
j=1,2

∫ [(
gb̂λ(ω)eikλx j + �ae−iωat

)
σ̂

j
ig

+ (
gb̂λ(ω)eikλx j + �be−iωbt

)
σ̂

j
ie

]
dω + H.c., (3)

where g and �i are the coupling strengths of atom-waveguide
and atom-field. x j denotes the position of atom j along the

waveguide. σ̂mn = |m〉〈n|(m, n = g, e, i) are the atomic tran-
sition operators, with the corresponding frequency ωmn. In the
interaction picture with respect to the free Hamiltonian Ĥ0, the
effective Hamiltonian of the entire system can be written as

Ĥeff (t ) = i
∑
λ=l,r

∑
j=1,2

∫ [
gb̂λ(ω)σ̂ j

igeikλx j ei(�b+δb)t

+ gb̂λ(ω)σ̂ j
ieeikλx j e−i�at + �aσ̂

j
ige−i(�a+δa )t

+ �bσ̂
j

ieei�bt
]
dω + H.c., (4)

describing the coupling of the emitters at positions x1,2 to the
driving fields and the waveguide (as a reservoir). Here the
detunings �a = ω − ωie, �b = ωie − ωb, δa = ωa − ωeg − ω,
and δb = ωb + ωeg − ω. Consider the situations: the detuning
|�i| � |�i|, such that the excited state |i〉 can be adiabatically
eliminated; the dispersive atom-waveguide interaction from
the adiabatical elimination can be ignored for the condition
|�i| � |g|. Then we follow the methods as in Ref. [41] and
derive the effective Hamiltonian

ˆ̃H eff = −iĤeff (t )
∫

dt ′Ĥeff (t ′), (5)

thus ˆ̃H eff = ˆ̃H0 + ˆ̃HI is obtained, with

ˆ̃H0 =
∑
j=1,2

1

2
ω̃σ̂ j

z , (6a)

ˆ̃HI = i

√
γ

2π

∑
λ=l,r

∑
j=1,2

∫
b̂†

λ(ω)(σ̂ j + σ̂
†
j )e−i(kλx j+δt )dω

+H.c., (6b)

on the conditions δa = −δb = δ and |�a/�b| = |�a/�b|.
Here, ˆ̃H0 is the free Hamiltonian of a two-level emitter with
the transition frequency ω̃ = −∑

i
4|�i|2

�i
between the energy

levels |e〉 and |g〉 (as our qubit). ˆ̃HI describes effective inter-
action between the qubits and the waveguide, with γ /2π =
4 | g�i/�i |2 and the lowering operator σ̂ j = σ̂

j
ge(σ̂ †

j = σ̂
j

eg).
For the initial vacuum of the waveguide modes, the master
equation for the density operator ρ̂a of the qubits under the
Born-Markovian approximation can be derived as [42,43]

d

dt
ρ̂a = −i

[ ˆ̃H0, ρ̂a
] + γ

∑
λ=l,r

D[Ĵλ±]ρ̂a, (7)

with the distance kd = 2nπ or (2n + 1)π for integer num-
ber n and kr = −kl = k. The symbol D[Ô]ρ̂ = Ôρ̂Ô† −
{Ô†Ô, ρ̂}/2, where the operators Ĵλ± = Ĵ1 ± Ĵ2, respectively,
for kd = 2nπ and kd = 2(n + 1)π , with Ĵ j=1,2 = (σ̂ j +
σ̂

†
j )/

√
2. Equation (7) effectively describes the dissipative-

driven collective dynamics of two qubits immersed in a
one-dimensional bosonic environment. Note that the time de-
lays are neglected by assuming that the timescale T1 = γ −1

on which the system evolves is much larger than the photon
traveling time between the two emitters.

III. TIME-CONTINUOUS MEASUREMENTS

We consider continuous measurement on the waveguide’s
outputs b̂out

λ (t ) = b̂in
λ (t ) + √

γ Ĵλ±, where the input vacuum
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noise satisfy [b̂in
λ (t ), b̂in†

λ (t ′)] = δ(t − t ′). It is shown that
measurements can gain information about the spin of the
qubits, which render stochastic evolution of the system’s
state, conditioned on the measurement records [28]. The mas-
ter equation (7) can be unraveled in a completely different
manner, such as photon-counting detection or homodyne de-
tection, which lead to jumpy or diffusive quantum trajectories,
respectively.

