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Effect of the atomic dipole-dipole interaction on the phase diagrams of field-matter interactions:
Variational procedure
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We establish, within the second quantization method, the general dipole-dipole Hamiltonian interaction of a
system of n-level atoms. The variational energy surface of the n-level atoms interacting with �-mode fields and
under the Van Der Waals forces is calculated with respect to the tensorial product of matter and electromagnetic
field coherent states. This is used to determine the quantum phase diagram associated with the ground state of
the system and quantify the effect of the dipole-dipole Hamiltonian interaction. By considering real induced
electric dipole moments, we find the quantum phase transitions for 2- and 3-level atomic systems interacting
with one and two modes of the electromagnetic field, respectively. The corresponding order of the transitions is
established by means of Ehrenfest classification; for undetermined cases, we propose two procedures: one based
on the difference of the expectation value of the Casimir operators of the 2-level subsystems, and another based
on maximizing the Bures distance between neighbor variational solutions.
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I. INTRODUCTION

Recently, we have studied the quantum phase diagrams of
a system of n-level atoms interacting with � electromagnetic
modes in a cavity, under the dipolar approximation [1,2].

When the interatomic distance of a cold atomic gas is
comparable to the wavelength of the electromagnetic field, the
dipole-dipole coupling between the atoms becomes important
and yields relevant collective effects [3]. These Van der Waals
forces, due to dipole-dipole interactions of the induced electric
dipole moments, become important and must be taken into
account. However, one needs to be careful about the long or
short character of the dipolar potential for many particle sys-
tems, as one can find in theoretical and experimental studies
of ultracold boson systems [4–6].

The dipole-dipole interaction decays as 1/r3, with r being
the distance between particles, and is, thus, of a different na-
ture as the matter-field interaction considered in earlier works
(cf., e.g., Ref. [7] and references therein). Energy transfer
between the particles (atoms, molecules) is one of the impor-
tant consequences of this interaction. For Rydberg atoms it is
particularly interesting, as they have high principal quantum
numbers n, while the dipole moment scales as n2 in atomic
units [8].

In the case of Rydberg atoms in the presence of a laser
field, the Stark effect will split the spectral lines of the atoms.
Therefore, one may tune the electric field in order to achieve
resonance and thereby energy exchange. One could then mea-
sure the dipole-dipole interaction, which will depend on the
fraction of atoms that interact, by comparing the energy spec-
trum with that when no field is present. This interaction may
prove useful in quantum computing and may be achieved
with fields whose wavelength is of the order of 480 nm, well
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inside the optical range [9]. This is possible because Rydberg
atoms have exaggerated atomic properties (e.g., dipole-dipole
interactions that scale as n4).

A review of theoretical and experimental work on the
dipole-dipole interaction between Bose-Einstein condensates
has been presented in Ref. [5]. The trapping of cooled polar
molecules and other atomic species [10] was important for
attracting the attention to study these type of interactions, and
the long-range dipole-dipole interaction in low-density atomic
vapors was detected in Ref. [11], confirming that the interac-
tion is indeed long-range and that it is present at any density.
Atomic dipole-dipole interactions have been considered for
the case of two 2-level atoms interacting with near-resonant
laser fields to account for squeezed vacuum dynamics, in order
to look at their spectral characteristics [12] and the modifi-
cation of the decay rate of the atoms [13]. The probability
of excitation transfer between an excited-state atom and a
ground-state atom in a cavity, including realistic cavity losses,
has been studied in Ref. [14] using the master equation ap-
pearing in Ref. [15] for a reduced density operator describing
the atomic system. In Ref. [16], the entanglement among
subsystems and the squeezing entropy have been calculated
for qubits using an Ising-like model for their interaction, in
the framework of two-mode pair coherent states of power-law
potentials in the manner of Ref. [17]. In Ref. [18] the spon-
taneous appearance of macroscopic polarization is shown for
2-level atoms, confined in a cavity; this appears to be a mani-
festation of a phase transition. Also, in Ref. [19] the possibility
of a quantum phase transition is discussed in many-dipole
cavity QED systems determining that it manifests through a
macroscopic gauge-invariant polarization, resolving the para-
dox of no-go and counter-no-go theorems for superradiance in
the Dicke model.

According to the previous discussion, the interaction be-
tween atoms might be relevant to the determination of the
quantum phase diagrams for the system constituted by n-level
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atoms interacting with � modes of electromagnetic radiation
in a cavity. The main objective of this work is to quantify
the effect of the atomic dipole-dipole induced interaction on
the properties of the ground state of the system. The original
contributions of this work are the following: (i) to establish
the general dipole-dipole interaction Hamiltonian for a system
of n-level atoms interacting with � modes of electromagnetic
radiation in a cavity, and (ii) to calculate the associated en-
ergy surface, which allows us to determine the variational
ground state, which plays a fundamental role in finding the
quantum phase diagrams of the system. The cases for 2-
and 3-level atomic configurations are worked out explicitly,
determining the quantum phase diagrams together with the
corresponding order of the transitions. It is remarkable that,
even for a finite number of atoms, the surface of the maximum
Bures distance is able to detect the phase transitions where
the Ehrenfest method does not. Additionally we have found
that the quantum phases continue to be dominated by a set
of monochromatic regions as was the case for noninteracting
atoms, at least when the induced electric dipolar moments are
real.

The paper is organized as follows. Section II derives the
model for a system of Na identical n-level atoms interact-
ing with � modes of an electromagnetic field, including the
atomic dipole-dipole interaction, and particularizes it for 2-
and 3-level atoms. Section III constructs the variational energy
surface from a complete set of test states which approach the
quantum ground state, or any other quantum excited state.
Here we focus on the ground state and study its phase di-
agram. This is applied in Sec. IV to the case of 2-level
atoms and in Sec. V to the case of 3-level atoms in their
different atomic configurations; we find the critical values of
the coupling parameters which minimize the energy, and we
determine the phase diagram in both attractive and repulsive
scenarios of the atomic dipole-dipole interaction. In cases
where a phase transition exists which defies the Ehrenfest
classification, alternative criteria are proposed, one based on
the second-order Casimir operator and another one based on
the maximum Bures distance between neighboring states. Fi-
nally, Sec. VI summarizes some conclusions. Two appendices
present the matter collective operators and the atomic dipole-
dipole operator in explicit form.

