
PHYSICAL REVIEW A 105, 033711 (2022)

Telefilters, telemirrors, and causality
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We present theoretical models for quantum-optical mode-selective filters and mirrors using continuous-
variable teleportation. We call these devices telefilters and telemirrors, respectively. Both devices act as the
identity channel on a mode of interest from an input multimode field while filtering or reflecting all the orthogonal
modes. We utilize these models to analyze a causality problem in relativistic quantum optics, specifically the
apparently acausal transmission and propagation of temporally delocalized wave packets through mode-selective
mirrors. First, we show how telemirrors, and thus mode-selective operations generally, enact a fundamental
time delay on such wave packets, which is necessary in order to prevent violations of causality. We next
consider teleporting the independent temporal components of the input field separately and continuously, that
is, performing operations on the fly. In this scenario, the telemirror transmits the mode of interest as well as
orthogonal modes which carry with them uncorrelated noise. In this scenario, the device may be considered
mode discriminating but not mode selective.

DOI: 10.1103/PhysRevA.105.033711

I. INTRODUCTION

Unitary operations in quantum optics are defined by their
action on single modes or between multiple modes of the elec-
tromagnetic field [1,2]. However, physical devices are usually
only weakly selective of the modes which they act upon. For
example, a beam splitter will typically allow a large number
of different mode pairs to be mixed.

Mode-discriminating interactions [3] are more difficult to
arrange physically but play an important role in quantum
optics and interacting quantum field theories. Taking as in-
put a multimode field, a mode-discriminating unitary affects
a specific mode (for example, a spectral pulse) differently
compared to modes orthogonal to it. A special class of mode-
discriminating interactions is a mirror which transmits a single
mode from a multimode input field and filters out or reflects
all others. We refer to this specific kind of interaction where
only one mode is transmitted as mode selective, to be distin-
guished from a mode-discriminating interaction which allows
all modes to be transmitted while uniquely affecting one
mode (conversely, affecting all but one mode). Mode-selective
mirrors and beam splitters have been identified as key tools
in future communications and metrology applications [4–8].
Other mode-discriminating interactions such as phase shifters,
displacements, and squeezers have been studied in the context
of relativistic quantum communication protocols [9–14] de-
scribing interactions between quantum fields and observers in
relativistic reference frames.
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Mode-selective operations have been realized experimen-
tally. One notable example is the quantum pulse gate [15]
which overlaps a weak input field with a strong classical
gating pulse in a nonlinear crystal. Using a technique known
as spectrally engineered sum-frequency generation, only the
mode from the input field which matches the form of the
gating pulse is converted into a wave packet at their sum
frequency [16–19]. A frequency filter can then select the mode
of interest. Another example is the Raman quantum memory
[20], which interacts a train of control pulses with a signal
mode inside an atomic vapor cell, yielding a controllable
output which can be implemented as an optical beam-splitter
network [21–23].

In this paper we propose a protocol for implementing
the quantum-optical mode-selective mirror, using continuous-
variable teleportation [24–26]. We first consider a general
model which demonstrates a telefilter which transmits a
specific single mode while blocking all others and then a
telemirror which transmits a specific single mode while re-
flecting all others.

Next we develop a simplified model for a temporally delo-
calized wave packet, where an input state is distributed over
two independent temporal modes [27–29] which interact with
the mirror at earlier and later times (this is then extended to
N temporal modes in Appendix D). Our motivation in study-
ing this particular case is to understand how the interaction
between temporally delocalized modes within mode-selective
mirrors preserves causality, since such causal considerations
are commonly neglected in theoretical models [17]. Indeed, as
we show in Sec. IV, the standard unitary interaction between
an input temporal mode and a mode-selective mirror leads to

2469-9926/2022/105(3)/033711(24) 033711-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6435-0187
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.033711&domain=pdf&date_stamp=2022-03-18
https://doi.org/10.1103/PhysRevA.105.033711


FOO, ONOE, ZYCH, AND RALPH PHYSICAL REVIEW A 105, 033711 (2022)

superluminal signaling between the sender and receiver, due
to the neglect of the above-mentioned causal considerations.

Using our models for the temporal-mode-selective filter
and mirror (referring to them as temporal-mode telefilters
and telemirror, respectively), we show that a fundamental
time delay on the propagation of input modes is necessary
in order for the action of such mirrors (and mode-selective
mirrors generally) to remain consistent with relativity and to
avoid violations of causality. Essentially, both the telefilter
and telemirror enact what amounts to a measurement of the
input wave packet (which we model as being constructed
from discrete time-bin modes, with each mode measured in
discrete succession), the duration of which is constrained by
the temporal length of the wave packet itself. Obviously, per-
forming such a measurement instantaneously is unphysical.
Our results thus highlight some of the tacit assumptions within
quantum-optical models for mode-selective interactions such
as the Schmidt decomposition [3], which typically neglect
time-ordering effects [17,30] and hence admit acausal so-
lutions. In line with this, our approach may be considered
a quantum-optical perspective on the important and ongo-
ing discussion of causality-violating scenarios in relativistic
quantum field theory, for example, in the context of Sorkin’s
impossible measurements [31–38].

Finally, we propose an alternative teleportation model for
the mirror without a fundamental time delay, wherein the
individual temporal components are teleported separately and
continuously before being coherently recombined at an out-
put port. We show that in general this model fails as a
mode-selective mirror, instead allowing the selected mode and
modes with the same temporal support but orthogonal to it to
be transmitted. However, these orthogonal modes also carry
additional sources of uncorrelated noise, thus only achieving
a kind of mode discrimination as opposed to mode selectivity.
The presence of the noise also limits the ability of a receiver to
determine the arrival time of a signal (e.g., a photon) encoded
in these modes; when this noise is very large, any attempt to
determine arrival times will be thwarted. These properties of
the no-delay telefilter and telemirror may have important con-
sequences in applications such as quantum communication
and quantum causality [39].

Our paper is organized as follows. In Sec. II we review
the basic theoretical construction of mode-selective mirrors
and the desired effect that they have upon an input multimode
field. In Sec. III we review two approaches to continuous-
variable teleportation. We then show how these teleportation
protocols can function as mode-selective devices wherein a
single mode of interest from an input field is transmitted to
a receiver. In Sec. IV we highlight the neglect of causality
considerations in standard models for mode-selective mirrors,
which motivates us to generalize the telefilter and telemirror
models to an input of two independent temporal modes. We
introduce and study this model in Sec. V, showing that it
enacts an unavoidable time delay upon the mode of interest
as it propagates between the sender and receiver. In Sec. VI
we introduce the alternative model for the temporal-mode
telemirror and telefilter where the temporal components are
teleported separately and continuously. We offer some con-
clusions and implications of our results in Sec. VII.

Throughout this paper, we utilize natural units h̄ = c = 1.

II. MODE-SELECTIVE MIRRORS

Before introducing our model for the mode-selective mir-
ror, we review a standard theoretical implementation of such
a mirror and the transformation it enacts upon incoming field
modes.

First, consider a complete set of orthonormal modes {âl}
within which the mode of interest â0 is contained. Likewise,
we introduce a matching set of orthonormal modes {b̂l} which
are orthogonal to {âl} and contain the mode b̂0, which is
complementary to â0. By matching, we mean that {âl} and
{b̂l} are in the same mode, allowing them to interact at a
beam splitter. We wish to construct a mode-selective unitary
which only affects the mode of interest â0 and its complement
incident from the other direction b̂0.

To highlight the effect of a mode-selective unitary on the
incident modes {âl} and {b̂l}, it is instructive to contrast this
with that of a passive or non-mode-selective unitary. A non-
mode-selective beam-splitter interaction can be modeled via
the unitary

Û = exp

[
−iθ

(∑
l

âl b̂
†
l + H.c.

)]
. (1)

Consider an incoming mode âin, constructed as a superposi-
tion of the modes in {âl},

âin =
∑

l

fl âl , (2)

where
∑

l | fl |2 = 1, interacting with the other set of incident
modes {b̂l}. If we prepare the single-photon state â†

in|0〉 (where
|0〉 is the state annihilated by the operators {âl} and {b̂l} and
the b̂l modes are in the vacuum) and apply Eq. (1) to it, we
find, using the Baker-Campbell-Hausdorff formula, that

Û â†
in|0〉 =

(
cos θ

∑
l

f �
l â†

l − i sin θ
∑

l

f �
l b̂†

l

)
|0〉. (3)

This is the well-known input-output relationship for the in-
teraction of âin and b̂in at a passive beam splitter and is true
for any choice of fl . Note especially that Eq. (1) affects all of
the constituent modes in âin and b̂in unilaterally and cannot be
considered mode selective.

To understand the action of a mode-selective mirror on the
input modes, let us decompose âin as [3]

âin = [âin, â†
0]â0 +

∑
l �=0

fl âl , (4)

where |[âin, â†
0]|2 + ∑

l �=0 | fl |2 = 1 enforces normalization.
This technique is known as the Schmidt decomposition [40]
and is widely used in quantum information and optics as a
way of decomposing generic states into arbitrary bases of
orthogonal modes [41–43].

A common approach is to use the unitary [17]

Û0 = exp[−iθ (â0b̂†
0 + H.c.)], (5)

where 0 � θ � π/2. Equation (5) takes a form similar to the
passive beam-splitter unitary of Eq. (1); however, the key
difference is that from the complete sets {âl} and {b̂l}, it
only affects â0 and b̂0. To see this, let us again prepare a
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FIG. 1. Geometry of the mode propagation through the mirror,
where the {b̂l} modes refer to the transmitted modes, compared with
the {âl} modes, referring to those reflected. Our slightly nonstandard
labeling of the transmitted and reflected modes is done to retain
consistency with later parts of the paper, in which the right-moving
mode is always the transmitted one.

single-photon state â†
in|0〉 and apply the unitary of Eq. (5) to

it, yielding

Û0â†
in|0〉 =

(
[âin, â†

0]�(â†
0 cos θ − ib̂†

0 sin θ ) +
∑
l �=0

f �
l â†

l

)
|0〉,

(6)

where we have utilized the properties Û0Û
†
0 = I and Û0|0〉 =

|0〉. If we consider θ = π/2, we obtain

Û0â†
in|0〉 =

(
−i[âin, â†

0]�b̂†
0 +

∑
l �=0

f �
l â†

l

)
|0〉. (7)

Note that our choice of θ = π/2 corresponds to the selected
mode being transmitted through the mirror; the geometry of
the mode propagation is shown in Fig. 1. The overlap of
â0 and âin has been transmitted into the b̂0 mode, while the
orthogonal modes âl �=0 are reflected by the mirror. Likewise,
when considering the effect of Eq. (5) upon the b̂0 mode
incident from the other side of the mirror, we find that it too
is completely transmitted into the â0 mode: Û †

0 b̂0Û0 = iâ0.
Thus, Eq. (6) transmits a single mode (the 0 mode) from the
multimode input, while the orthogonal modes âl are reflected
to the other side. The desired outcome is achieved, namely,
the isolation of a single mode from the input field.

III. CONTINUOUS-VARIABLE TELEPORTATION
AS MODE SELECTIVITY

In this section we introduce the homodyne measurement
and all-optical approaches to continuous-variable (CV) tele-
portation of an input mode. These simple models highlight the
mode-selective property of such teleporters, wherein a single
mode from the input is transmitted through the circuit while
all orthogonal modes are filtered or reflected. This achieves
an analogous input-output transformation to the unitary of
Eq. (5).

A. Homodyne measurement telefilter

Quantum teleportation is the process whereby an unknown
input state ρ̂in is transferred between distant observers using
a classical channel and a preexisting entanglement resource.
The seminal work by Bennett et al. [24] utilized entangled
Bell pairs as the resource; however, this was later extended

FIG. 2. Schematic diagram of CV teleportation using a homo-
dyne measurement of the input mode ĵin with the entanglement
resource mode â0. The shaded mirror on the right is non-mode-
selective, perfectly reflecting and simply included for aesthetic
purposes; the left-moving complement mode incident on the other
side is irrelevant to the protocol. The details of the homodyne mea-
surement are illustrated in Fig. 4.

to CV protocols by Vaidman [25] and Braunstein and Kim-
ble [26]. Essentially, a bipartite entangled system is shared
between a sender and receiver, who perform local operations
and communicate via classical channels so that the receiver
can retrieve an arbitrarily good version of the initial state
ρ̂in, without the direct transmission of quantum information
between them. A comprehensive review of CV teleportation
can be found in the article by Pirandola and Mancini [44].