For the case of photon counting, as shown in Fig. 1(c),
the photodetector clicks every time, indicating it is registering
a single photon emitted from the left or right outputs. With
a generic detection efficiency ηλ (ηλ ∈ [0, 1]), the stochastic
master equation for the conditional density matrix ρ̂p is given
by [29]

d ρ̂p = −i[ ˆ̃H0, ρ̂p]dt −
∑
λ=l,r

γH
[
ηλ

2
Ĵ†
λ±Ĵλ±

]
ρ̂pdt

+
∑
λ=l,r

γD[
√

(1 − ηλ)Ĵλ±]ρ̂pdt

+
∑
λ=l,r

G[
√

ηλĴλ±]ρ̂pdNλ, (8)

with the symbols H[Ô]ρ̂ = Ôρ̂ + ρ̂Ô† − Tr[Ôρ̂ + ρ̂Ô†]ρ̂
and G[Ô]ρ̂ = Ôρ̂Ô†

Tr(Ôρ̂Ô† )
− ρ̂. The stochastic variable dNλ(t )

denotes the measurement results [dNλ(t ) = 0 or dNλ(t ) = 1]
during an infinitesimally time interval dt . For perfect detec-
tion ηλ = 1, when a photon is registered [dNλ(t ) = 1], the
system’s state jumps to

|ψ1(t + dt )〉 →
∑
λ=l,r

√
γ Ĵλ±|ψ (t )〉, (9)

from the state |ψ (t )〉 at the time t , with the probability
〈dNλ(t )〉 = 〈ψ (t )|Ĵ†

λ±Ĵλ±|ψ (t )〉dt . When no photon is regis-
tered [dNλ(t ) = 0], the system’s state collapses into

|ψ0(t + dt )〉 →
{

1 −
[∑

λ=l,r

γ

2
Ĵ†
λ±Ĵλ± + i ˆ̃H0

]
dt

}
|ψ (t )〉.

(10)
For the case of continuous homodyne detection on the

waveguide’s outputs, the stochastic master equation for the
density operator ρ̂c is [29]

d ρ̂c = −i[ ˆ̃H0, ρ̂c]dt +
∑
λ=l,r

γD[Ĵλ±]ρ̂cdt

+
∑
λ=l,r

√
ηλγ

2
H[Ĵλ±]ρ̂cdWλ(t ), (11)

conditioned on the detection currents

Iλ(t )dt = √
ηλγ 〈Ĵλ± + Ĵ†

λ±〉dt + dWλ(t ), (12)

where ηλ are homodyne detection efficiencies and dWλ(t )
are the standard Wiener increments with mean zero and
variance dt .

IV. RESULTS AND DISCUSSION

In this section, we investigate in detail the properties of the
entanglement between the two qubits via photon-counting and

(a)

(b)

FIG. 2. The concurrence of a dozen individual jump trajecto-
ries (color solid lines) initialized from |g1g2〉 for (a) ideal photon
detection (ηl = ηr = 1) and (b) inefficient photon detection (ηl =
ηr = 0.9). The black dotted lines represent the situation where no
photon is recorded during the measurement process. The parameters
kd = 2nπ , T1 = γ −1, and dt = T1/200.

homodyne detection. The stochastic master equations (8) and
(11) are numerically solved with using the PYTHON package
QUTIP [44,45]. The degree of entanglement between the two
emitters is measured by the concurrence [46]

C(ρ̂) = max{0, λ1 − λ2 − λ3 − λ4}, (13)

for the density operator ρ̂ in the basis {|0〉 ≡ |g1g2〉, |1〉 ≡
|g1e2〉, |2〉 ≡ |e1g2〉, |3〉 ≡ |e1e2〉}, where λi are the square
roots of the eigenvalues, in decreasing order, of the non-
Hermitian matrix ρ̂(σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y).

A. Bell states via photon counting

In Figs. 2(a) and 2(b), we plot the time evolution of the con-
currence of different jump trajectories for the initial ground
state |g1g2〉 and the distance kd = 2nπ , with the detection
efficiencies ηl = ηr = 1 and ηl = ηr = 0.9, respectively. The
black dotted curves represent the entanglement in the case that
no photons are detected during the measurement process. It
is shown that, before a photon is detected, the entanglement
increases as time develops. This is clearly shown in Fig. 3(a)
where the concurrence of a single trajectory is plotted.
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FIG. 3. (a) A single jump trajectory of concurrence, (b) cumula-
tive photon detections at left (red solid stepped-line) and right (blue
dashed stepped-line) output ports, (c) populations, and (d) coher-
ences for perfect photon detection ηl = ηr = 1. The other parameters
are the same as in Fig. 2.