II. MODEL

We consider a system of Na identical n-level atoms inter-
acting with � modes of a radiation field, placed in a cavity.
The Hamiltonian is composed of three terms,

H = HD + Hmf + Hdd, (1)

where HD is the diagonal contribution given by (h̄ = 1)

HD =
�∑

s=1

�sνs +
n∑

k=1

ωkAkk; (2)

the dipolar matter-field interaction is of the form [20]

Hmf = − 1√
Na

�∑
s=1

n∑
j<k

μ
(s)
jk (A jk + Ak j )(a†

s + as). (3)

In these expressions, �s and νs are the field frequency and the
photon number operator, respectively, of mode s; ωk denotes
the energy of the kth atomic level with the convention ω j <

ωk for j < k; a†
s and as are the field creation and annihilation

operators; and A jk is the atomic transition operator between
levels k and j, which in a bosonic representation A jk = b†

jbk

plays the role of the collective matter operator obeying the
unitary algebra in n dimensions, U (n). Here, b†

j creates an
atom in level j and bk annihilates one in level k [cf. Eq. (A8)].
The dipolar matter-field coupling intensity between the field
mode s and the atomic dipole formed by levels j and k is
denoted by μ

(s)
jk .

Atoms do not have permanent dipole moments in their
ground state, as the center of charge of the electronic cloud
coincides with that of the nucleus. In the presence of an elec-
tromagnetic field, however, these centers are displaced and
the induced transition dipole moments are responsible for an
atomic dipole-dipole interaction. In the second quantization
method, this dipole-dipole interaction takes the form

Hdd = 1

2(Na − 1)

∑
j,k, j′,k′

〈 j, k |W ab | j′, k′〉 b†
j b†

k b j′ bk′ , (4)

where bosonic creation b†
j and annihilation bk operators are

used. The factor 1/2 in Eq. (4) compensates for the double
accounting in the summation, as the particles are indis-
tinguishable. The factor (Na − 1) is included to have an
interaction that is linear in the number of particles. The first
index in the bra and the ket states corresponds to the first
particle, while the second index corresponds to the second
particle.

The set of operators that appear in Eq. (4) may be rewritten
in terms of the collective matter operators, by means the
bosonic commutation relation, as

b†
j b†

k b j′ bk′ = A j j′Akk′ − δ j′kA jk′

:= A j j′ � Akk′ , (5)

where we have defined the � product between collective mat-
ter operators, which removes the self-interaction terms (see
Appendix A for more details).

The dipole-dipole interaction Hdd is obtained from the
classical expression [21] through the standard quantization
procedure, which has the form

W ab =
�da · �db − 3(n̂ · �da)(n̂ · �db)

4πε0R3
, (6)

where �d i = e �ri (i = a, b) are the induced vector operators of
the electric dipole moments, R is the separation between the
dipoles, and n̂ = �R/R (with �R = �xb − �xa) is the unitary vector
in the direction from one dipole to another, at positions �xa

and �xb (see Fig. 1). ε0 is the permittivity of vacuum, and for
induced magnetic moments μ1 and μ2, the expression is the
same with the replacements di → μi and ε0 → μ0, the mag-
netic permeability of vacuum (cf., e.g., Ref. [22]). Without
loss of generality, we consider here that the induced electric
dipoles are real.
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(a)

(b)

FIG. 1. (a) Schematic of the atomic dipole-dipole interaction. xi

(i = a, b) denote the position of the dipoles �di = e�ri, and �R denotes
their separation. (b) Schematic depiction of the atomic transitions
| j, k〉 ↔ | j ′, k′〉 due to the dipole-dipole interaction.

Thus, the two-body matrix elements in Hilbert space are

g j j′kk′ = 1

4πε0
〈 j, k|

�da · �db − 3 (n̂ · �da)(n̂ · �db)

R3
| j′, k′〉, (7)

The indices of the dipole-dipole coefficient gj j′kk′ refer to the
two dipoles involved in the bra-ket (7).

For indistinguishable particles, and identifying the expan-
sion components �d jk = 〈 j|�da,b|k〉 of the dipolar operator in
terms of the collective matter operators, viz., the dipolar oper-
ator given by �d = ∑n

j 
=k
�d jkA jk , the matrix element in Eq. (7)

reads

g j j′kk′ = �d j j′ · �dkk′ − 3(n̂ · �d j j′ )(n̂ · �dkk′ )

4πε0R3
, (8)

where R stands for the average distance between pairs of
atoms. The hermiticity of Eq. (4) follows from the relations

g jklm = glm jk, g jklm = g∗
k jml . (9)

Also, for real dipolar vectors �d jk = �dk j , one has g jklm =
g jkml = gk jlm.

Finally, using the � operator introduced above, we may
write the dipole-dipole interaction in a simplified form as

Hdd = 1

2(Na − 1)

n∑
j 
=k

n∑
l 
=m

gjklmA jk � Alm. (10)

Inserting the different contributions into Eq. (10), one may write the atomic dipole-dipole term in the Hamiltonian as (see
Appendix B)

Hdd = 1

2!

n∑
j 
=k

W 2-levels
jk + 1

2!

n∑
j 
=k 
=l

W 3-levels
jlk + 1

4!

n∑
j 
=k 
=l 
=m

W 4-levels
jklm , (11)

where the operator W 2-levels
jk stands for the dipole-dipole con-

tribution of the pair �d jk � �d jk ; the operator W 3-levels
jlk stands

for that of the pair of dipoles �d jl � �dlk (here the atomic level
ωl plays the role of an intermediate level, so a prohibited
dipolar transition �d jk = 0 is possible via the permitted dipolar
transitions �d jl 
= 0 and �dlk 
= 0); and the operator W 4-levels

jklm

corresponds to the contribution of isolated dipoles �d jk � �dlm

(which do not share an energy level). The upper index denotes
the number of different atomic levels which contribute to the
interaction; hence, the terms W 3-levels

jlk and W 4-levels
jklm are zero for

n-level atoms with n = 2 and n � 3, respectively. The set of
transitions included in each interaction term is given in Table I
and shown schematically in Fig. 2. These terms are given in
Appendix B. Also, the factors 1/2! and 1/4! in expression (11)
eliminate the double summation due to index reordering.