Throughout this paper, we will describe our quantum-
optical protocols in the Heisenberg picture [1]. The first
approach is illustrated in the circuit diagram in Fig. 2,
which utilizes a distributed entanglement resource and a
dual homodyne measurement to achieve mode-selective CV
teleportation. First, Alice receives an input mode ĵin in an
arbitrary state. As discussed previously, ĵin can be decom-
posed in the basis of constituent orthonormal modes { ĵ0, ĵ⊥}
which copropagate in the same beam. This decomposition is
illustrated schematically in Fig. 3. She aims to select, that is,
transmit, ĵ0 (more precisely, the overlap of ĵin with ĵ0) to Bob,
while filtering out ĵ⊥.

To achieve this, Alice enacts the dual homodyne measure-
ment (outlined in detail below) of ĵ0 mixed with her half of the

FIG. 3. Schematic representation of the mode decomposition of
the spatiotemporal modes êi and ĵin. The orthogonal modes {êi0, êi⊥}
and { ĵ0, ĵ⊥} respectively copropagate in the same beam, denoted by
the solid black line.
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entanglement resource mode â0. The entanglement resource
modes are generated by two-mode squeezing of the vacuum
modes êi. Just like Alice’s input mode, the input vacua can be
decomposed in the orthonormal basis {êi0, êi⊥}; these modes
likewise copropagate in the same beam. The êi0 modes are
spatiotemporally mode matched with the mode of interest ĵ0.
The two-mode squeezer unitary

Ŝ2(s) = exp(ξ�ê10ê20 − ξ ê†
10ê†

20) (8)

generates the transformation on the êi0 modes,

â0 = Ŝ†
2 (s)ê10Ŝ2(s) = cosh(s)ê10 + sinh(s)ê†

20, (9)

b̂0 = Ŝ†
2 (s)ê20Ŝ2(s) = cosh(s)ê20 + sinh(s)ê†

10, (10)

where ξ = seiϕ , cosh(s) is the squeezing gain, and ϕ controls
the relative phase between the vacuum modes in Eqs. (9)
and (10). In the Schrödinger picture, acting the two-mode
squeezer on the vacuum creates the well-known Einstein-
Podolsky-Rosen (EPR) state (or two-mode squeezed state)
|s〉EPR = Ŝ2(s)|0〉 (hence our choice of label in Fig. 2 and
throughout this paper). In the limit s → ∞, â0 and b̂0 become
perfectly entangled. The two-mode squeezing interaction
could be mediated by a χ (2) nonlinear crystal in which the
shape of the pump field is mode matched to the êi0 modes.
We note here that the squeezer is mode discriminating (not
mode selective); while it selectively generates a two-mode
squeezed state of the êi0 vacuum modes, the ⊥ modes are
still transmitted through the optical element without being af-
fected. One recalls that our definition of mode discrimination
is to be distinguished from mode selectivity, the latter being
the desired property of the mirror where only the mode of
interest is transmitted, while the orthogonal modes are filtered
or reflected. The entanglement resource modes â0 and b̂0 are
distributed to the two participants Alice and Bob.

Let us return to Alice and her input mode ĵin, which can be
expressed as a superposition of the constituent orthonormal
basis modes

ĵin = f0 ĵ0 +
∑
l �=0

fl ĵl (11)

alongside its orthogonal complement ĵin,⊥,

ĵin,⊥ =
√

1 − | f0|2 ĵ0 − f0√
1 − | f0|2

∑
l �=0

fl ĵl , (12)

where
∑

l | fl |2 = 1. By making the association
√

ε = f0,
Eqs. (11) and (12) can be recast into beam-splitter-type re-
lations

ĵin = √
ε ĵ0 + √

1 − ε ĵ⊥, (13)

ĵin,⊥ = √
1 − ε ĵ0 − √

ε ĵ⊥, (14)

where we have defined

ĵ⊥ = 1√
1 − | f0|2

∑
l �=0

fl ĵl . (15)

FIG. 4. Circuit diagram of the homodyne detection scheme. Here
ĵin and â are mixed on a balanced beam splitter. The measurement
results are used to construct the operator M̂. Referring to our dual-rail
representation of the modes (see Fig. 3), each line here represents
a beam within which the orthogonal modes denoted by 0 and ⊥
copropagate.

Inverting Eqs. (13) and (14), we obtain the following form for
the constituent modes:

ĵ0 = √
ε ĵin + √

1 − ε ĵin,⊥, (16)

ĵ⊥ = √
1 − ε ĵin − √

ε ĵin,⊥. (17)

The dual homodyne measurement performed by Alice is a
widely used technique in quantum optics [1]. This process,
which is a CV equivalent of a Bell measurement, is illustrated
in Fig. 4. First, Alice mixes ĵin and â (i.e., their constituent
modes) at a balanced, passive beam splitter, yielding

ĵ′0 = 1√
2

(â0 + ĵ0), â′
0 = 1√

2
( ĵ0 − â0),

ĵ′⊥ = 1√
2

(â⊥ + ĵ⊥), â′
⊥ = 1√

2
( ĵ⊥ − â⊥). (18)

Alice prepares two local oscillator modes L̂ j and L̂a, which
can be similarly represented in a complete basis of orthogonal
modes {L̂ j0 , L̂ j⊥} and {L̂a0 , L̂a⊥}, respectively. The subscripts
denote the modes which the local oscillators are matched to.
The local oscillators matching the 0 modes are assumed to
be prepared in large-amplitude coherent states, written in the
form

L̂i = β + δL̂i, where i = j0, a0, (19)

with β = |β|e−iφi = 〈L̂i〉 
 1 and δL̂i = L̂i − β, while the
orthogonal local oscillator modes are vacuum modes given by
[1]

L̂k = δL̂k, where k = j⊥, a⊥. (20)
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We have utilized the nomenclature δL̂k to emphasize that these
modes have zero mean. Alice interacts the input modes (18)
with the respective local oscillator modes at balanced, passive
beam splitters, yielding

ĵ′′0 = 1√
2

( ĵ′0 + L̂ j0 ), L̂′′
j0 = 1√

2
(L̂ j0 − ĵ′0),

â′′
0 = 1√

2
(â′

0 + L̂a0 ), L̂′′
a0

= 1√
2

(L̂a0 − â′
0) (21)

and likewise

ĵ′′⊥ = 1√
2

( ĵ′⊥ + L̂ j⊥ ), L̂′′
j⊥ = 1√

2
(L̂ j⊥ − ĵ′⊥),

â′′
⊥ = 1√

2
(â′

⊥ + L̂a⊥ ), L̂′′
a⊥ = 1√

2
(L̂a⊥ − â′

⊥). (22)

Using the modes in Eqs. (21) and (22), we first construct
number operators at the respective detectors

N̂k = k̂†k̂, where k = a′′
0, a′′

⊥, j′′0 , j′′⊥,

N̂l = l̂† l̂, where l = L′′
a0

, L′′
a⊥ , L′′

j0 , L′′
j⊥ , (23)

which are then added together as

N̂a = N̂a′′
0
+ N̂a′′

⊥ , N̂La = N̂L′′
a0

+ N̂L′′
a⊥

,

N̂j = N̂j′′0 + N̂j′′⊥ , N̂L j = N̂L′′
j0

+ N̂L′′
j⊥

. (24)

The photon numbers at the respective ports are subtracted to
obtain the output signal operators Ô j = N̂j − N̂L j and Ôa =
N̂a − N̂La , yielding

Ô j = ĵ′†0 L̂ j0 + L̂†
j0

ĵ′0 + ĵ′†⊥ L̂ j⊥ + L̂†
j⊥ ĵ′⊥, (25)

Ôa = â′†
0 L̂a0 + L̂†

a0
â′

0 + â′†
⊥L̂a⊥ + L̂†

a⊥ â′
⊥. (26)

By applying the definition of Eq. (19) and neglecting terms
not multiplied by the coherent signal β, we find that

Ô j = |β|X̂ j′0 (φ j ) = |β|(e−iφ j ĵ′0 + eiφ j ĵ′†0 ), (27)

Ôa = |β|X̂a′
0
(φa) = |β|(e−iφa â′

0 + eiφa â′†
0 ). (28)

In quantum optics, the quadrature operators X̂ j0 (φ j ) and
X̂a0 (φa) (of the modes denoted in the subscript) can be used
to reconstruct the Wigner function of a state through measure-
ments of their amplitudes via homodyne detection [1]. They
are characterized by their amplitude β and phase φi in phase
space and in this context represent the classical statistics of
the measurement. By taking φa and φ j to be π/2 out of phase,
Alice can subsequently construct an operator M̂ from this joint
measurement, for example,

M̂ = |β|(X̂ j′0 + iP̂a′
0

) =
√

2|β|( ĵ0 + â†
0), (29)

which satisfies [M̂, M̂†] = 0 and we have adopted the nomen-
clature

X̂i = X̂i(φi = 0), P̂i = X̂i(φi = π/2). (30)

Here M̂ represents the classical channel which Alice sends to
Bob [45], who subsequently uses it to displace1 his half of the
entangled pair [1],

ĵ′′′0 = b̂0 + ζ M̂, (31)

where ζ ∈ C is the effective gain of the classical channel.
Taking ζ = 1/

√
2|β| yields a unity gain channel between

Alice and Bob so that Bob’s mode becomes

ĵ′′′0 = − ĵ0 + (b̂0 − â†
0). (32)

Using Eqs. (9) and (10), we find that in the limit of perfect
entanglement (s → ∞),

lim
s→∞ ĵ′′′0 = − ĵ0, ĵ′′′⊥ = ê1⊥, (33)

that is, Bob perfectly retrieves the overlap of Alice’s mode
with the mode of interest ĵ0 (modulo an arbitrary global
phase). Notice that the orthogonal mode ĵ⊥ is filtered out at
the measurement while the copropagating mode ê1⊥ is in the
vacuum.

To reiterate why the teleporter is mode selective, recall
that only the mode of interest ĵ0 is matched to and con-
sequently amplified by the large-amplitude local oscillator
mode. Likewise, the entanglement resource â0 is prepared
in the same spatiotemporal mode as ĵ0 and L̂a0 . The sets of
orthogonal modes { ĵ⊥} and {â⊥} are filtered out at the level
of the detection process, since they are not mixed with the
large-amplitude local oscillator modes and can be neglected as
small. Thus, their unamplified quadratures are hidden beneath
the semiclassical noise of the large-amplitude coherent state.
In view of this, we refer to the circuit of Fig. 2 as a mode-
selective telefilter. This is an analogous scenario to Eq. (6),
where the mode of interest was transmitted while all others
were reflected. For our purposes, they achieve an identical
outcome in terms of the isolation of the desired mode. We
finally note that the mode-selective properties of homodyne
detection are well known [5,46–48]; however here we utilize
this property to achieve the mode-selective transmission of
a particular mode from an input field, in the context of CV
teleportation.

B. Telefilters with imperfect efficiency

The previous model for the single-mode telefilter was char-
acterized by a unity gain channel between Alice and Bob; ĵ0
is teleported between them without loss, and the efficiency
of the protocol is effectively characterized by the additional
noise carried by the entanglement resource modes. In the limit
of infinite squeezing, the noise from these modes vanishes.

It is instructive to consider a nonunity gain channel be-
tween Alice and Bob, when the squeezing is finite. Such a
scenario represents a telefilter with imperfect efficiency; for

1In the Heisenberg picture, the action of the unitary displacement
operator D̂(α) = exp(αâ† − α�â) for the arbitrary complex number
α = |α|eiθ is given by D̂†(α)âD̂(α) = â + α and D̂†(α)â†D̂(α) =
â† + α� [1]. In the present case, M̂ can be interpreted as a complex
number.
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finite squeezing, some of the input mode is actually lost.
Recall that Bob’s output displaced mode is given by Eq. (31),

ĵ′′′0 = b̂0 + ζ M̂. (34)

By taking the effective gain to be the squeezing-dependent
function ζ = tanh(s)/

√
2|β| [49], we find that the output

mode reduces to

ĵ′′′0 = tanh(s) ĵ0 + ê20

cosh(s)
. (35)

Since tanh(s) is a monotonically increasing function of the
squeezing parameter s within the range [0,1], this determines
how much of the input mode is successfully teleported (i.e.,
transmitted through the filter). In the limit of infinite squeez-
ing, the coefficient of ê20 vanishes, leaving ĵ0 exactly. In
this sense, the telefilter may be understood as a filter with a
variable transmission coefficient determined by the squeezing
parameter s. As we discuss in Appendix B, this calculation
generalizes to an N-mode input.