Furthermore, after the first photon is registered, we see that
the maximal concurrence C = 1 can be always kept afterwards
even in the long-time regime, which implies the two qubits
are in pure Bell states. This can be understood as follows:
when starting from the ground state |g1g2〉, the qubits will
evolve into the entangled state of the superposition between
|g1g2〉 and |e1e2〉, as a consequence of the driving from the
ground state to the excited state. Specifically, before the first
photon registration (conditioning the environment being in
vacuum), the system is governed by the unitary operator
Û0(t ) = exp[(−∑

λ=l,r
1
2 Ĵ†

λ+Ĵλ+)t], and for the initial state
|g1g2〉 the system’s state evolves into

|ψ ′(t )〉 = 1 + e−2γ t√
2(1 + e−4γ t )

|g1g2〉 − 1 − e−2γ t√
2(1 + e−4γ t )

|e1e2〉,
(14)

with the concurrence

C(t ) = 1 − e−4γ t

1 + e−4γ t
. (15)

We therefore see that the entanglement increases monoton-
ically until the first photon is detected and the Bell state
|�−〉 = (|g1g2〉 − |e1e2〉)/

√
2 can be achieved, conditional on

the fact that no photons are detected during the time t � γ −1.
Once a photon is registered by either detector, indicated

from Eq. (14), the state |ψ ′(t )〉 is then immediately projected
onto the other Bell state |�+〉 = (|g1e2〉 + |e1g2〉)/

√
2 after

the first jump since the information on which qubit emits the
photon is erased. Moreover, this state will be maintained if no
subsequent photon registration occurs because the transitions
|ei〉 → |gi〉 and |gi〉 → |ei〉 simultaneously take place, accord-
ing to the interaction in Eq. (6b). Until the second “click”
occurs, |�+〉 jumps to a new Bell state |�+〉 = (|g1g2〉 +
|e1e2〉)/

√
2 and then jumps back to state |�+〉 until some time

that another photon is detected again. As a result, a cyclic

FIG. 4. A diagram of cyclic jump between Bell states |�±〉 =
(|g1e2〉 ± |e1g2〉)/

√
2 and |�±〉 = (|g1g2〉 ± |e1e2〉)/

√
2, enabled by

the jump operators Ĵλ± = Ĵ1 ± Ĵ2 on different initial states |g1g2〉,
|e1e2〉, |g1e2〉, or |e1g2〉.

jump between |�+〉 and |�+〉 is formed on the condition that
“clicks” take place. The concurrence thus always keeps its
maximum after a transient increase. This is also exemplified
in Figs. 3(b) to 3(d) where the cumulative photon-detection
events, the populations, and coherence of the two qubits are,
respectively, revealed for a single trajectory. It is shown that
the populations of {ρ00, ρ33} and {ρ11, ρ22} and the corre-
sponding coherence {ρ03, ρ30} and {ρ12, ρ21} take the values
of 0 and 0.5 alternately after a transient growth from zero.

In fact, as illustrated in Fig. 4 where the operators
Ĵλ+ = Ĵ1 + Ĵ2 and Ĵλ− = Ĵ1 − Ĵ2, respectively, for kd = 2nπ

and kd = (2n + 1)π , similar state cycles between |�±〉 =
(|g1e2〉 ± |e1g2〉)/

√
2 and |�±〉 = (|g1g2〉 ± |e1e2〉)/

√
2 can

also be formed, depending on the initial states of |g1g2〉,
|e1e2〉, |g1e2〉, and |e1g2〉. This is because of two possible
channels for creating photons: one is the transition |e j〉 →
|g j〉 via the interaction b̂†

λσ̂ j and the other is |g j〉 → |e j〉
through b̂†

λσ̂
†
j , according to Eq. (6b). Since the measurement

is unable to distinguish from which channel the photon is
created, the operator Ĵλ± can realize the following jump pro-
cesses:

Ĵλ±|g1g2〉 → |e1g2〉 ± |g1e2〉, (16a)

Ĵλ±|g1e2〉 → |e1e2〉 ± |g1g2〉, (16b)

Ĵλ±|e1g2〉 → |g1g2〉 ± |e1e2〉, (16c)

Ĵλ±|e1e2〉 → |g1e2〉 ± |e1g2〉, (16d)

As discussed above, in our scheme the qubits can always
be in one of the maximally entangled states due to the state
cycle between |�±〉 and |�±〉. Evidently, if the interaction
in Eq. (6b) only contains the terms b̂†

λσ̂ j , as in Ref. [39], the
first “click” can also herald a Bell state |�±〉 for the initial
state |g1g2〉. However, the achieved Bell state will jump back
to the ground state due to spontaneous emission. It takes
time to excite the qubits back to the excited states and then
a subsequent “click” projects the qubits again into another
Bell state. This is repeated for perfect detection efficiency. In
the present scheme, because there exists the engineered terms
b̂†