Amongst the parameters in the Hamiltonian, we are free to
choose ω1 = 0 and ωn = 1; i.e., the energies are normalized to
the highest atomic level. We also consider systems where only
one field mode promotes the transition between a given pair

of atomic levels; this constriction is imposed by the following
condition [23]:

if μ
(s)
jk 
= 0, then μ

(s′ )
jk = 0, for all s′ 
= s. (12)

TABLE I. Contribution of the atomic transitions to the terms
W 2-levels

jk , W 3-levels
jkl , and W 4-levels

jklm of the atomic dipole-dipole interac-
tion. See also the accompanying Fig. 2.

Atomic levels Interaction Atomic transitions

ω j, ωk W 2-levels
jk j ⇒ k j ⇔ k

j → k → j k ← j ← k
ω j, ωk, ωl W 3-levels

jkl j ← k → l j → k ← l
j ← k ← l j → k → l

ω j, ωk ; ωl , ωm W 4-levels
jklm j � k; l � m j � k; m � l

j � l; k � m j � l; m � k
j � m; k � l j � m; l � k
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(a) (b) (c)

FIG. 2. The set of transitions involved in each term, W 2-levels
jk , W 3-levels

jkl , and W 4-levels
jklm , of the dipole-dipole operator are shown schematically.

Each transition is indicated by arrows of the same type. So for 2-level atoms [panel (a)], the first pair (blue, continuous) of lines denote the
transition j ⇒ k, the second pair (green, dotted) of lines denote the transition j ⇔ k, the third line (indigo, continuous) denotes the transition
j → k → j, and the fourth line (orange, dotted) denotes the transition k ← j ← k. They are also cumulative; thus, for instance, for the
transitions in W 3-levels

jkl we have those shown in panel (c) plus those shown in panel (b). Similarly, W 4-levels
jklm contains all the transitions in the three

diagrams.

Since the interaction (11) involves the dipole-dipole contribu-
tion g jklm, we have g jklm 
= 0 only when μ

(s)
jk 
= 0 and μ

(s′ )
lm 
=

0 for at least one of the modes �s and �s′ . The first- and
second-order Casimir operators [Eqs. ((A6) and (A7))], whose
eigenvalues are functions of the number of atoms Na and the
number of levels n, are of course constants of motion.

As an example, we now write explicitly the contribution of
Hdd for 2- and 3-level atoms:

A. Two-level atoms

For a system of 2-level atoms, the Hamiltonian (1) reads

H = HD + Hmf + W 2-levels
jk , (13)

where we fix j < k for the atomic levels ω j < ωk , respec-
tively.

B. Three-level atoms

Three-level atoms present three different atomic configura-
tions (�, 	, and V ), according to which atomic transitions are
prohibited.

(i) For the � configuration, the dipolar transition �d13 = 0
is prohibited, and the Hamiltonian takes the form

H� = HD + Hmf + W 2-levels
12 + W 2-levels

23 + W 3-levels
123 . (14)

The intermediate atomic level ω2 may promote the transition
ω1 � ω3. The set of nonzero dipolar-dipolar strengths is

{g1212, g1221, g2323, g2332, g1232, g1223}
together with their complex conjugates obtained as gjklm =
g∗

k jml [cf. Eq. (9)].
(ii) For the 	 configuration, it is the dipolar transition

�d12 = 0 which is prohibited, and the Hamiltonian takes the
form

H	 = HD + Hmf + W 2-levels
13 + W 2-levels

23 + W 3-levels
132 . (15)

The atomic level ω3 serves as an intermediate level which may
promote the transition ω1 � ω2. The set of nonzero dipolar-
dipolar strengths is {g1313, g1331, g2323, g2332, g1323, g1332} to-
gether with their complex conjugates obtained by Eq. (9).

(iii) For the V configuration, the dipolar transition �d23 = 0
is prohibited, and the Hamiltonian is

HV = HD + Hmf + W 2-levels
12 + W 2-levels

13 + W 3-levels
213 . (16)

The atomic level ω1 acts here as an intermediate and may
promote the transition ω2 � ω3. The set of nonzero dipolar-
dipolar strengths is {g1212, g1221, g1313, g1331, g2131, g2113} to-
gether with their complex conjugates obtained by Eq. (9).

In a recent work [24], the case where equal contributions
of the form g j pp j = g j ppk = g for all j and k was consid-
ered (other terms were neglected). It was shown that the
dipole-dipole interactions act against the appearance of atomic
squeezing and also that an increase in the mean value of the
number of photons of the initial state smears out the effect.

III. VARIATIONAL ENERGY SURFACE

The variational solution involves a test state which ap-
proaches the quantum ground state or the desired excited
state and which depends on a set of parameters zi. The corre-
sponding energy surface is obtained by taking the expectation
value of the Hamiltonian and minimizing it with respect to
the parameters zi of the test state. In this work we focus on
the ground state and take as test state the direct product of
coherent states for both the matter and the field contributions.
Clearly, this test state presents no matter-field entanglement,
but it yields a good description of the minimum energy
surface, as well as some expectation values of the physical
quantities, and the phase diagram together with the order of
the phase transitions.

A. Coherent matter state

The coherent matter state is defined as [25]

|�γ 〉 = 1√
Na!

[�†]Na |0〉m, (17)

where �γ = (γ1, . . . , γn) and ||�γ || := (|γ1|2 + |γ2|2 + · · · +
|γn|2)1/2. The operator �† is

�† = γ1b†
1 + γ2b†

2 + · · · + γnb†
n

||�γ || , (18)
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and using the bosonic realization [b j, b†
k] = δ jk , the relation-

ship [�,�†] = 1 is immediately fulfilled; hence, the state (17)
is normalized. It is straightforward to show that

[bk,�
†] = γk

||�γ || , (19)

which for any number of atoms generalizes to

[bk, (�†)Na ] = Na
γk

||�γ || (�†)Na−1. (20)

The relations above are useful in order to find the matrix
elements of the collective matter operators. The linear con-
tribution is

〈�γ |A jk|�γ 〉 = Na

γ ∗
j γk

||�γ ||2 , (21)

and the quadratic contribution is

〈�γ |A jkAlm|�γ 〉 = Na(Na − 1)
γ ∗

j γkγ
∗
l γm

||�γ ||4 + δklNa

γ ∗
j γm

||�γ ||2 , (22)

where the last term corresponds to the self-interactions and
vanishes in the dipole-dipole interaction.