C. All-optical telemirror

An alternative approach to CV teleportation is the all-
optical protocol first proposed by Ralph in [50]. The
difference between the all-optical and homodyne measure-
ment protocols is that the former does not directly enact a
“measurement” on the input mode and is thus entirely unitary.
Apart from this difference, the two approaches are function-
ally equivalent in terms of the teleported beam. Notably, the
all-optical protocol has been recently realized in experiment
[51] and has also been recently studied in the context of rela-
tivistic noninertial observers [12]. The circuit diagram for the
protocol is shown in Fig. 5. It can be straightforwardly shown
that this is an equivalent approach to the previous case studied,
using homodyne measurements. Unlike the telefilter, the input
mode of interest ĵ0 is mixed with the entangled mode â0

at a two-mode squeezer. The two-mode squeezer creates the
classical channel between Alice and Bob by highly amplifying
the input mode ĵ0 along with â0, producing the mode ĉ0. The
quadratures of ĉ0 have uncertainty significantly larger than the
quantum noise limit of unity. Any noise introduced by a joint
measurement of X̂c0 and P̂c0 is negligible compared to these
already amplified amplitudes, warranting the designation of
ĉ0 as a classical field [50].

This is where the mode selectivity of the all-optical
teleporter becomes manifest. As already mentioned, the two-
mode squeezing interaction can be controlled by the shape of
the pump field inside a χ (2) nonlinear crystal, mode matched
with the mode to be squeezed. Here we assume that ĵ0 and
â0 are mode matched with the mode-discriminating squeezer,
while the orthogonal modes ĵ⊥ and â⊥ pass through the crystal
unaffected.

Now the transformation which Ŝ2(r) enacts upon the
modes is expressed as

ĉ0 = cosh(r) ĵ0 + sinh(r)â†
0, (36)

â′
0 = cosh(r)â0 + sinh(r) ĵ†

0 . (37)

FIG. 5. Schematic diagram of the all-optical teleportation circuit.
The homodyne measurement is replaced by a two-mode squeezer,
denoted by Ŝ2(r). Note especially that the ⊥ modes are unaffected
by the squeezing elements; hence they retain their labels as they
propagate through these elements, whereas the 0 modes are trans-
formed by the squeezers. Both the ⊥ and 0 modes are affected by
the non-mode-selective beam splitters (the leftmost and rightmost
mirrors).

In the limit of high gain (r 
 1) the operator ĉ0 is identical to
the measurement operator in Eq. (29) (modulo an arbitrarily
chosen squeezing phase between ĵ0 and â0; we have chosen
a plus sign between them as the convention for the main text
of this paper) for a large coherent amplitude |β| 
 1. This
emphasizes the direct mapping between the two approaches
at each stage of the protocol. As mentioned, the orthogonal
modes pass through the squeezer unaffected. Bob uses a pas-
sive beam splitter to mix his part of the entanglement b̂0 with
the classical channel. The output takes the form

ĵ′0 = √
ηĉ0 −

√
1 − ηb̂0, (38)

ĵ′⊥ = √
η ĵ⊥ −

√
1 − ηê1⊥. (39)

Meanwhile, the reflected ĉ modes are given by

ĉ′
0 = √

ηb̂0 +
√

1 − ηĉ0, (40)

ĉ′
⊥ = √

ηê1⊥ +
√

1 − η ĵ⊥. (41)

Again, notice that Eq. (38) is analogous to Eq. (31) up to
some phase determined by the squeezing angle and the beam-
splitter phase. By setting η = cosh−2(r) (i.e., most of the
channel is reflected), this becomes

ĵ′0 = ĵ0 − tanh(r)(b̂0 − â†
0), (42)

ĵ′⊥ = 1

cosh(r)
ĵ⊥ − tanh(r)ê1⊥. (43)
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In the limit of high entanglement between the resource modes
(r → ∞), the outputs reduce to

ĵ′0 = ĵ0, ĵ′⊥ = −ê1⊥, (44)

that is, Bob reconstructs the overlap of Alice’s mode with the
mode of interest ĵ0 with the vacuum mode ê1⊥ copropagating
with it. We thus see that both the homodyne measurement
and all-optical approaches yield the same desired outcome,
namely, the transmission of a selected mode of interest. Im-
portantly, the mode selection achieved by the protocol maps
the input to the output in the same spatiotemporal mode. In
comparison with the mode-selective telefilter, this protocol is
entirely unitary, which makes it possible to retrieve the re-
flected mode on Alice’s side as well. For this reason, we refer
to the all-optical teleporter as a mode-selective telemirror.

To determine the form of the reflected modes, one can
perform an inverse squeezing operation, denoted by Ŝ−1

2 (k),
which retrieves (in the limit of infinite squeezing on both the
entanglement and classical channel) the input vacua,

lim
r,s→∞ ĉ′′

0 = ê10, lim
r,s→∞ â′′

0 = ê20. (45)

Likewise in the reflected ⊥ modes, one retrieves the mode
orthogonal to ĵ0 ( ĵ⊥) in the limit of infinite squeezing

lim
r,s→∞ ĉ′′

⊥ = ĵ⊥ (46)

(since the beam-splitter transmission controlled by Bob is de-
pendent on the squeezing r), as well as the remaining vacuum
mode (ê2⊥). This confirms that the teleportation protocol is
fully unitary. The ĵ⊥ mode orthogonal to ĵ0 is reflected by the
telemirror, since it does not interact with Ŝ2(r). Finally, we
note that as with the telefilter protocol, a similar calculation
can be performed to obtain a telemirror with imperfect effi-
ciency, which we present in Appendix B.

IV. CAUSALITY CONSIDERATIONS IN
MODE-SELECTIVE INTERACTIONS

In the previous sections we reviewed two well-known CV
teleportation protocols. By decomposing the input mode into
copropagating orthogonal components, we showed that such
protocols act as mode-selective devices, transmitting the mode
of interest ĵ0 and filtering or reflecting its orthogonal com-
plement mode ĵ⊥. However, in these protocols, and more
generally mode-selective interactions of the form of Eq. (5),
the temporal properties of the input mode are neglected, as are
any causal considerations affecting the propagation of such
modes between Alice and Bob. The implicit assumption of
these previous protocols is that the time taken to enact the
homodyne measurement is short. Any delay induced by the
measurement time of the mode is effectively negligible in
protocols such as Fig. 2.

This scenario is illustrated schematically in Fig. 6(a),
where the mirror is likewise short in time. For this reason,
we henceforth refer to the teleportation protocols discussed
in Sec. III as atemporal representations of the telefilter and
telemirror. Our aim for the remainder of this paper is to
generalize our mode-selective teleportation model so that it
captures, in the simplest way, the causality effects involved in

FIG. 6. Schematic representation of the causality issues arising
from the action of mode-selective mirrors. (a) Scenario similar to
the mode-selective telemirror, where we have neglected the temporal
aspects of the problem. (b) The action of the mirror occurs over some
delocalized time window, which allows for superluminal signaling
(communication outside the lightcone) if instantaneous measure-
ments are permitted. In particular, the transmitted mode has nonzero
probability of the photon appearing in regions that are spacelike
separated from the region in which the input pulse is located.

the propagation of temporal modes [27–29,52] through such
mode-selective devices. This will be achieved by introducing
a discrete non-negligible temporal extent to the input mode
and likewise to the mirror unitary itself.

The standard mode-selective unitary of Eq. (5) is not
adequate for such a treatment, because it admits causality-
violating scenarios. Consider Fig. 6(b), in which the input
mode only partially overlaps with the temporally extended
mode-selective mirror. Since the temporal extent of the mode
which the mirror selects is longer than that of the input mode,
one can arrive at causality-violating scenarios in which su-
perluminal signaling is possible if the mode-selective mirror
acts instantaneously. To see this explicitly, consider the toy
model modification of the unitary beam-splitter interaction of
Eq. (5),

Û0 = exp

(
− iθ

2
[(âE + âL )(b̂†

E + b̂†
L ) + H.c.]

)
, (47)

where {âE , âL} and {b̂E , b̂L} are temporal modes (the sub-
scripts denoting early and late modes, respectively). The
mirror now acts over the extended time window spanned by
the early and late modes and selects and only transmits the
symmetric superposition of âE and âL. Now suppose that we
inject a photon into the late mode âin = âL. It can be shown
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that the output state after the interaction is given by

Û0â†
L|0〉 =

(
1

2
(cos θ + 1)â†

E + 1

2
(cos θ − 1)â†

L

− i

2
sin θ (b̂†

E + b̂†
L )

)
|0〉. (48)

Setting θ = π/2 (perfect transmission) yields

Û0â†
L|0〉 =

(
1

2
(â†

E − â†
L ) − i

2
(b̂†

E + b̂†
L )

)
|0〉. (49)

We see that the symmetric superposition (b̂E + b̂L )/
√

2 has
been transmitted by the mirror, while the antisymmetric su-
perposition (âE − âL )/

√
2 has been reflected (following the

prescriptions for the transmitted and reflected mode labels
introduced in Fig. 1). The violation of causality produced by
the unitary of Eq. (47) can be seen by projecting onto the early
and late modes, respectively. Projecting onto the late mode
yields ∣∣〈0|b̂LÛ0â†

L|0〉∣∣2 = 1

4
, (50)

while onto the early mode∣∣〈0|b̂EÛ0â†
L|0〉∣∣2 = 1

4
. (51)

Even though the photon was contained entirely in the late
input mode, there is a 1

4 probability of measuring it in the early
mode on the transmitted side after interacting with the beam
splitter. One can perform a similar calculation in projecting
onto the âE ,L modes, yielding a total probability equal to one.

Clearly, the unitary of Eq. (5) admits solutions where
superluminal signaling is possible, violating relativistic con-
straints (a photon can be detected outside the lightcone). This
is due to the tacit assumption built into the unitary itself, which
(a) neglects time ordering and thus (b) allows for the action
of the mirror to occur instantaneously over a delocalized time
window. This can be considered a quantum-optical example of
Sorkin’s well-known impossible measurement problem [33],
in which instantaneous or nonlocal measurements of an ob-
servable allow for acausal information transfer between two
parties. We ask, What is the consistent treatment for the prop-
agation of temporally extended modes through such mirrors
which obeys relativistic and causality considerations?

V. TELEFILTERS AND TELEMIRRORS
WITH TEMPORAL-MODE INPUTS

In Sec. III we showed how continuous-variable telepor-
tation protocols function as mode-selective telefilters and
telemirrors which act on an input multimode field. The mode
of interest ĵ0 is selected by the telefilter (or telemirror) at
the level of the homodyne measurement (or the generation of
the classical channel), allowing it to propagate to Bob while
all other modes are filtered or reflected. As the entanglement
resource becomes very strong, ĵ0 is perfectly reconstructed
by Bob.

In Sec. IV we discussed how these representations of the
teleportation protocols neglect the temporal aspects of the
mode propagation through the circuit, under the assumption

FIG. 7. Circuit diagram for the temporal-mode telefilter, which
takes as inputs the temporal modes ĵ1 and ĵ2. The arrow connecting
the two homodyne detectors signifies that the measurement results of
ĵi0 are added together before displacing the b̂±0 modes, respectively.
The light gray mirrors are characterized by the transmission coeffi-
cient α and phase φ. The dark gray mirrors are non-mode-selective.
The time delay between the second homodyne measurement and
the displacements of b̂±0 can be made arbitrarily small; however,
the fundamental time delay on the mode propagation is constrained
by the arrival times of the inputs ĵ1 and ĵ2. As previously, the ⊥
modes are only affected by the non-mode-selective beam splitters,
and note the two-mode squeezer which generates the EPR resource.
Likewise, we have utilized our dual-rail representation of the light
beams, within which the orthogonal 0 and ⊥ modes copropagate.

that the input modes are short in time. While these protocols
obey causality [unlike the mode-selective mirrors constructed
from the unitary of Eq. (5)], it is important to understand
how they affect modes which are not highly localized in time.
To do so, we study a series of teleportation protocols where
the input field mode is distributed over two temporal modes.
Using this approach allows us to explicitly investigate the
action of the telemirror on an input which is delocalized in
time. This can be extended to an N-mode input (Appendix D),
which becomes a better approximation to a continuous spa-
tiotemporal wave packet as N → ∞. The desired operation
of this temporal-mode teleporter is that a single superposition
of the inputs (say, the symmetric superposition) is transmit-
ted to the receiver, while the orthogonal superposition (the
antisymmetric superposition) and all other orthogonal mode
components (previously denoted by the ĵ⊥ modes) are filtered
out or reflected.