λσ̂
†
j , the system can always be kept in a Bell state for perfect

detection.
In Fig. 2(b), the entanglement of trajectories for finite

detection efficiency is plotted. We see that, under the in-
efficient photon detection, the concurrence of individual
trajectories cannot achieve its maximal value of C = 1 and
it exhibits a clear decay after the first jump event. This is
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(a) (b)

(c) (d)

FIG. 5. The evolution of the concurrence of individual trajectories (color solid lines) and the average concurrence over an ensemble of
2000 diffusive trajectories (black dashed line) when the right outport is homodyned for initial state |g1g2〉, with the detection efficiency ηr = 1
in (a), ηr = 0.9 in (b), ηr = 0.75 in (c), and ηr = 0.5 in (d). The other parameters kd = 2nπ and T1 = γ −1.

because the vacuum damping [the third terms in Eq. (8)],
which models the inefficient detection, contaminates the pure
Bell states. Hence, the longer the waiting time for the first
“click,” the less the amount of entanglement is obtained.
Furthermore, the entanglement no longer increases after the
first “click” and it then decays continuously whether or not
photons are detected later because subsequent “clicks” do
not alter the entanglement degree of the changing entan-
gled states, but the existing vacuum damping decreases the
entanglement all the time. It should be noted that recent ad-
vances in superconducting nanowire single-photon detectors
(SNSPDs) have already resulted in a detection efficiency close
to 100% [47].

B. Bell states via homodyne detection

In this subsection, we investigate the entanglement be-
tween the two qubits which are subject to continuous
homodyne detection. We only consider one of the waveguide
outputs (e.g., ηl = 0) is monitored since the same results
are reached when both are homodyned. Figure 5 depicts the
concurrence of some selected diffusive trajectories and the
average concurrence C (dashed lines) over an ensemble of
2000 quantum trajectories for different homodyne-detection
efficiencies ηr , with the initial state |g1g2〉 and the distance
kd = 2nπ . It is clearly shown that all trajectories demonstrate
short-time entanglement, some trajectories display null long-
time entanglement, while the other trajectories possess steady
maximal entanglement C = 1 independent of the detection
efficiency ηr . This can be understood as follows: it can be

found from Eq. (7) the state

ρ̃ss = 1
2 |�−〉〈�−| + 1

4 (|φ+〉〈φ+| + |φ−〉〈φ−|), (17)

is its possible solutions in the long-time regime, where
the states |φ±〉 = 1

2 [|e1e2〉 + |g1g2〉 ± (|g1e2〉 + |e1g2〉)]. Be-
cause the states |�−〉 and |φ±〉 are the eigenstates of the
operator Ĵr+, satisfying Ĵr+|�−〉 = 0 and Ĵr+|φ±〉 = ±|φ±〉
and the unconditional equation (7) can be unraveled into a
set of quantum trajectories governed by the conditional equa-
tion (11), the state ρ̃ss can be considered as an ensemble
average of the conditioned states |�−〉 and |φ±〉 of the quan-
tum trajectories of the homodyne detection (involved in the
measurement operator Ĵr+) in the steady-state regime. Since
the operator Ĵr+ is hermitian, its eigenstates |�−〉 and |φ±〉 sat-
isfy the conditional equation in the steady-state regime, even
the eigenvalues are nonzero for the latter and the detection
is inefficient (ηr < 1). As a result, as shown in Fig. 5, the
entanglement of the trajectories has the steady-state values
of C = 1 or C = 0, which correspond to the states |�−〉 and
|φ±〉, respectively. The steady Bell state |�−〉 can therefore be
achieved with a 50% probability, which is moreover immune
to the detection inefficiency. This is distinct from the case of
photon counting. For finite detection efficiency, the transient
states of the trajectories are still mixed and the time for ap-
proaching the steady states is prolonged as ηr decreases since
less output information about the spin of the two qubits has
been accessed.