B. Coherent field state

The coherent field state for � modes is given by the direct
product of coherent states for each mode as follows [26,27],

|�α〉 := |α1〉 ⊗ |α1〉 ⊗ · · · ⊗ |α�〉, (23)

where �α = {α1, . . . , α�}. For each mode s = 1, . . . , � the co-
herent state satisfies as|αs〉 = αs|αs〉, and hence

〈�α|as|�α〉 = αs, 〈�α|a†
s |�α〉 = α∗

s , (24)

while the expectation value of the number operator for each
mode is

〈�α|a†
s as|�α〉 = 〈�α|νs|�α〉 = |αs|2. (25)

From the expressions above, and writing for the complete
test state the direct product of the coherent states for field and
matter,

|�α, �γ 〉 := |�α〉 ⊗ |�γ 〉, (26)

the variational energy surface per atom

E := 〈�α, �γ |H|�α, �γ 〉/Na,

as a function of αs = Rseiθs , γk = keiφk , and parameters of
the Hamiltonian, reads

E = 1

Na

�∑
s=1

�s R2
s +

n∑
k=1

ωk
2

k

||�γ ||2 − 4√
Na

�∑
s=1

n∑
j<k

μ
(s)
jk

 jkRs

||�γ ||2 cos(φ jk ) cos(θs) + 1

Na
〈�α, �γ |Hdd|�α, �γ 〉, (27)

where φ jl = φl − φ j . The last term in Eq. (27) corresponds to the atomic dipole-dipole interaction per particle Edd and has the
form

Edd = 1

||�γ ||4
∑
j<k

Re[g jk jk e2iφ jk + g jkk j]
2
j

2
k + 2

||�γ ||4
∑

j<k; j 
=p
=k

Re[g j pkp ei(φ j p+φkp) + g j ppk eiφ jk ] jk
2
p

+ 2

||�γ ||4
∑

j<k<l<m

Re[g jklm ei(φ jk+φlm ) + g jkml ei(φ jk−φlm ) + g jlkm ei(φ jl +φkm ) + g jlmk ei(φ jl −φkm )

+ g jmkl ei(φ jm+φkl ) + g jmlk ei(φ jm−φkl )] jklm. (28)

Here, we used the fact that g jklm = glm jk and g jklm = g∗
k jml in

order to simplify the expression.
By simple inspection, one may note that the energy surface

has minima at the critical values θ c
s = 0, π and Rc

s = √
Na rc

s ,
with

rc
s = 2

n∑
j<k

μ
(s)
jk

�s

c
j

c
k

||�γ c||2 cos
(
φc

jk

)
cos

(
θ c

s

)
, rc

s � 0, (29)

and φc
jl = φc

l − φc
j .

In a similar fashion, for the fixed values 1 = 1 and φ1 = 0,
and supposing, without loss of generality, real values for the
dipolar (μ) and dipole-dipole (gjklm) strengths, one finds the
critical values for the phase φ j to be φc

j = 0, π .
After substitution of the critical values θ c

s , φc
j , and fixing

1 = 1 and φ1 = 0, we obtain a family of energy surfaces
E (; θ c, φc) for  = (2 . . . n), θ c = (θ c

1 . . . θ c
� ), and φc =

(φc
2 . . . φc

n ); appropriate values for θ c
s and φc

j should be se-
lected in order to satisfy rc

s � 0 in Eq. (29). The minimum

energy surface is then obtained by calculating the critical
points c

j , which is done numerically, in general.

IV. TWO-LEVEL ATOMS

For 2-level atoms the expression of the energy surface
reads

E = �s r2
s + ω j 

2
j + ωk 2

k

2
j + 2

k

− 4
μ jk rs jk cos(θs) cos(φ jk )

2
j + 2

k

+ [g jk jk cos(2 φ jk ) + g jkk j]
2

j
2
k(

2
j + 2

k

)2 , (30)

with j < k. The critical values of the corresponding energy
surface equation (27) must satisfy

μ jk cos(φc
jk ) cos(θ c

s ) = |μ jk|, (31)
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FIG. 3. Minimum energy as a function of the matter-field cou-
pling x jk , for 2-level atoms interacting with a single mode of an
electromagnetic field. The solid line corresponds to the case without
dipole-dipole interaction g = 0; the repulsive case g = 0.05 (dashed
line) and the attractive case g = −0.05 (dotted line). The inset shows
a zoom around the value x jk = 1 where the transition appears. The
parameters are ω j = 0 and ωk = 1 for the atomic levels and � = 1
for the field frequency. The frequency is measured in units of ωk ,
g has units of frequency, the energy is in units of h̄ωk , and x jk is
dimensionless.

and fixing φ j = 0 and  j = 1, one finds two solutions:

c
k = 0 and c

k =
√√√√ x2

jk − y jk

x2
jk − y jk + 2

. (32)

Here, we have used a dimensionless matter-field coupling
intensity x jk , defined as

x jk = μ jk

μc
jk

, μc
jk = 1

2

√
�s ω jk, (33)

with μc
jk being the critical value of the coupling constant when

the atomic dipole-dipole interaction is neglected, and where
ω jk = |ωk − ω j |. We have also defined

y jk = ω jk + g

ω jk
, g = g jkk j + g jk jk, (34)

to simplify the notation.

For values x2
jk − y jk � 0 one finds only one critical value

k = 0, for which the energy surface has the constant value
ω j . When x2

jk − y jk > 0 we have two critical values (32); in
this case the energy surface has a dependence on the matter-
field dipolar strength x jk . After minimizing, one finds

Emin =
⎧⎨
⎩

ω j, x2
jk < y jk,

ω j − [x2
jk−y jk ]2

4(x2
jk−y jk+1)

ω jk, x2
jk � y jk .

(35)

This relationship, Emin vs x jk , is shown in Fig. 3. The solid line
(black) corresponds to the case g = 0 without atomic dipole-
dipole interaction; repulsive g = 0.05 (dashed line, blue) and
attractive g = −0.05 (dotted line, green) cases are also shown.
Due to the minuteness of this interaction when compared with
the dipolar matter-field interaction, the difference for dissim-
ilar values of g is difficult to appreciate. We have zoomed
around the value x jk = 1 (see figure inset) where the tran-
sition into the collective region appears, in order to make
this difference clear. In what follows, we consider unnaturally
large values for the atomic dipole-dipole coupling parameter
g so that its effect may be appreciated; when studying actual
realistic systems these values (and their effects) must be scaled
down accordingly.