A. Time-delayed temporal-mode telefilter

We first consider what we refer to as the temporal-mode
telefilter, building off the atemporal representation of the
mode-selective telefilter introduced in Sec. II. Figure 7 shows
the circuit diagram. Like the previous analyses, on each rail of
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the circuit the ⊥ modes copropagate with the 0 modes, which
are the set of modes which we are interested in selecting. Here
our assumption is that the local oscillator modes are prepared
in the same spatiotemporal mode as ĵ10 and ĵ20, as well as the
entanglement resource modes â0 and b̂0.

Let us explain the protocol enacted by the temporal-mode
telefilter. Just as in Fig. 2, the entangled beams â0 and b̂0 are
sent to Alice and Bob, respectively. Since the input is dis-
tributed over two temporal modes, the entanglement resource
needs to be distributed likewise. It is the choice of the en-
tanglement mode superposition which characterizes the mode
selectivity of the temporal-mode telefilter. The entanglement
resource modes are distributed into two temporal modes using
passive beam splitters with transmission coefficient α and
phase φ:

â−0 = √
αv̂0 − ie−iφ

√
1 − αâ0,

â+0 = √
αâ0 − ieiφ

√
1 − αv̂0,

b̂−0 = √
αû0 − ie−iφ

√
1 − αb̂0,

b̂+0 = √
αb̂0 − ieiφ

√
1 − αû0. (52)

The â±⊥ and b̂±⊥ vacuum modes are constructed from par-
allel relations to Eq. (52), replacing the 0 modes with the
copropagating ⊥ modes. The − (+) nomenclature is used
here to denote the early (late) mode, referring to the overlaid
spacetime coordinates of Fig. 7. To perform the teleportation
protocol, we perform the dual homodyne measurements ex-
plicated in Sec. III A using the inputs ĵ10 and ĵ20, mixed with
the entanglement resource modes â±0. This is achieved first
by mixing ĵ10 and ĵ20 with the earlier and later parts of the
entanglement resource modes, respectively,

ĵ′10 = 1√
2

( ĵ10 + √
αv̂0 − ie−iφ

√
1 − αâ0),

â′
−0 = 1√

2
( ĵ10 − √

αv̂0 + ie−iφ
√

1 − αâ0),

ĵ′20 = 1√
2

( ĵ20 + √
αâ0 − ieiφ

√
1 − αv̂0),

â′
+0 = 1√

2
( ĵ20 − √

αâ0 + ieiφ
√

1 − αv̂0), (53)

before coupling them with the coherently displaced local os-
cillator modes, detecting the photon numbers at the output
ports and constructing the conjugate quadrature operators.
These quadrature operators are then used to construct the
measurement operators (i.e., the classical measurement result)
of the form

M̂1 = X̂ ĵ′10
+ iP̂â−0 , M̂2 = X̂ ĵ′20

+ iP̂â+0 ,

M̂1 = X̂â−0 + iP̂ĵ′10
, M̂2 = X̂â+0 + iP̂ĵ′20

. (54)

Now recall that we are treating ĵ10 and ĵ20 as the individual
temporal components of a single input wave-packet mode
to be selected by the teleporter. To successfully enact the
teleportation of this wave packet, one has to combine the
local measurement results from each of the temporal modes
and then use this to displace Bob’s side of the entanglement
resource b̂±0. Clearly, one cannot perform a measurement

of ĵ20 before it has entered the apparatus; nor can the en-
tire mode be teleported before ĵ20 has been measured. This
constraint time orders the two independent measurement pro-
cesses in the circuit, preventing ĵ20 from being teleported
before ĵ10. To emphasize this point, one should consider Fig. 7
as occurring on a flat background with spacetime coordinates
(t, z) (as shown at the top of the figure) where the rails
in the circuit now represent the lightlike propagation of the
modes.

Returning to the measurement, we can construct a total
measurement operator M̂ as a linear combination of the in-
dividual results

M̂ = ζ1(α, φ)M̂1 + ζ2(α, φ)M̂2, (55)

where ζi(α, φ) ∈ C. This summation over the measurement
results is indicated by the arrow connecting the two homodyne
measurements in the circuit of Fig. 7. The total measurement
operator is communicated classically to Bob (similarly de-
picted as arrows), which he uses to displace his part of the
distributed entanglement resource modes b̂±0. He obtains the
output modes

ĵ′10 = b̂−0 + λ1(α, φ)M̂, (56)

ĵ′20 = b̂+0 + λ2(α, φ)M̂, (57)

where λi(α, φ) ∈ C. As we show in Appendix C, Alice can se-
lect any arbitrary superposition of the inputs ĵi0 by tuning the
physical properties of the optical elements and the homodyne
measurements.

Let us consider a simple case. In our construction, the
phase of the quadrature operators in the measurement pro-
cess, the distribution of the entanglement resource, and the
magnitude of the displacements made to Bob’s side of
the entanglement resource modes completely determine the
properties of the mode to be selected. The most straight-
forward example is obtained by taking the X̂a±0 and P̂j′i0
quadratures at the homodyne measurement and distributing
â±0 and b̂±0 equally between the early and late tempo-
ral modes. In such a case, the transmitted mode will be
a balanced superposition of the inputs ĵ10 and ĵ20. Tak-
ing, for example, α = 1

2 , φ = −π/2, and the measurement
results

M̂1 = |β|(X̂a−0 + iP̂j′10

) = |β|(
√

2 ĵ10 − â†
0 − v̂

†
0 ), (58)

M̂2 = |β|(X̂a+0 + iP̂j′20

) = |β|(
√

2 ĵ20 − â†
0 + v̂

†
0 ), (59)

we obtain, for the total measurement operator,

M̂ = 1√
2

( ĵ10 + ĵ20 −
√

2â†
0), (60)

having taken ζi(α, φ) = 1/2
√

2|β|, which achieves a unity
gain channel between Alice and Bob. Bob then displaces
his part of the distributed entanglement b̂±0 with the total
measurement operator to obtain the outputs

ĵ′10 = 1

2
( ĵ10 + ĵ20) + 1√

2
(b̂0 − â†

0) + 1√
2

û0, (61)

ĵ′20 = 1

2
( ĵ10 + ĵ20) + 1√

2
(b̂0 − â†

0) − 1√
2

û0, (62)
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where we have taken λi(α, φ) = 1, while the copropagating
⊥ modes are ĵ′1⊥ = b̂−⊥ and ĵ′2⊥ = b̂+⊥, which are superpo-
sitions of ê1⊥ and û⊥, respectively, defined analogously to
Eq. (52). These can be mixed back together on a balanced
beam splitter to retrieve the input vacuum modes:

ô(l )
1⊥ = 1√

2
( ĵ′2⊥ + ĵ′1⊥) = ê1⊥, (63)

ô(r)
1⊥ = 1√

2
( ĵ′1⊥ − ĵ′2⊥) = û1⊥. (64)

Meanwhile, for the 0 modes, we can likewise mix the outputs
on a balanced beam splitter, yielding

ô(l )
10 = 1√

2
( ĵ′20 + ĵ′10)

= 1√
2

( ĵ10 + ĵ20) + (b̂0 − â†
0), (65)

ô(r)
10 = 1√

2
( ĵ′10 − ĵ′20) = û0. (66)

We find that the symmetric superposition of the input tem-
poral modes has been successfully teleported to ô(l )

10 along
with the entanglement resource modes, while the vacuum
beam-splitter input û0 is isolated to the other output ô(r)

10 . We
conclude that the device successfully selects the mode of
interest, i.e., only one temporal superposition is transmitted,
while the orthogonal superposition is filtered out at the level of
the measurement. All modes which appear at Bob’s output are
in the vacuum. In Appendix C we show how through an appro-
priate choice of the quadrature phases and the beam-splitter
coefficients, Alice can select any arbitrary superposition mode
to be transmitted to Bob.

Despite the success of our model in functioning mode
selectively, Fig. 7 also reveals that this mode selectivity cannot
be achieved without a time delay which minimally matches
the length of the input field mode. In our simplified two-mode
case, the temporal length of the input wave packet is simply
the time delay between modes ĵ10 and ĵ20. For teleportation to
successfully occur, the individual local measurements enacted
upon the input temporal modes must be coherently combined
(added together) and then used to displace Bob’s side of
the entanglement. Necessarily then, Alice must wait until the
entire wave packet (i.e., both the earlier and later temporal
components) has been measured, before sending the classical
channel to Bob. Note once more that the atemporal represen-
tation of the telefilter protocol from Sec. III obeys this time
delay, but such a feature cannot be discerned unless treating
the input modes as we have done here. One may be relieved
that such a delay exists, meaning that the causality-violating
scenario of Fig. 6(b) is not generally permitted. If one could
enact the homodyne measurement of the entire wave packet
instantaneously, there would be no time delay. However, such
a scenario is unphysical and will inevitably lead to situations
in which the input mode is teleported to an output mode which
is earlier in time.

FIG. 8. Circuit diagram for the temporal-mode telemirror. The
homodyne measurements are replaced by two-mode squeezing and
the coherent displacements are replaced by beam-splitter interactions
between the classical channel modes and the b̂±0 modes. Note that
the modes â′

± really contain â′
±0 and â±⊥, where the latter are not

affected by the two mode squeezers Ŝ2(r). We have not displayed
these for aesthetic reasons.

B. Time-delayed temporal-mode telemirror

We now consider the all-optical version of the mode-
selective telemirror with two input temporal modes, shown
schematically in Fig. 8. This approach is fully unitary and
also allows us to calculate both the transmitted and reflected
modes. As with the temporal-mode telefilter, the entanglement
resource modes are distributed into spatial superpositions
[Eq. (52)]. Rather than mixing the entanglement with the input
temporal modes and performing a homodyne measurement,
the classical channel is enacted via two-mode squeezing,

ĉ10 = cosh(r) ĵ10 + sinh(r)â†
−0, (67)

ĉ20 = cosh(r) ĵ20 + sinh(r)â†
+0, (68)

while the other ports propagate to the reflected side:2

â′
−0 = cosh(r)â−0 + sinh(r) ĵ†

10, (69)

â′
+0 = cosh(r)â+0 + sinh(r) ĵ†

20. (70)

As with the atemporal representation of the telefilter and
telemirror, Eqs. (67) and (68) are identical to the measurement
operators in Eqs. (58) and (59) modulo some squeezing phase
between ĵi0 and â±0, in the limit of high gain (i.e., r 
 1
for the telemirror and |β| 
 1 in the telefilter). As usual, we

2The ⊥ modes â±⊥ are unaffected by the squeezer.
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assume that only the 0 modes and the associated entanglement
resource modes are mode matched to the squeezers generating
the classical channel. The ĉi0 modes are highly amplified by
the two-mode squeezers Ŝ2(r) and can thus be regarded as
good approximations to a classical field while the ⊥ modes
remain unaffected by the squeezers.