From the above discussion, the average entanglement C =
0.5 should be achievable in the long-time regime, as shown
in Fig. 5. The explicit expression for the average concur-
rence in the entire time can be derived from the stochastic
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FIG. 6. (First row) Selected diffusive trajectories of the concurrence which reach the maximal values in the steady-state regime, for the
initial states |g1g2〉 (red thin solid line), |g1e2〉 (green thick dash-dot line), |e1g2〉 (yellow thick solid line), and |e1e2〉 (blue thin dash-dot line).
The plots in the second, third, fourth, and fifth rows are the evolution of the elements of the corresponding density matrix of each trajectory.
The parameters are the same as Fig. 5.

equation (11) for ηr = 1. For a pure two-qubit state |̃ϕc〉 =
ϕ0|g1g2〉 + ϕ1|g1e2〉 + ϕ2|e1g2〉 + ϕ3|e1e2〉, the concurrence
is C = 2|ϕ0ϕ3 − ϕ1ϕ2|, and thus the evolution of the concur-
rence C is derived as

dC (̃ϕc) = | − 3γ C (̃ϕc)dt + 3γ
(
ϕ2

1 + ϕ2
2 − ϕ2

0 − ϕ2
3

)
dt

− 2
√

γ C (̃ϕc)〈Ĵr+〉dWr |, (18)

from which the ensemble average of the concurrence can be
calculated as

C (̃ϕc) = 1
2 − 1

5 e−3γ t − 3
10 e−8γ t , (19)

for the initial state |g1g2〉, which coincides with the numerical
result.

In Fig. 6, the entanglement of trajectories for differ-
ent initial states are plotted. We specifically choose four
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individual trajectories whose concurrence C = 1 in the long-
time limit, for the initial states |g1g2〉, |g1e2〉, |e1g2〉, and
|e1e2〉, respectively. In addition, the corresponding popula-
tions and coherences are also plotted. Note that, similar to
Fig. 5, the entanglement of the trajectories for these initial
states also becomes C = 1 or C = 0 in the steady-state regime.
It is shown that the individual trajectory initialized at |g1g2〉
(red thin solid line) or |e1e2〉 (blue thin dash-dot line) even-
tually evolves into the Bell state |�−〉, while the trajectory
started from |g1e2〉 (green thick dash-dot line) or |e1g2〉 (yel-
low thick solid line) asymptotically approaches another Bell
state |�−〉. This is different from the cyclic jumps in the
previous case of photon counting. It should be pointed out
that if the distance of the two qubits satisfies kd = (2n + 1)π ,
the steady Bell states |�+〉 or |�+〉 of the trajectories can
be resulted, respectively, for the initial states |g1g2〉 (|e1e2〉)
or |e1g2〉 (|g1e2〉). Therefore, from the discussion, continuous
homodyne measurement can also allow us to probabilistically
generate long-time Bell states via making a postselection
on the diffusive trajectories with the long-time concurrence
C = 1.

V. DISCUSSION AND CONCLUSION

Before concluding, let us briefly introduce the exper-
imental feasibility of our scheme. In our experimental
consideration, a nanoscale photonic crystal waveguide, two
identical alkali-metal atoms, high efficiency detectors (e.g.,
SNSPDs), and appropriate laser sources are preferred. The
rubidium 87 D2 transition (on the 5S1/2 − 5P3/2 at 780 nm)
hyperfine structure [48] can be considered as a possible candi-
date to form a �-level scheme, for example, |g〉 = |5S1/2F =
1〉, |e〉 = |5S1/2F = 2〉, and |i〉 = |5P3/2F ′ = 1〉. The relax-
ation rate �eg of coherence between states |e〉 and |g〉 is so
small that it can be negligible in our consideration. As de-
signed in Fig. 1(a), position two spatially separated singly

trapped atoms in the evanescent field located outside the
photonic crystal waveguide. In this region, the atoms are
driven by two controllable laser fields at Rabi frequencies
�a,b, and simultaneously couple to the waveguide-bath via
two off-resonant Raman transitions with single-photon Rabi
frequency g. The coupling strength can be tuned in the range
of several GHz by precisely controlling the atom-surface
distances [49,50]. The parameters can be set as the experimen-
tally feasible conditions as follows: g � 10 MHz, |�a,b| �
10g and |�a,b| � 100g, so that γ � 2π × 4 MHz and T1 �
0.25 μs.

In conclusion, we show in this paper how to prepare long-
term sustainable Bell states of two distant qubits by using
time-continuous photon counting or homodyne detection. We
consider two identical � emitters which are coupled to a
one-dimensional waveguide via off-resonant Raman scatter-
ing. It is shown that, in both of these detection schemes, Bell
states can be realized in the long-time regime. For the case
of photon counting, a cyclic jump among Bell states can be
formed and the alternate appearance of different Bell states
is heralded on the subsequent photon-detection events in the
long-time regime. While for the case of homodyne detection,
it is found that different Bell states can be achieved in the
regime of steady states with a probability of 50%, independent
of the detection efficiency. Our scheme is advantageous over
previous ones in which transient or intermittent Bell states of
qubits can only be generated, and it may find applications in,
e.g., quantum communication networks.
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