The minimum energy for different (larger) values of the
dipolar coupling strength is plotted in Fig. 4. For values of g
such that y jk > 0, the critical points xc

jk = ±√
y jk divide the

normal region x2
jk < (xc

jk )2 from the collective region x2
jk >

(xc
jk )2. One should note that for the case without dipole-dipole

interaction, g = 0 [solid line in Fig. 4(a)], the critical points
occur at (xc

jk )2 = 1, while in the attractive case, g < 0 [dashed
line in Fig. 4(a)], one has (xc

jk )2 < 1, i.e., the normal re-
gion decreases. Correspondingly, for the repulsive case g > 0
[dot-dash line in Fig. 4(a)] the normal region increases, as
we have (xc

jk )2 > 1. The anomalous behavior is the strong
attractive regime, this is characterized by values of g such
that y jk � 0, when the normal region vanishes completely
[dotted line in Fig. 4(a)]. It is important to note that, for large
matter-field coupling x2

jk � y jk , the minimum energy surface
Emin tends to that without the atomic dipole-dipole interaction;

-2.5

-2

-1.5

-1

-0.5

-3 -2 -1  1  2  3
xjk

E
ne

rg
y

(a)

-3

-2

-1

 0

 1

 2

-3 -2 -1  0  1  2  3
xjk

(b)

FIG. 4. (a) Minimum energy as a function of the matter-field coupling x jk , for 2-level atoms interacting with a single mode of an
electromagnetic field. The solid line corresponds to the case g = 0 without dipole-dipole interaction; the repulsive case g = 0.5 (dash-dot
line) and two attractive cases g = −0.5 (dashed line) and g = −2 (dotted line) are also shown (the latter in a regime of very strong attractive
interaction). (b) Minimum energy (dotted line) and its first (dashed line) and second (solid line) derivatives. The parameters are ω j = 0 and
ωk = 1 for the atomic levels and � = 1 for the field frequency. The energy has units of h̄ωk .

033712-6



EFFECT OF THE ATOMIC DIPOLE-DIPOLE … PHYSICAL REVIEW A 105, 033712 (2022)

in other words, the effect of the dipole-dipole terms on the
energy surface is seen mainly in the vicinity of the normal
region.

The order of the transition may be determined using the
Ehrenfest classification [28], which involves the derivatives
of the energy surface. We exemplify the case g = 0.5 in
Fig. 4(b), showing, respectively, the first (dashed line) and
second derivatives (solid line) of the energy. Since the second
derivative presents a discontinuity at the critical point xc

jk , a
second-order transition occurs at that location.

V. THREE-LEVEL ATOMS

For 3-level atomic systems interacting dipolarly with a
two-mode electromagnetic field in a cavity, the atomic dipole-
dipole interaction can be obtained from expression (10) or
expression (B2). For the case of real induced dipole moments
one has only to consider the real coupling strengths g1212,
g1313, and g2323 for 2-level interactions, and g1213, g1232, and
g1323 for those associated with 3-level interactions. Thus, the
induced dipole-dipole interaction for 3-level atoms takes the
following form:

Hdd = g1212

2 (Na − 1)
{(A12 + A21)2 − A11 − A22} + g1313

2 (Na − 1)
{(A13 + A31)2 − A11 − A33}

+ g2323

2 (Na − 1)
{(A23 + A32)2 − A22 − A33} + g1213

Na − 1
{A12 A13 + A31 A21 + A13 A21 + A12 A31}

+ g1232

Na − 1
{A12 A32 + A23 A21 + A23 A12 + A21 A32} + g1323

Na − 1
{A13 A23 + A32 A31 + A32 A13 + A31 A23}. (36)

Notice that for the different atomic configurations one has at most three real parameters; in the case of the 	 configuration, for
instance, we have the coupling strengths g1313, g2323, and g1323.

The corresponding variational energy surface for the dipole-dipole interaction may be obtained by taking the expectation value
of Eq. (37) with respect to the variational state |γ1, γ2, γ3〉 ⊗ |α1, α2〉, or from the general expression (28) by considering real
induced dipole moments together with 3-level atomic systems and a two-mode electromagnetic field. The resulting expressions
for the 	, V , and � atomic configurations are given by

E (	)
dd = g1313 ρ2

3 (1 + cos 2 φ3)(
1 + ρ2

2 + ρ2
3

)2 + g2323 ρ2
3 ρ2

2 [1 + cos 2(φ3 − φ2)](
1 + ρ2

2 + ρ2
3

)2 + 2 g1323 ρ2
3 ρ2 [cos(2 φ3 − φ2) + cos φ2](

1 + ρ2
2 + ρ2

3

)2 , (37)

E (V )
dd = g1212 ρ2

2 (1 + cos 2 φ2)(
1 + ρ2

2 + ρ2
3

)2 + g1313 ρ2
3 (1 + cos 2 φ3)(

1 + ρ2
2 + ρ2

3

)2 + 4 g1213 ρ2 ρ3 cos φ2 cos φ3(
1 + ρ2

2 + ρ2
3

)2 , (38)

E (�)
dd = g1212 ρ2

2 (1 + cos 2 φ2)(
1 + ρ2

2 + ρ2
3

)2 + g2323 ρ2
2 ρ2

3 [1 + cos 2 (φ3 − φ2)](
1 + ρ2

2 + ρ2
3

)2 + 2 g1232 ρ2
2 ρ3 [cos(2 φ2 − φ3) + cos φ3](

1 + ρ2
2 + ρ2

3

)2 . (39)

For systems of 3-level atoms interacting with two modes
of electromagnetic field, the critical values of the phases (vide
supra) are θ c

s = 0 and π and φc
k = 0 and π , for which the re-

lationship μ
(s)
jk cos(θ c

s ) cos(φc
jk ) > 0 is satisfied, and where we

defined φc
jk = φc

k − φc
j . Also, the critical values rc

s associated
with the field are given as functions of the critical values c

k
of the matter [cf. Eq. (29)]. These values must be calculated
numerically, except when the dipole-dipole interaction is ne-
glected, since in this latter case we have an analytical solution
[7].

In this work we calculate the critical values for the three
atomic configurations (�, 	, and V ) and obtain the corre-
sponding separatrix; we fix in all cases the double resonant
condition, i.e., the field frequencies are given by �1 = ω jk

and �2 = ωlm. The atomic levels satisfy the condition ω1 <

ω2 < ω3 with ω1 = 0 and ω3 = 1. We take ( j, k, l, m) =
(1, 2, 2, 3) and the value ω2 = 3/4 for the � configuration,
( j, k, l, m) = (1, 3, 2, 3) and ω2 = 1/4 for the 	 configura-
tion, and ( j, k, l, m) = (1, 2, 1, 3) and ω2 = 3/4 for the V
configuration. The values considered for the dipolar-dipolar
strength g jklm, assuming real dipolar vectors �d jk = �dk j , are
given in Table II.