In the temporal-mode telefilter, the individual measure-
ment results are added together and used to displace the earlier
and later components of Bob’s entanglement resource mode
b̂±0. The equivalent operation in the all-optical version of the
protocol is to mix the classical channel modes on a passive
beam splitter to obtain an analogous total measurement oper-
ator. We have

ĉ−0 = √
αĉ10 − ieiφc0

√
1 − αĉ20, (71)

ĉ+0 = √
αĉ20 − ie−iφc0

√
1 − αĉ10, (72)

where φc0 is the beam-splitter phase. The + part of this mode
is likewise used to displace one of the temporal entanglement
resource modes on Bob’s side,

ĵ′10 = √
η−b̂−0 − ie−iφ−

√
1 − η−ĉ+0, (73)

ĉ′
+0 = √

η−ĉ+0 − ieiφ−
√

1 − η−b̂−0, (74)

while the leftover part of the channel is used to displace the
later temporal entanglement resource mode:

ĵ′20 = √
η+b̂+0 − ie−iφ+

√
1 − η+ĉ′

+0, (75)

ĉ′′
+0 = √

η+ĉ′
+0 − ieiφ+

√
1 − η+b̂+0. (76)

Here φ± are variable beam-splitter phases. Let us show how
to select the symmetric superposition of ĵi0. First, let us take
φ = φ± = −π/2 and φc0 = π/2 with the beam-splitter trans-
mission coefficients

η± = 1 − 1

2 cosh2(r)
. (77)

We have chosen η± so that most of the highly amplified
channel is reflected away from the output; in the limit of high
gain, this ensures that the entanglement resource modes are
transmitted to the output modes. The output modes (in the
limit r → ∞) are given by

ĵ′10 = −1

2
( ĵ10 + ĵ20) + 1√

2
(b̂0 − â†

0) + 1√
2

û0, (78)

ĵ′20 = −1

2
( ĵ10 + ĵ20) + 1√

2
(b̂0 − â†

0) − 1√
2

û0. (79)

The symmetric superposition of ĵi0 and the entanglement
resource modes are transmitted to both output ports, along
with an extra vacuum mode used to distribute the entangle-
ment across two temporal modes. Mixing these finally on a
balanced beam splitter yields

ô(l )
10 = 1√

2
( ĵ′20 + ĵ′10)

= − 1√
2

( ĵ10 + ĵ20) + (b̂0 − â†
0), (80)

ô(r)
10 = 1√

2
( ĵ′10 − ĵ′20) = û0, (81)

which is just the symmetric superposition of ĵ10 and ĵ20 mod-
ulo a global phase, carrying with it the entanglement resource
modes, and vacuum in the other. This result is analogous
to that found in Eq. (66), where the mode of interest (the
symmetric superposition, determined by the beam-splitter set-
tings) is retrieved at one of the output ports, while the other
mode merely contains the û0 mode coming from the beam-
splitter mixing. This further illustrates how the telefilter and
the unitary telemirror are equivalent in the transformations
they enact on the selected mode as it is transmitted through
the circuit. As we demonstrate in Appendix C, Alice can select
any arbitrary superposition of ĵi0 by tuning the beam-splitter
coefficients appropriately.

We can also calculate the output reflected modes. Follow-
ing a straightforward calculation in Appendix A, the vacuum
modes used to create the temporal superposition v̂0 as well as
the entanglement resource modes ê10 and ê20 are constructed
on the reflected side. More importantly, the modes

1√
2

( ĵ10 − ĵ20), (82)

1√
2

( ĵ1⊥ + ĵ2⊥), (83)

1√
2

( ĵ1⊥ − ĵ2⊥), (84)

which are mutually orthogonal to the transmitted symmetric
superposition, are also reflected.

What about the other ⊥ modes? Recall that these modes
are unaffected by the two-mode squeezers Ŝ2(r), while they
are affected by the non-mode-selective beam splitters. By
straightforwardly tracing the propagation of these modes
through the circuit, we find that the ⊥ modes at Bob’s side
are given by ô(l )

1⊥ = û1⊥ and ô(r)
1⊥ = ê1⊥,3 which are simply

vacuum modes involved in the entanglement generation, while
the remaining ⊥ vacuum modes are retrieved on the reflected
side: ê2⊥ and v̂⊥.

The all-optical telemirror nicely illustrates the necessity of
the time delay as the input temporal modes pass through the
circuit. From Fig. 8, a fundamental time delay is imposed on
the teleportation of the temporal modes, since the channels
must be combined to form the equivalent of the total mea-
surement operator ĉ+0/ĉ′

+0. This delay is a function of the
temporal length of the mode itself, in our model, the time
delay between the arrival of the input pulses ĵ10 and ĵ20. As in
the temporal-mode telefilter, this constraint ensures the preser-
vation of causality by time ordering the unitary operators so
that they act on the input modes in a consistent temporal order.
This prevents a photon prepared in the late mode ĵ20 from
arriving earlier than it was sent.

VI. TEMPORAL-MODE TELEPORTERS
WITH NO TIME DELAY

The protocols studied in Sec. III demonstrate that, in
general, mode-selective quantum-optical mirrors enact an un-
avoidable and intrinsic time delay on the propagation of

3We utilize the definitions of ô(l,r)
1⊥ shown in Eqs. (63) and (64).
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FIG. 9. Circuit diagram for the no-delay telefilter with inde-
pendent entanglement resources. Here ŷ0 and ẑ0 represent the
entanglement resource modes used to teleport ĵ20. These are con-
structed from the vacuum inputs ê30 and ê40.

input temporal modes. Such an effect was not observed in
the original CV teleportation protocols because the temporal
dimension of the input modes was neglected. This is akin to
neglecting time-ordering effects in the original unitary for the
mode-selective beam splitter [Eq. (5)].

Nevertheless, our results beg the question of what goes
wrong if we try to construct a mode-selective mirror interac-
tion which does not induce an intrinsic time delay. Rather than
integrating over the entire temporal length of the mode (e.g.,
waiting to combine the measurement results on the individual
modes together), our next models consider the teleportation
of the individual temporal modes separately and continuously
before coherently recombining them at the output. We study
two approaches: In the first, there are two independent entan-
glement resources for each of the temporal modes, while in the
second, we distribute the entanglement resource modes into
earlier and later components, as was done for the temporal-
mode teleporters introduced previously. For simplicity, we
will just consider the selection of an equal symmetric superpo-
sition and the filtering or reflection of its antisymmetric pair.

A. Teleportation with independent entanglement resources

Our first approach to circumventing the time delay is
shown in Fig. 9. As before, we utilize homodyne measure-
ments to obtain the results M̂i, which represent the classical
channel connecting Alice and Bob. Alice performs the indi-
vidual measurements separately and sends them continuously
to Bob as she obtains them. This avoids the fundamental
time delay introduced in the temporal-mode telefilter and
telemirror.

It is straightforwardly shown that the output of the circuit
is identical to the homodyne measurement telefilter, but now
teleports both temporal modes

ĵ′10 = ĵ10 + (b̂0 − â†
0), ĵ′20 = ĵ20 + (ŷ0 − ẑ†

0 ),

ĵ′1⊥ = ê1⊥, ĵ′2⊥ = ê3⊥, (85)

where ŷ0 and ẑ0 are generated by two-mode squeezing of
independent vacuum inputs. The other vacuum inputs ê2⊥ and

FIG. 10. Circuit diagram for the no-delay telefilter. The â± and
b̂± should be understood as containing the orthogonal copropagating
0 and ⊥ modes (we have not displayed these components for aes-
thetic reasons).

ê4⊥ are filtered out at the homodyne measurement. In the limit
of perfect entanglement between b̂0 and â0 and between ŷ0

and ẑ0, the ĵi0 modes are individually recovered at the outputs.
This of course presents an immediate and obvious issue: Any
temporal superposition of ĵi0, in addition to its orthogonal
complement, can be reconstructed by Bob. For example,

ô(l )
10 = 1√

2
( ĵ′10 + ĵ′20) = 1√

2
( ĵ10 + ĵ20), (86)

ô(r)
10 = 1√

2
( ĵ′10 − ĵ′20) = 1√

2
( ĵ10 − ĵ20). (87)

Thus, while the time delay on the propagation of the input
modes is avoided, the introduction of two separate entangle-
ment resource mode pairs means that the protocol ultimately
fails to be mode selective. Nor can it be considered mode dis-
criminating, because all superpositions with temporal support
on ĵi0 are teleported ideally.

B. No-delay temporal-mode telefilter

Instead of utilizing independent entanglement resources,
we now take the previous approach by distributing a single
entanglement resource over two temporal modes. Our pro-
posed circuit for this model, which we refer to as the no-delay
telefilter, is displayed in Fig. 10. As usual, homodyne mea-
surements are enacted by mode matching the entanglement
resource mode with the input mode and local oscillator to ob-
tain the classical results M̂i. Unlike the previous model, where
Alice would add the measurement results of both modes to-
gether (requiring her to wait until both ĵ10 and ĵ20 had entered
the apparatus), Alice sends the individual measurement results
M̂1 and M̂2 to Bob on the fly.

Alice and Bob distribute the entanglement resource modes
in a superposition of earlier and later components. Let us
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consider the same beam-splitter settings as Sec. V A. Using
again the measurement results

M̂1 = |β|(X̂a−0 + iP̂j′10
) = |β|(

√
2 ĵ10 − â†

0 − v̂
†
0 ), (88)

M̂2 = |β|(X̂a+0 + iP̂j′20
) = |β|(

√
2 ĵ20 − â†

0 + v̂
†
0 ), (89)

Bob displaces the individual modes b̂±0 to obtain the outputs

ĵ′10 = ĵ10 + 1√
2

(b̂0 − â†
0) + 1√

2
(û0 − v̂

†
0 ), (90)

ĵ′20 = ĵ20 + 1√
2

(b̂0 − â†
0) − 1√

2
(û0 − v̂

†
0 ), (91)

where we have used ζi = 1/
√

2|β| to achieve a unity gain
channel for the individual temporal components. As can be
seen, the earlier and later input modes are teleported to the
earlier and later output modes, respectively, with two sources
of additional noise from the beam-splitter inputs. Mixing
the output modes back together on a balanced beam splitter
yields

ô(l )
10 = 1√

2
( ĵ10 + ĵ20) + (b̂0 − â†

0), (92)

ô(r)
10 = 1√

2
( ĵ10 − ĵ20) + (û0 − v

†
0 ). (93)

Similar to teleportation with independent entanglement re-
sources, both the symmetric and antisymmetric superpositions
are transmitted to Bob. The difference is that the symmetric
superposition has been teleported along with the entanglement
resource modes, while the antisymmetric superposition has
been teleported with additional noise from the beam-splitter
inputs. As such, this second model for the no-delay telefilter
exhibits a kind of mode-discriminating property. Rather than
uniquely affecting a single mode and transmitting all oth-
ers through the identity channel, the converse is true; the
selected mode is transmitted without change, while the or-
thogonal mode is polluted by noise. Furthermore, in the limit
where these extraneous modes are highly noisy, any signal
encoded in the antisymmetric superposition mode cannot be
detected by Bob, as it is buried within this noise. This could
be achieved if, for example, û0 and v̂0 are generated from
independent entanglement sources, where the other half of the
entangled pairs are sent to the reflected side of the mirror.
Bob, on the receiving side of the mirror, traces out these
reflected modes and thus cannot purify ô(r)

10 to retrieve the
orthogonal mode. As shown in Appendix C, one can tune the
beam-splitter coefficients appropriately so that any specified
superposition of the temporal modes ĵi0 can be transmitted
along with the entanglement resource and thus be discrimi-
nated from its orthogonal superposition mode which carries
the additional noise.

Why do violations of causality not occur in the no-delay
telefilter? Suppose we prepare a mode î in a single-photon
state in a localized time-bin mode prior to the input temporal
modes ĵ10 and ĵ20 (see Fig. 11). We note that this input
could be in some arbitrary state, but using a single photon
is conceptually straightforward. From Eqs. (90) and (91) one
sees that if a photon is prepared in the late mode ĵ20, it cannot
be transmitted to the early mode ĵ′10. Nor can the converse

FIG. 11. Schematic diagram of the input modes, split into a su-
perposition of early and late time bins ĵ10 and ĵ20 at a beam splitter.
Here î could be prepared in a single-photon state, while ŝ is in the
vacuum.

be true: A photon prepared in the early mode ĵ10 cannot
be transmitted to the late mode ĵ′20. Causality is manifestly
preserved.

Alternatively, one may ask what information about the
photon arrival time can be obtained by Bob. If he makes
(photon number) measurements in the symmetric superposi-
tion basis, he will detect the single photon half of the time.
This is expected if the photon is initially prepared in ei-
ther of the early or late temporal modes. To perform such
a measurement, he requires an additional time delay (to re-
combine the outputs ĵ′i0 together) so that the entire mode
can be measured. On the other hand, Bob may attempt to
determine whether the photon arrived in the early or late
output temporal mode [see Eqs. (90) and (91) and Fig. 10].
However, such an attempt will be limited by the presence of
unavoidable excess noise on both the early and late modes that
is only canceled if the correct temporal-mode superposition
is detected. Indeed, injecting additional noise at û0 and v̂0

could effectively erase all information carried by any modes
other than the correct temporal-mode superposition. That is,
the only mode that is cleanly transmitted is the selected mode;
all others are polluted with noise. In this sense the device in
this section achieves mode discrimination (i.e., a limited kind
of mode selectivity), with no temporal delay, while still being
causal.

C. No-delay temporal-mode telemirror

For completeness, in this section we provide a brief discus-
sion of the no-delay temporal-mode telemirror (see Fig. 12).
The full calculation of the input-output relations is shown
in Appendix C. As usual, the entanglement resource is dis-
tributed into early and late temporal modes, which interact
with the input temporal modes at two-mode squeezers, gener-
ating the classical channel. Like the temporal-mode telefilter,
the individual channels are mixed with Bob’s half of the entan-
glement resource modes, from which he recovers as outputs
(choosing an equal distribution of the entanglement resource
and appropriate beam-splitter phases)

ĵ′10 = ĵ10 − tanh(r)√
2

(b̂0 − â†
0) − tanh(r)√

2
(û0 − v̂

†
0 ), (94)
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FIG. 12. Circuit diagram of the no-delay temporal-mode telemir-
ror. The modes â±0, â±⊥, b̂±0, and b̂±⊥ are defined in Eq. (52).
Likewise the classical channel modes ĉi0 and ĉi⊥ are defined in
Eqs. (67) and (68).

ĵ′20 = ĵ20 − tanh(r)√
2

(b̂0 − â†
0) + tanh(r)√

2
(û0 − v̂

†
0 ). (95)

Equations (94) and (95) are analogous to Eqs. (90) and (91)
obtained for the no-time-delay telefilter (modulo arbitrarily
chosen phase factors). After mixing the modes together, one
of the outputs perfectly teleports the symmetric superposition
of ĵ10 and ĵ20, while the other teleports the antisymmetric
superposition classically, with the additional noise source:

ô(l )
10 = 1√

2
( ĵ10 + ĵ20) − tanh(r)(b̂0 − â†

0), (96)

ô(r)
10 = 1√

2
( ĵ10 − ĵ20) − tanh(r)(û0 − v̂

†
0 ). (97)

In the regime where this noise is very large, the no-delay
telemirror is thus mode discriminating but not mode selective;
one mode arrives cleanly at Bob’s output (letting the entangle-
ment resource to be very strong), while the other is polluted
by noise. In Appendix C we show how Alice can discrim-
inate any arbitrary superposition mode (i.e., teleport it along
with the entanglement resource) while polluting its orthogonal
complement with noise. Meanwhile, the transmitted ⊥ modes
in the limit of high gain retrieve the vacuum inputs used to
perform the teleportation, ô(l )

1⊥ = −ê1⊥ and ô(r)
1⊥ = −û1⊥.4

For the reflected modes, we retrieve, in the limit of high
gain, the modes

1

2
√

2
( ĵ†

10 − ĵ†
20) − û†

0 + 3

2
v̂0,

1

2
√

2
( ĵ10 − ĵ20) + û0 − 1

2
v̂

†
0,

4We utilize the definitions of ô(l,r)
1⊥ shown in Eqs. (63) and (64).

1

2
√

2
( ĵ†

10 + ĵ†
20) + 3

2
â0 − b̂†

0,

1

2
√

2
( ĵ10 + ĵ20) − 1

2
â†

0 + b̂0. (98)

The antisymmetric superposition appears on the reflected side
with additional noise from the vacuum inputs, while the
symmetric superposition becomes buried beneath the noise
from the entanglement resource modes with unbalanced co-
efficients. In the ⊥ modes, the leftover input vacuum modes
are retrieved on the reflected side as well: ê2⊥, v̂1⊥, ĵ1⊥,
and ĵ2⊥.

The results from this section have affirmed those derived
in Sec. V, namely, that time delays are a fundamental prop-
erty of mode-selective mirrors. In particular, we attempted to
circumvent this issue by transmitting (i.e., teleporting) each
temporal component of the multimode input on the fly, that
is, teleporting the temporal components independently, rather
than waiting for the whole mode to enter the circuit. While
this approach respects relativistic constraints (the propaga-
tion time of the mode is limited by the speed of light and
causality is preserved), it nevertheless fails as a completely
mode-selective device. This property may be problematic in
scenarios where one wishes to isolate a single mode for exper-
imental purposes or in quantum causality problems [53,54].

VII. CONCLUSION

The aim of this paper has been threefold. First, we pro-
posed a teleportation model for the mode-selective mirror,
which is widely used in quantum information and communi-
cation [4–6], relativistic quantum field theory (QFT) [9–14],
and experimental applications in quantum optics [15–18].

Next we applied our model to study in detail a well-known
causality problem in the propagation of temporally extended
modes through such mirrors. This was motivated by our
demonstration that standard treatments of the mode-selective
mirror, in particular Eq. (5), can yield causality-violating
results. Specifically, we showed that mode-selective mirrors
necessarily delay incoming modes based on the length of
the mode itself. The underlying explanation of our result is
closely connected with the pathological issues arising from
instantaneous nonlocal measurements in relativistic QFT [33],
which have been shown to elicit violations of causality when
treated without care [35]. Finally, we investigated the issues
which arise when one attempts to construct a mode-selective
mirror with no time delay. For such a mirror, only the selected
mode is cleanly teleported. All other modes are teleported
but are polluted with noise; in this sense, the mirror is mode
discriminating. Furthermore, an observer on the receiving side
of the mirror cannot retrieve useful information about the
arrival time of a photon prepared by Alice, due to additional
copropagating noise.

Our approach to mode-selective teleportation opens several
pathways for future research. It first presents a method of
enacting a mode-selective identity channel in quantum optics,
where the prevailing techniques have been the quantum pulse
gate and Raman quantum memory [15,20]. Achieving high
efficiencies is a perpetual aim within the field of experimen-
tal quantum optics [16,55–57], and our approach provides a
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feasible path towards this end by using well-developed tech-
niques, e.g., homodyne detection (see also Appendix B for
a discussion of the transmission efficiencies of the telefilter
and telemirror). A related immediate extension to the present
work would be to apply the time-bin model to the study of
other mode-selective elements.

The telemirror also links quantum optics and quantum
communication with the study of causality in relativistic quan-
tum information [58] and quantum field theory. We have
illuminated in a remarkably simple way the inherent issues
underlying impossible measurements [33] in relativistic quan-
tum field theory. While other works in this field have utilized
theoretical techniques ranging from algebraic QFT [36] to
measurement theory [35], our approach frames these effects
in quantum-optical settings which have already been shown
to be experimentally accessible.
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APPENDIX A: REFLECTED MODE FOR TELEMIRRORS

1. Mode-selective telemirror

In this Appendix we derive the unitary transformation re-
quired to retrieve the input vacuum modes ê10 and ê20 on
the reflected side of the mode-selective (atemporal) telemirror
from Sec. III C. As will be shown, these operations may be
reduced to a single inverse squeezing operation, shown in
Fig. 13. To derive the squeezing parameter k, it is instructive
to decompose the single unitary operator Ŝ−1

2 (k) into a series
of squeezers which reverse the initial operations performed
on the input modes which generated (a) the entanglement
resource modes and (b) the classical channel. Recall that the
output of the classical channel squeezer and the output of
the beam-splitter displacement at Bob’s output port are given,
respectively, by

â′
0 = cosh(r)â0 + sinh(r) ĵ†

0 , (A1)

ĉ′
0 = sech(r)b̂0 + tanh(r) cosh(r) ĵ0 + tanh(r) sinh(r)â†

0.

(A2)

FIG. 13. Circuit diagram for the operations enacted upon the
reflected modes to retrieve the input vacua for the atemporal-mode-
selective telemirror.

We perform successive inverse squeezing operations on the
output modes with respect to the parameters r and s used to
generate the initial states

q̂10 = cosh(r)â′
0 − sinh(r)ĉ′†

0 , (A3)

q̂20 = cosh(r)ĉ′
0 − sinh(r)â′†

0 (A4)

and then

p̂10 = cosh(s)q̂10 − sinh(s)q̂†
20, (A5)

p̂20 = cosh(s)q̂20 − sinh(s)q̂†
10. (A6)

In the limit where s, r → ∞, the reflected output modes re-
duce to

p̂10 = 5
4 ê10 − 3

4 ê†
20, (A7)

p̂20 = 5
4 ê20 − 3

4 ê†
10. (A8)

The p̂i0 modes form a two-mode squeezed state. To retrieve
ê10 and ê20, we perform a final two-mode squeezing opera-
tion on p̂i0, with squeezing parameter t = arccosh( 5

4 ), which
yields

cosh(t ) p̂10 + sinh(t ) p̂′†
20 = ê10, (A9)

cosh(t ) p̂20 + sinh(t ) p̂†
10 = ê20. (A10)

This confirms that the teleportation protocol is fully unitary.
The additional squeezing transformation is required due to the
beam-splitter interaction at Bob’s output port. Since some of
the classical channel mode ĉ0 is contained in the teleported
mode ĵ′0, retrieving ê10 and ê20 is more complicated than
disentangling them via the successive inverse squeezing trans-
formations. The three operations above can be combined into
a single, inverse two-mode squeezing operation with squeez-
ing parameter k, defined as

k = ln[cosh(t − r − s) − sinh(t − r − s)] (A11)

so that

cosh(k)â′
0 − sinh(k)ĉ′†

0 = ê10, (A12)

cosh(k)ĉ′
0 − sinh(k)â′†

0 = ê20. (A13)

As already discussed in Sec. III C, the orthogonal mode ĵ⊥
appears in the reflected mode ĉ′′

⊥.

2. Time-delayed temporal-mode telemirror

We can perform a similar analysis to retrieve the reflected
mode from the temporal-mode telemirror. For simplicity, we
study the scenario presented in Sec. V B, where the symmetric
superposition of the input temporal modes was transmitted to
Bob. Of course, this generalizes to arbitrary mode selection,
shown in Appendix C 2. The operations enacted on the output
modes are shown in Fig. 14. First, the output modes on the
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FIG. 14. Circuit diagram for the operations used to retrieve the
input vacua for the temporal-mode time-delayed telemirror. We have
utilized the label ĵ−0 = ( ĵ10 − ĵ20 )/

√
2 to denote the antisymmetric

superposition of ĵi0.

reflected side of the telemirror are given by

â−0 = cosh(r)√
2

(â0 + v̂0) + sinh(r) ĵ†
10, (A14)

â+0 = cosh(r)√
2

(â0 − v̂0) + sinh(r) ĵ†
20, (A15)

ĉ−0 = cosh(r)√
2

( ĵ10 − ĵ20) + sinh(r)v̂†
0, (A16)

ĉ′′
+0 =

(
cosh(r)√

2
− 1

2
√

2 cosh(r)

)
( ĵ10 + ĵ20)

+ 1

2 cosh(r)

(√
1 − 1

2 cosh2(r)
− 1

)
û0

+ 1

2 cosh(r)

(√
1 − 1

2 cosh2(r)
+ 1

)
b̂0

+
(

sinh(r) − tanh(r)

cosh(r)

)
â†

0. (A17)

Mixing the â±0 modes at a balanced beam splitter yields

ô10 = 1√
2

(â′
+0 + â′

−0)

= cosh(r)â0 + sinh(r)√
2

( ĵ†
10 + ĵ†

20), (A18)

ô20 = 1√
2

(â′
+0 − â′

−0)

= cosh(r)v̂0 + sinh(r)√
2

( ĵ†
10 − ĵ†

20). (A19)

FIG. 15. Efficiency of the telefilter as a function of squeezing
in decibels. The conversion between the squeezing parameter s into
decibel units is given by 1 dB = −10 log10(e−2s ).

Mixing ĉ−0 and ô20 at an inverse squeezer with squeezing
coefficient r yields

cosh(r)ô20 − sinh(r)ĉ†
−0 = v̂0, (A20)

cosh(r)ĉ−0 − sinh(r)ô†
20 = 1√

2
( ĵ10 − ĵ20). (A21)

(Note that in Fig. 14 we have utilized the labels ĵ−0 and ĵ−⊥ to
denote the antisymmetric superposition of the input temporal
modes in 0 and ⊥, respectively.) To retrieve the input vacua
êi0 used to generate the EPR resource, one needs to apply the
series of operations shown for the atemporal representation of
the protocol, which can be reduced to the action of a single
unitary Ŝ2(k) (see Appendix A). The operations are applied to
the mode pair ô10 and ĉ′′

+0 as shown in Fig. 14. In the limit
of infinite squeezing, we are able to retrieve all the leftover
modes used to perform the teleportation:

lim
r→∞ ĉ′′′

+0 = ê10, (A22)

lim
r→∞ ĉ′′

+⊥ = 1√
2

( ĵ1⊥ + ĵ2⊥) = ĵ+⊥, (A23)

lim
r→∞ ô′

10 = ê20. (A24)

We see that all the orthogonal modes, i.e., ĵ±⊥ and ĵ−0, are
reflected, while only ĵ+0 is transmitted.