In order to exemplify how to obtain the separatrix, we
consider explicitly the particular case of the V configuration

with a repulsive dipole-dipole strength g3. The set of critical
points c

2 and c
3 are evaluated numerically and inserted into

the expression for the minimum energy; the result is shown
in Fig. 5(a). The normal region, where Emin = 0, is colored in
black. The separatrix is found by calculating the first deriva-
tives of the energy surface as

δE := ∂E

∂x jk
+ ∂E

∂xlm
, (40)

TABLE II. Values for the dipole-dipole strength g±s (in units of
ω3) used in the numerical calculation of the minimum energy surface.
The indices are ( j, k, l, m) = (1, 2, 2, 3) for the � configuration,
( j, k, l, m) = (1, 3, 2, 3) for the 	 configuration, and ( j, k, l, m) =
(1, 2, 1, 3) for the V configuration. We have used the relationship
gjklm = gjkml , assuming real dipolar vectors �djk .

gjk jk glmlm g jklm

g±1 ±0.1 ±0.04 ±14 × 10−5/2

g±2 ±0.3 ±0.2 ±7
√

6 × 10−2

g±3 ±1.0 ±0.4 ±14 × 10−3/2
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FIG. 5. V configuration with fixed values of g+3 as given in Ta-
ble II: (g1212, g1313, g1213) = (1.0, 0.4, 14 × 10−3/2) in units of ωk .
Panel (a) shows the minimum energy surface, panel (b) shows its first
derivative [Eq. (41)], panel (c) shows its second derivative [Eq. (42)],
and panel (d) shows the difference between the second-order Casimir
operators of the subsystems. Here, ω1 = 0, ω2 = 3/4, and ω3 = 1,
with both electromagnetic modes in resonance.

which is shown in Fig. 5(b). It is a continuous surface. We
calculate the second-order derivatives as

δ2E := ∂δE

∂x jk
+ ∂δE

∂xlm
, (41)

which is discontinuous [cf. Fig. 5(c)]. The loci form a separa-
trix which splits the normal from the collective region; in fact,
this discontinuity shows that a second-order transition occurs
at these points for the V configuration.

In Fig. 5(c), the slight undulation (observed by a small
change in the orange hue of the surface) within the collective
region in the second derivative of the minimum energy surface
is a signature of a kind of transition due to a change of
subspaces formed by 2-level atoms, as was discussed recently
for the case without dipole-dipole interaction, g = 0 [7], from
one subspace in which one of the radiation modes dominates
to another subspace where the other mode dominates. This
change grows as g → 0 and gives a discontinuity when g = 0.
However, for values g 
= 0, the second derivative remains
continuous, as well as derivatives of higher order; in other
words, the Ehrenfest classification does not provide a criterion
to determine that the transition exists. In this work, we propose
to consider the second-order Casimir operator corresponding
to each 2-level subsystem in order to label this transition (vide
infra).

The second-order Casimir operator for a system of Na

particles of n levels is given by

n∑
j,k=1

Ak jA jk = Na (Na + n − 1). (42)

In particular, when only two levels are considered, we may
define

Cjk := A j jA j j + A jkAk j + Ak jA jk + AkkAkk, (43)

FIG. 6. Surface of maximum Bures distance between neighbor-
ing states for (a) Na = 5 and (b) Na = 5000 particles, in the atomic V
configuration. The separatrix within the collective region, which de-
fies an Ehrenfest-type classification, is clearly noticeable. Parameters
are the same as those in Fig. 5.

which coincides with the second-order Casimir operator for
2-levels. Therefore, the expectation value 〈ψ |Cjk|ψ〉 will be
close to Na(Na + 1) when the bulk of the contribution to the
state |ψ〉 is given by the basis of the subsystem of the two lev-
els ( j, k). Since the variational solution is independent of Na,
we fix for this calculation Na = 2 and consider the absolute
value of the difference of the second-order Casimir operator
of each subsystem,

δC := |〈ψ |Cjk − Clm|ψ〉|, (44)

where |ψ〉 stands for the ground state.
This quantity is plotted in Fig. 5(d), showing that it is

sensitive to the transition in the collective region. The points
in the collective region where a transition occurs are given by
δC = 0, indicating that the bulk of the ground state changes
from one subspace to the other.

Another criterion that we have proposed [1,2] in order to
find transitions not detectable through the Ehrenfest classifi-
cation is to use the Bures distance in the total product space of
n-level atoms and �-mode radiation fields, defined by [29,30]

DB =
√

2
√

1 − |〈�α, �γ |�α′, �γ ′〉|2, (45)

for states

〈�α, �γ |�α′, �γ ′〉 = e−(|�α|2+|�α′ |2−2�α∗·�α′ )/2

( �γ ∗ · �γ ′

|| �γ || ||�γ ′||
)Na

, (46)

and maximize it for neighboring states. As a general
procedure, one selects various critical points around a circum-
ference of radius ε about each point p in parameter space, in
order to find the state with maximum distance to p (cf. Ref. [2]
for details). In our case, it was sufficient to calculate it for
four critical points about each p in order to get a qualitative
behavior of the surface of the maximum Bures distance.

Figure 6 shows, for Na = 5 [panel (a)] and for Na = 5000
[panel (b)], the surface of maximum Bures distance between
neighboring states. Note that the transition within the col-
lective regions stands out, and for Na = 5000 we reach the
maximum distance of

√
2 for variational states in the thermo-

dynamic limit. We may refer to this as a transition of the kind
continuous unstable, in the sense that this transition tends to a
first order one in the limit g → 0.

Figure 7 shows the separatrix for the atomic � config-
uration, in the case of a repulsive dipole-dipole interaction
[Fig. 7(a)], and in the case of an attractive one [Fig. 7(b)].
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FIG. 7. Separatrices for the � configuration shown as a function
of the dimensionless matter-field dipolar strength x jk , for values of
atomic dipole-dipole strength g±1 (dotted line), g±2 (dashed line),
and g±3 (dot-dashed line) as given in Table II. Panel (a) shows
the repulsive case, and panel (b) shows the attractive case. Here,
ω1 = 0, ω2 = 3/4, and ω3 = 1, with both electromagnetic modes in
resonance.