APPENDIX B: TELEFILTERS AND TELEMIRRORS
WITH IMPERFECT EFFICIENCY

1. Practical efficiency of the telefilter with finite squeezing

From Eq. (35), the output mode in the atemporal represen-
tation of the telefilter with finite squeezing is given by

ĵ′′′0 = tanh(s) ĵ0 + ê20

cosh(s)
. (B1)

The efficiency η of the telefilter in transmitting ĵ0 is thus given
by tanh2(s). A plot of η as a function of squeezing (in units
of decibels) is shown in Fig. 15. State-of-the-art techniques
in noise suppression have achieved experimental squeezing
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FIG. 16. Efficiency of the telemirror as a function of squeezing
in decibels. The telemirror operates comparably to the telefilter.

values of ∼15 dB, which accords with ∼90% efficiency in our
protocol [59].

2. All-optical telemirror with finite squeezing

In Sec. III B we presented a calculation for the atempo-
ral representation of the mode-selective telefilter with finite
squeezing. For completeness, we present here the input-output
relations for the atemporal representation of the telemirror
with finite squeezing. The classical channel is generated via a
two-mode squeezer which couples the input mode ĵ0 with the
entanglement resource mode â0 with the gain of the channel
controlled by the squeezing parameter s, that is,

ĉ0 = cosh(s) ĵ0 + sinh(s)â†
0, (B2)

â′
0 = cosh(s)â0 + sinh(s) ĵ†

0 . (B3)

Bob mixes ĉ0 and b̂0 on a beam splitter with transmission
coefficient

η = 2 cosh2(s)

3 + cosh(2s)
(B4)

so that

ĉ′
0 = √

ηb̂0 −
√

1 − ηĉ0, (B5)

ĵ′0 = √
ηĉ0 −

√
1 − ηb̂0

=
√

2√
3 + cosh(2s)

[cosh(s) ĵ0 − ê20]. (B6)

In Fig. 16 we have plotted the transmission coefficient η

for the telemirror as a function of the squeezing in units of
decibels. We see clearly that for finite squeezing levels, the
output mode transmit ĵ0 with some imperfect efficiency. In
the limit of perfect squeezing, one retrieves the result for
the all-optical telemirror in Sec. III C. We can also calculate
the reflected modes. To do this, we perform two successive
inverse squeezing operations on the reflected modes â′

0 and ĉ′
0

with squeezing parameter s, yielding

q̂10 = cosh(s)â′
0 − sinh(s)ĉ′†

0 , (B7)

q̂20 = cosh(s)ĉ′
0 − sinh(s)â′†

0 , (B8)

p̂10 = cosh(s)q̂10 − sinh(s)q̂†
20, (B9)

p̂20 = cosh(s)q̂20 − sinh(s)q̂†
10. (B10)

A final squeezing operation with the squeezing parameter set
to arccosh( 5

4 ) retrieves the vacuum modes êi0 in the limit of
infinite squeezing. For finite squeezing, ĵ0 appears on one
of the reflected modes, complementing the part of the mode
which is transmitted; obviously, this vanishes as s → ∞.

3. Time-delayed temporal-mode telefilter with finite squeezing

Here we consider the temporal-mode telefilter (with two
input temporal modes) with finite squeezing. This can be
straightforwardly generalized to an N-mode input. The equiv-
alent calculation for the temporal-mode telemirror is tedious
but follows analogously. First, we choose the effective gain
of the classical channel to be ζ = tanh(s)/2

√
2|β| so that the

total measurement operator is given by

M̂ = tanh(s)

2
√

2
(
√

2 ĵ10 +
√

2 ĵ20 + 2â†
0). (B11)

As before, we displace the output temporal components at
Bob’s side of the telemirror, yielding the results

ĵ′10 = 1

2
( ĵ10 + ĵ20) tanh(s) + 1√

2
û0

+ tanh(s) sinh(s) − cosh(s)√
2

ê20, (B12)

ĵ′20 = − tanh(s)

2
( ĵ10 + ĵ20) + 1√

2
û0

+ cosh(s) − tanh(s) sinh(s)√
2

ê20. (B13)

For clarity, it is instructive to mix ĵ′10 and ĵ′20 on a balanced
beam splitter, yielding

ô(l )
10 = 1√

2
( ĵ′10 + ĵ′20) (B14)

= tanh(s)√
2

( ĵ10 + ĵ20) − ê20

cosh(s)
, (B15)

ô(r)
10 = 1√

2
( ĵ′10 − ĵ′20) = û0. (B16)

In this case, we see that the symmetric superposition of ĵ10 and
ĵ20 has been teleported to Bob’s output, with efficiency tanh(s)
dictated by the amount of squeezing used to generate the
entanglement-resource modes â0 and b̂0. In the limit of perfect
entanglement, we simply obtain the result shown in Eqs. (65)
and (66). To generalize this result to an N-mode input, one
must appropriately choose the effective gain ξ of the classical
channel so that the channel between Alice and Bob is the
identity [see, for example, the prefactor of Eq. (B11)].
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APPENDIX C: SELECTING AN ARBITRARY
SUPERPOSITION MODE USING THE TEMPORAL-MODE

TELEFILTER AND TELEMIRROR

In the main text, we demonstrated simple examples where
the telefilter and telemirror transmitted a particular superpo-
sition of the input temporal modes and filtering or reflecting
all others. Here we generalize those result to show that any
arbitrary mode can be selected by these devices, with the
orthogonal modes filtered or reflected. We present the general
calculations in the same order in which they appear in the
main text (corresponding to Secs. V A, V B, VI B, and VI C
respectively).

1. Time-delayed temporal-mode telefilter

To select an arbitrary mode with the time-delayed
temporal-mode telefilter, we require some additional degrees
of freedom in our setup. Previously, the measurement oper-
ators were constructed from the X̂ and P̂ quadratures from
the output modes at the dual homodyne measurement. In
full generality, we can construct these measurement operators
using quadrature operators at an arbitrary phase with a π/2
phase shift between them, that is,

X̂a−0 (φ1) = â′
−0e−iφ1 + â′†

−0eiφ1 , (C1)

X̂ j10′ (φ
′
1) = ĵ′10e−iφ′

1 + ĵ′†10eiφ′
1 , (C2)

X̂a+0 (φ2) = â+0e−iφ2 + â+0eiφ2 , (C3)

X̂ j′20
(φ′

2) = ĵ′20e−iφ′
2 + ĵ′†20eiφ′

2 , (C4)

where φ′
i = φi + π/2. The measurement operators are now

given by

M̂1 =
√

2|β|(e−iφ1 ĵ10 − i
√

1 − αei(φ+φ1 )â†
0 − √

αeiφ1 v̂
†
0 ),

(C5)

M̂2 =
√

2|β|(e−iφ2 ĵ20 − √
αeiφ2 â†

0 − i
√

1 − αe−i(φ−φ2 )v̂
†
0 ).

(C6)

We add these together in the usual way,

M̂ = ζ1(φ1, α)M̂1 + ζ2(φ2, α)M̂2, (C7)

with the following choices for the weighting of the individual
measurements:

ζ1(φ1, α) = 1 − α√
2λ1

e−iφ1 , (C8)

ζ2(φ2, α) =
√

α(1 − α)√
2λ1

e−iφ2 . (C9)

We displace Bob’s entanglement resource modes using the
total measurement operator

ĵ′10 = b̂−0 + λ1(α)M̂, (C10)

ĵ′20 = b̂+0 + λ2(α)M̂, (C11)

with the relationship

λ2(α) = λ1
√

α√
1 − α

. (C12)

Mixing the output modes on a passive beam splitter yields

ô(l )
10 = √

α ĵ′20 + √
1 − α ĵ′10

= e−2iφ1
√

1 − α ĵ10 + e−2iφ2
√

α ĵ20

+ (b̂0 − â†
0), (C13)

ô(r)
10 = √

α ĵ′10 − √
1 − α ĵ′20 = û0. (C14)

By tuning the quadrature phases φi and the beam-splitter
transmission coefficient α, Alice can select any arbitrary mode
to transmit to Bob in ô(l )

10, while the other mode contains
vacuum.

2. Time-delayed temporal-mode telemirror

An analogous calculation can be performed for the time-
delayed temporal-mode telemirror. The extra degrees of
freedom we introduce are phase shifts on the classical channel
modes, namely,

Û †(φ j ) ĵÛ (φ j ) = ĵeiφ j , (C15)

where ĵ = ĉi0, â′
±0. To obtain the desired output, let us impose

the following constraints on the beam-splitter phases:

θ− = φ + θ+ + π

2
, θ+ = φc20 + π

2
,

φc10 = −φ + π

2
, φc0 = φ + φc10 − φc20 . (C16)

Another set of constraints could have been chosen, since the
choice above is not unique. This yields the output modes

ĵ′10 = (1 − α)e−2iφ ĵ10 + ie−iφ
√

α(1 − α) ĵ20

− ie−iφ
√

1 − α(b̂0 − â†
0) + √

αû0, (C17)

ĵ′20 = ie−iφ
√

α(1 − α) ĵ10 − α ĵ20 + √
α(b̂0 − â†

0)

− ieiφ
√

1 − αû0. (C18)

These output modes are mixed at a final passive beam splitter,

ô(l )
10 = √

α ĵ′20 − ie−iχ
√

1 − α ĵ′10, (C19)

ô(r)
10 = √

α ĵ′10 − ieiχ
√

1 − α ĵ′20. (C20)

By taking χ = −φ + π we obtain the desired result,

ô(l )
10 = ie−iφ

√
1 − α ĵ10 − √

α ĵ20 + (b̂0 − â†
0), (C21)

ô(r)
10 = û0. (C22)

Thus, Alice may select any arbitrary mode to be transmitted
to Bob. For the reflected modes, we first mix the outputs from
the two-mode squeezers at a passive beam splitter:

ô10 = √
μâ′

−0 − ie−iφa+0

√
1 − μâ′

+0, (C23)

ô20 = √
μâ′

+0 − ieiφa+0

√
1 − μâ′

−0. (C24)

We then inverse squeeze ô20 with the output from the mixing
of the classical channel modes ĉ−0:

r̂10 = cosh(r)ô20 − sinh(r)ĉ†
−0, (C25)

r̂20 = cosh(r)ĉ−0 − sinh(r)ô†
20. (C26)
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Like before, we can make the following choices for the beam-
splitter phases:

φc10 = −φ + π

2
, φa+0 = φ − φa−0 . (C27)

This yields the output modes

r̂10 = −ieiφ v̂0, (C28)

r̂20 = ie−iφ√
α ĵ10 + √

1 − α ĵ20. (C29)

The mode r̂20 is orthogonal to ô(l )
10, giving the desired mode-

selective property of the result.

3. No-delay temporal-mode telefilter

For completeness, we show how the no-delay telefilter and
telemirror can be generalized to partially select an arbitrary
mode of interest. As before, we define our quadrature opera-
tors with the generic phase φi. We construct the measurement
operators

M̂1 = X̂a−0 (φ1) + iX̂ j′10
(φ′′

1 ), (C30)

M̂2 = X̂a+0 (φ2) + iX̂ j′20
(φ′′

2 ), (C31)

which are used to displace the entanglement resource modes,

ĵ′10 = b̂−0 + λ1(φ1)M̂1, (C32)

ĵ′20 = b̂+0 + λ2(φ2)M̂2. (C33)

We obtain the output modes

ĵ′10 = e−2iφ1 ĵ10 + √
1 − α(b̂0 − â†

0)

+√
α(û0 − v̂

†
0 ), (C34)

ĵ′20 = e−2iφ2 ĵ20 + √
α(b̂0 − â†

0), (C35)

where we have retained the nomenclature for the quadrature
phases in Appendix C 1. Mixing these back on a passive beam
splitter in the usual way yields

ô(l )
10 = e−2iφ1

√
1 − α ĵ10 + e−2iφ2

√
α ĵ20

+ (b̂0 − â†
0), (C36)

ô(r)
10 = e−2iφ1

√
α ĵ10 − e−2iφ2

√
1 − α ĵ20

+ (û0 − v̂
†
0 ). (C37)

Now the mode of interest with phases φi and transmission
coefficient α appears in ô(l )

10 with its complement in the other
transmitted mode ô(r)

10 .