One notes that, in the repulsive case, the normal region N
grows as the dipole-dipole interaction grows. The regions
where the bulk of the ground state is dominated by the basis
of the subsystem S12 or S23 are also indicated. The order of
the phase transitions are marked: a first-order transition for
N ↔ S23 and a second-order transition for N ↔ S12. In the
attractive case [Fig. 7(b)], the normal region decreases in size
as g increases in magnitude, and it, in fact, vanishes for the
value of g−3 where only the regions S12 and S23 subsist. For
g−1 and g−2 the orders of the phase transitions are the same as
those in the repulsive case.

A similar behavior occurs for the 	 configuration (Fig. 8),
where the subregions in the collective regime are S13 and S23.

Figure 9 shows the situation for atoms in the V configura-
tion. In the repulsive case [Fig 9(a)], a normal region exists
in all the circumstances, and the transitions from the normal
to the collective region are of second order. For the attractive
case [Fig 9(b)], in the case g−1 (dotted line) a normal region
exists and we have a second-order transition. In the strong
attractive cases of g−2 and g−3, we only have the collective
regions S12 and S13.

VI. CONCLUSIONS

We have established the general atomic dipole-dipole inter-
action Hamiltonian for a system of n-level atoms interacting

FIG. 8. Separatrices for the 	 configuration shown as a function
of the dimensionless matter-field dipolar strength x jk , for values of
the atomic dipole-dipole strength g±1 (dotted line), g±2 (dashed line),
and g±3 (dot-dashed line) as given in Table II. Panel (a) shows
the repulsive case, and panel (b) shows the attractive case. Here,
ω1 = 0, ω2 = 1/4, and ω3 = 1, with both electromagnetic modes in
resonance.

FIG. 9. Separatrices for the V configuration shown as a function
of the dimensionless matter-field dipolar strength x jk , for values of
the atomic dipole-dipole strength g±1 (dotted line), g±2 (dashed line),
and g±3 (dot-dashed line) as given in Table II. Panel (a) shows the
repulsive case, and panel (b) shows the attractive case. Parameters
are the same as those in Fig. 5.

with � modes of electromagnetic radiation in a cavity, to-
gether with the associated energy surface, which allows us to
determine the variational ground state [see expressions (27),
(28), and (29)]. For 2- and 3-level atomic configurations, we
have found that for attractive (repulsive) atomic dipole-dipole
interactions the normal region decreases (increases) in size.
The quantum phase diagrams, together with the corresponding
order of the transitions, have also been determined. For a finite
or infinite number of atoms, the surface of maximum Bures
distance is able to detect the transitions between the collective
regions where the Ehrenfest criterion fails (see Fig. 6). In other
words, we find that, in cases where the Ehrenfest criterion
for the phase transitions does not give information, a criterion
based on the maximum probability for prohibited transitions
comes to the rescue. We have also proved that the quantum
phase diagrams continue being dominated by monochromatic
regions as it is the case for noninteracting atoms, at least for
real induced electric dipolar moments.

Phase diagrams for 2- and 3-level atoms interacting with an
external radiation field have been studied, for all the possible
atomic configurations. It is seen that the atomic dipole-dipole
interaction is minuscule compared with the dipolar matter-
field interaction, so the atomic dipole-dipole coupling has
been exaggerated in order to see its consequences. (The un-
naturally large values for this coupling, taken so that its effects
may be appreciated, must be scaled down accordingly when
studying actual realistic systems.) Although small, energy
transfer between the particles (atoms, molecules) is one of the
important consequences of this interaction, as is evident in the
Van der Waals forces between induced dipoles. The formation
of optical lattices and the many-body effects in systems such
as atomic clocks are also some of its consequences [5].

The separatrices dividing normal from collective superra-
diant regions have been calculated and classified according
to the Ehrenfest classification. However, there are separatri-
ces present within the collective regimes, marking transitions
between regions where one or another mode of the radiation
field dominates the bulk of the ground state, which defy the
Ehrenfest classification. In these cases, we have proposed two
methods to detect, calculate, and classify them, one based
on the second-order Casimir operator and another one using
the surface of maximum Bures distance between neighboring
states.
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APPENDIX A: MATTER COLLECTIVE OPERATORS

Let A(γ )
pq denote the matter operator of the γ th atom of n

levels, which promotes the atom from level ωq to level ωp.

Note that A(γ )
qp = A(γ )

pq
†
. For each atom γ these operators obey

the unitary algebra uγ (n) in n dimensions (for n-level atoms),
i.e.,

n∑
q=1

A(γ )
qq = 1γ , (A1)

[
A(γ )

pq , A(γ ′ )
rs

] = δγ γ ′
(
δqrA(γ )

ps − δpsA(γ )
rq

)
, (A2)

with 1γ the identity operator in the subspace γ . Also note that,
for a single atom, we have

A(γ )
pq A(γ )

rs = δqr A(γ )
ps . (A3)

For Na identical atoms, the collective matter operator is
defined as

Apq :=
Na∑

γ=1

A(γ )
pq , (A4)

and note that the sum over γ does not preserve the structure
of each subspace. By simple inspection, one may prove easily
the following relationships for the collective operators:

Aqp = A†
pq, (A5)

n∑
q=1

Aqq =
Na∑

γ=1

1γ := Na 1, (A6)

n∑
j,k=1

Ak jA jk = Na(Na + n − 1), (A7)

[Apq, Ars] = δqrAps − δpsArq. (A8)

Equations (A6) and (A7) are the first- and second-order
Casimir operators; Eq. (A8) shows that the operators Apq obey

a unitary algebra in n dimensions, U (n) := ⊕Na
γ=1uγ (n). The

weight operators are App, which give the number of particles
in each atomic level ωp; i.e., for an uncoupled state |ψ〉 one
has App|ψ〉 = np|ψ〉, with np being the atomic population,
while the operator Apq (with p 
= q) promotes the transition
of one atom from the level ωq to the level ωp. This is clear
from Eq. (A8) since, for the uncoupled state |ψ〉 with atomic
populations np and nq in the atomic levels ωp and ωq, re-
spectively (i.e., App|ψ〉 = np|ψ〉 and Aqq|ψ〉 = nq|ψ〉), after
applying Apq|ψ〉 = |ψ ′〉 one has App|ψ ′〉 = (np + 1)|ψ ′〉 and
Aqq|ψ ′〉 = (nq − 1)|ψ ′〉, while the other atomic populations
are preserved.

In fashion similar to Eq. (A3), and using Eq. (A2), one
finds

ApqArs = Aps(Arq + δrq ) − δrsApq + Opqrs, (A9)
where

Opqrs =
Na∑

γ 
=γ ′

(
A(γ )

pq A(γ ′ )
rs − A(γ )

ps A(γ ′ )
rq

)
. (A10)

It is straightforward to show the relationships Opqrs =
−Opsrq, Opqrs = Orspq, and Opqrq = 0. Also, for totally
symmetric particles, where one may use the bosonic rep-
resentation of the collective operators, one has the identity
Opqrs = 0.

We define the � product as the product of matter collective
operators without self-interaction:

Apq � Ars :=
Na∑

γ 
=γ ′
A(γ )

pq A(γ ′ )
rs = Apq Ars − δqrAps. (A11)

Notice that Apq � Ars = Ars � Apq and also Opqrs = Apq �
Ars − Aps � Arq, so that by replacing Eq. (A11) into Eq. (A9)
the latter is satisfied trivially.

APPENDIX B: DIPOLE-DIPOLE OPERATOR

The atomic dipole-dipole interaction is written as in
Eq. (10):

Hdd = 1

2(Na − 1)

n∑
j 
=k

n∑
l 
=m

gjklmA jk � Alm. (B1)

Taking into account the symmetries between the indices of gjklm, and the possible transitions shown in Table I, we need only to
replace the � product in Eq. (A11) for the dipole-dipole operator (B1) to read

Hdd = 1

2(Na − 1)

n∑
j 
=k

[g jk jkA jkA jk + g jkk j (A jkAk j − A j j )] + 1

2(Na − 1)

n∑
j 
=k 
=l

[g jk jl A jkA jl + g jkl jA jkAl j

+g jklkA jkAlk + g jkkl (A jkAkl − A jl )] + 1

2(Na − 1)

n∑
j 
=k 
=l 
=m

gjklmA jkAlm, (B2)

where the first line refers to single dipole-dipole interactions, the second line to the interaction between dipoles which share an
atomic level, and the third line to separate dipoles not sharing atomic levels.
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We may rewrite the atomic dipole-dipole operator as

Hdd = 1

2!

n∑
j 
=k

W 2-levels
jk + 1

2!

n∑
j 
=k 
=l

W 3-levels
jlk + 1

4!

n∑
j 
=k 
=l 
=m

W 4-levels
jklm , (B3)

with

W 2-levels
jk = 1

2(Na − 1)
(g jk jkA jkA jk + gk jk jAk jAk j ) + 1

Na − 1
g jkk j (A jkAk j − A j j ), (B4)

W 3-levels
jkl = 1

2(Na − 1)
(g jklk{A jk, Alk} + gk jkl{Ak j, Akl}) + 1

Na − 1
[g jkkl (A jkAkl − A jl ) + gk jlk (Ak jAlk − Akk )], (B5)

W 4-levels
jklm = 1

Na − 1
(g jklmA jkAlm + g jkml A jkAml + g jlkmA jlAkm + g jlmkA jl Amk

+g jmkl A jmAkl + g jmlkA jmAlk + gk jlmAk jAlm + gk jml Ak jAml

+gklm jAkl Am j + gkml jAkmAl j + gl jmkAl jAmk + glkm jAlkAm j ), (B6)

where {A jk, Alm} = A jkAlm + AlmA jk is the anticommutator
of A jk and Alm. The factor 1/p! (p = 2 and 4) in Eq. (B3)
eliminates the double summation, because W 2-levels

jk =
W 2-levels

k j , W 3-levels
jkl = W 3-levels

lk j , and W 4-levels
jklm = W 4-levels

σ ( jklm), with
σ ( jklm) being a permutation of the indices ( jklm).

The contribution to the atomic dipole-dipole interaction
given in Eq. (B4) corresponds to transitions ω j � ωk similar
to a 2-level atom, while the contribution in Eq. (B5) promotes
the atomic transitions ω j � ωl via an intermediate atomic
level ωk; here, the direct dipolar transition ω j � ωl is prohib-
ited. This contribution W 3-levels

jkl appears for n-level atoms with
n � 3. The last term in Eq. (B3) promotes transitions between
two unconnected permitted dipolar transitions ω j � ωk and
ωl � ωm and is present for n-level atoms with n � 4.

As an example, for 2-level atoms the dipole-dipole interac-
tion reads

Hdd = W 2-levels
12 , (B7)

while for 3-level atoms one finds the following for each con-
figuration:

(i) � configuration with prohibited dipolar transition
ω1 � ω3 ( �d13 = �0),

H (�)
dd = W 2-levels

12 + W 2-levels
23 + W 3-levels

123 ; (B8)

(ii) 	 configuration with prohibited dipolar transition
ω1 � ω2 ( �d12 = �0),

H (	)
dd = W 2-levels

13 + W 2-levels
23 + W 3-levels

132 ; (B9)

(iii) V configuration with prohibited dipolar transition
ω2 � ω3 ( �d23 = �0),

H (V )
dd = W 2-levels

12 + W 2-levels
13 + W 3-levels

213 . (B10)

Finally, we evaluate the dipole-dipole operator for two
4-level atomic configurations. In the particular case of the λ

configuration, with prohibited transitions �d12 = �d14 = �d24 =
�0, the dipole-dipole operator reduces to

H (λ)
dd = W 2-levels

13 + W 2-levels
23 + W 2-levels

34

+ W 3-levels
134 + W 3-levels

234 + W 3-levels
132 . (B11)

Notice that in this case we have no contribution of the form
W 4-levels

1234 because all atomic levels are connected via the atomic
level ω3.

On the other hand, for atoms in the ♦ configuration
the prohibited dipolar transitions are �d14 = �d23 = �0 and,
since this atomic configuration has isolated dipoles, the to-
tal dipole-dipole operator has a nonzero contribution from
W 4-levels

1234 :

H (♦)
dd = W 2-levels

12 + W 2-levels
13 + W 2-levels

24 + W 2-levels
34 + W 3-levels

124

+ W 3-levels
134 + W 3-levels

213 + W 3-levels
243 + W 4-levels

1234 .

(B12)
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