4. No-delay temporal-mode telemirror

For the no-delay temporal-mode telemirror, Alice could
generate the squeezing classical channels with squeezing
phases θsi ,

ĉ10 = cosh(r) ĵ10 − eiφc10 sinh(r)â†
−0, (C38)

ĉ20 = cosh(r) ĵ20 − eiφc20 sinh(r)â†
+0. (C39)

We perform the usual displacement of Bob’s individual entan-
glement resource modes using these channel modes:

ĵ′10 = √
η−b̂−0 − ieiθ−

√
1 − η−ĉ10, (C40)

ĵ′20 = √
η+b̂+0 − ieiθ+

√
1 − η+ĉ20. (C41)

As before, we can make simplifications by choosing the beam-
splitter phases, knowing the desired outcome of the partially
mode-selective mirror. For example, taking

φ = −π/2, (C42)
φc10 = π/2 − θ−, (C43)
φc20 = θ− − θ+ + φc10 (C44)

yields the outputs (in the limit of high gain r → ∞)

ĵ′10 = −ieiθ− ĵ10 + √
1 − α(b̂0 − â†

0)+√
α(û10−v̂

†
10), (C45)

ĵ′20 = −ieiθ+ ĵ20 + √
α(b̂0 − â†

0)

−√
1 − α(û10 − v̂

†
10). (C46)

Mixing these on a final beam splitter yields

ô(l )
10 = −ieiθ−

√
1 − α ĵ10 − ieiθ+

√
α ĵ20 + (b̂0 − â†

0), (C47)

ô(r)
10 = −ieiθ−

√
α ĵ10 + ieiθ+

√
1 − α ĵ20 + (û10 − v̂

†
10). (C48)

Thus, Alice can select an arbitrary mode to be mode discrim-
inated, with the orthogonal superposition transmitted along
with noise. We are less interested in the reflected modes in this
case, since the device does not isolate the mode of interest on
either the transmitted or reflected sides.

FIG. 17. Circuit diagram for the N-mode temporal-mode time-
delayed telefilter.
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FIG. 18. Circuit for the recombination of the output modes used
to retrieve the mode of interest.

APPENDIX D: N-MODE GENERALIZATION

We now generalize the temporal-mode telefilter protocols
studied in the main text to an input of N temporal modes.
In the large-N limit, the input approximates an input wave
packet decomposed into a large number of orthogonal modes.
Although the telefilter and telemirror protocols possess a di-
rect mapping between one another, the calculations for the
telefilter are much simpler, particularly for the time-delayed
case. For brevity, we only present the N-mode extension of
the telefilter, in both the time-delayed and no-delay cases.

FIG. 19. Circuit diagram for the N-mode temporal-mode tele-
filter with no time-delay.

1. N-mode temporal-mode time-delayed telefilter

We have the circuit shown in Fig. 17. This is the N-
mode extension of the temporal-mode time-delayed telefilter
discussed in Sec. V A. The N temporal-mode inputs are
mixed with N respective local oscillators, which are like-
wise mode matched with the entanglement resource modes
â(n)

−0 · · · â(N−1)
+0 . These entanglement resource modes are dis-

tributed among the N temporal modes via passive beam
splitters with transmission coefficient αi and phase φi as fol-
lows:

â(1)
−0 = √

α1v̂10 − ie−iφ1 â0,

â(1)
+0 = √

α1â0 − ieiφ1
√

1 − α1v̂10,

â(2)
−0 = √

α2v̂20 − ie−iφ2 â(1)
+0,

â(2)
+0 = √

α2â(1)
+0 − ieiφ2

√
1 − α2v̂20,

...

â(n)
−0 = √

αnv̂n0 − ie−iφn
√

1 − αnâ(n−1)
+0 ,

â(n)
+0 = √

αnâ(n−1)
+0 − ieiφn

√
1 − αnv̂n0,

...

â(N−1)
−0 = √

αN−1v̂(N−1)0 − ie−iφN−1
√

1 − αN−1â(N−2)
+0 ,

â(N−1)
+0 = √

αN−1â(N−2)
+0 − ieiφN−1

√
1 − αN−1v̂(N−1)0,

b̂(1)
−0 = √

α1û10 − ie−iφ1 b̂0,

b̂(1)
+0 = √

α1b̂0 − ieiφ1
√

1 − α1û0,

b̂(2)
−0 = √

α2û20 − ie−iφ2 b̂(1)
+0,

b̂(2)
+0 = √

α2b̂(1)
+0 − ieiφ2

√
1 − α2û20,

...

b̂(n)
−0 = √

αnûn0 − ie−iφn
√

1 − αnb̂(n−1)
+0 ,

b̂(n)
+0 = √

αnb̂(n−1)
+0 − ieiφn

√
1 − αnûn0,

...

b̂(N−1)
−0 = √

αN−1û(N−1)0 − ie−iφN−1
√

1 − αN−1b̂(N−2)
+0 ,

b̂(N−1)
+0 = √

αN−1b̂(N−2)
+0 − ieiφN−1

√
1 − αN−1û(N−1)0.

Some fraction of the original entanglement, â0 and b̂0, is distributed to each temporal mode and used to obtain the measurement
result. At this point, let us specialize to φi = −π/2 for the beam-splitter phases for simplicity. Of course, one can choose
this arbitrarily to select a different mode; this then requires a specifically tuned recombination of the output modes on Bob’s
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transmitted side. Here we simply present an example which illustrates the generic process for selecting a mode to be transmitted
from Alice to Bob. For further simplification, we will take the measurement results to be

M̂1 = |β|(X̂a(1)
−0

+ iP̂j′20

) =
√

2|β|( ĵ10 − √
1 − αâ†

0 − √
α1v̂

†
10), (D1)

M̂2 = |β|(X̂a(2)′
−0

+ iP̂j′20

) =
√

2|β|( ĵ20 −
√

α(1 − α2)â†
0 +

√
(1 − α1)(1 − α2)v̂†

10 − √
α2v̂

†
20), (D2)

...

M̂n = |β|(X̂a(n)′
−0

+ iP̂j′(n)0

) =
√

2|β|( ĵn0 −
√

α1α2 · · · (1 − αn)â†
0 +

√
(1 − α1)α2 · · · αn−1(1 − αn)v̂†

10

+
√

(1 − α2)α3 · · · αn−1(1 − αn)v̂†
20 + · · · +

√
(1 − αn−1)(1 − αn)v̂†

(n−1)0 − √
αnv̂

†
(n)0 ), (D3)

...

M̂N = |β|(X̂a(N−1)′
+0

+ iP̂j′(N )0

) =
√

2|β|( ĵ(N )0 − √
α1 · · ·αN−1â†

0 +
√

(1 − α1)α2 · · ·αN−1v̂
†
10

+
√

(1 − α2)α3 · · ·αN−1v̂
†
20 + · · · +

√
1 − αN−1v̂

†
(N−1)0). (D4)

We add these to form a total measurement operator M̂ = ∑N
i=1 ζiM̂i, where

ζ1 = ζN
√

1 − α1√
α1α2 · · · αN−1

, ζ2 = ζN
√

1 − α2√
α2α3 · · ·αN−1

, . . . , ζn = ζN
√

1 − αn√
αnαn+1 · · ·αN−1

, . . . , ζN−1 = ζN
√

1 − αN−1√
αN−1

. (D5)

As shown in Fig. 17, one may partition the input field into a larger number of time-bin modes to obtain a better approximation to
a continuous wave packet. Overall, the total time delay is the difference in the arrival times of the first and last time-bin modes.
Now the total measurement operator is used to displace the N entanglement resource modes sent to Bob’s side of the telefilter,

ĵ′10 = b̂(1)
−0 + λ1M̂, ĵ′20 = b̂(2)

−0 + λ2M̂2, . . . , ĵ(n)0 = b̂(n)
−0 + λnM̂n, . . . , ĵ′(N )0 = b̂(N−1)

+0 + λN M̂N , (D6)

where we need to choose the effective gains in a likewise weighted fashion,

λ1 =
√

(1 − α1)α1α2 · · ·αN−1

|β|√2ζN

, λ2 = α1
√

(1 − α2)α2 · · · αN−1

|β|√2ζN

, . . . , λn = α1α2 · · · αn−1
√

(1 − αn)αn · · · αN−1

|β|√2ζN

, (D7)

λN = α1α2 · · ·αN−1αN

|β|√2ζN

. (D8)

To retrieve the teleported mode, we mix these back together on weighted beam splitters (see Fig. 18) as

ô(l )
10 = √

αN−1 ĵ′(N−1)0 −
√

1 − αN−1 ĵ′(N )0,

ô(l )
20 = √

αN−2 ĵ′(N−2)0 −
√

1 − αN−2ô(r)
10 ,

...

ô(l )
(n)0 = √

αN−n ĵ′(N−n)0 −
√

1 − αN−nô(r)
(n−1)0,

...

ô(l )
(N−1)0 = √

α1 ĵ′10 −
√

1 − α1ô(r)
(N−1)0,

ô(r)
10 = √

αN−1 ĵ′(N )0 +
√

1 − αN−1 ĵ′(N−1)0,

ô(r)
20 = √

αN−2ô(r)
10 +

√
1 − αN−2 ĵ′(N−2)0,

...

ô(r)
(n)0 = √

αN−nô(r)
(n−1)0 +

√
1 − αN−n ĵ′(N−n)0,

...

ô(r)
(N−1)0 = √

α1ô(r)
(N−1)0 +

√
1 − α1 ĵ′10,

which yields the outputs

ô(l )
10 = û(N−1)0,

ô(l )
20 = û(N−2)0,

...

ô(l )
(N−2)0 = û20,

ô(l )
(N−1)0 = √

1 − α ĵ10 +
√

α(1 − α) ĵ20 +
√

α1α2(1 − α3) ĵ30

+ · · · +
√

α1 · · ·αN−2(1 − αN−1) ĵ(N−1)0 + √
α1 · · · αN−1 ĵ(N )0,

ô(r)
(N−1)0 = û10.
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All of the output modes except ô(l )
(N−1)0 contain the vacuum modes û(n)0. Only ô(l )

(N−1)0 contains the selected superposition of the
N temporal modes (here with equal phases between the constituent modes), which is the desired action of the mode-selective
telefilter.

2. N-mode temporal-mode no-delay telefilter

We have the circuit shown in Fig. 19. Our entanglement is split up in the same way as the time-delayed telefilter case. As
before, let us specialize to φi = −π/2 for the beam-splitter phases, for simplicity. We can construct the individual measurement
results from the quadrature operators obtained at each homodyne measurement as follows:

M̂1 = |β|(X̂ j′10
+ iP̂a(1)′

−0

) =
√

2|β|( ĵ10 +
√

1 − α1â†
0 + √

α1v̂10), (D9)

M̂2 = |β|(X̂ j′20
+ iP̂a(2)′

−0

) =
√

2|β|[ ĵ20 +
√

α1(−α2)â†
0 −

√
(1 − α1)(1 − α2)v̂†

10 + √
α2v̂

†
20], (D10)

...

M̂n = |β|(X̂ j′(n)0
+ iP̂a(n)′

−0

) =
√

2|β|[ ĵn0 +
√

α1α2 · · · αn−1(1 − αn)â†
0 −

√
(1 − α1)α2 · · ·αn−1(1 − αn)v̂†

10

−
√

(1 − α2)α3 · · · αn−1(1 − αn)v̂†
20 − · · · −

√
(1 − αn−1)(1 − αn)v̂†

(n−1)0 + √
αnv̂

†
(n)0], (D11)

...

M̂N = |β|(X̂ j′N0
+ iP̂a(N−1)′

+0

) =
√

2|β|[ ĵ(N )0 + √
α1 · · · αN−1â†

0 −
√

(1 − α1)α2 · · · αN−1v̂
†
10 −

√
(1 − α2)α3 · · ·αN−1v̂

†
20

−
√

(1 − αN−2)αN−1v̂
†
(N−2)0 −

√
1 − αN−1v̂

†
(N−1)0]. (D12)

We use these measurement results to displace Bob’s half of the entanglement resource modes. We choose the effective gain of
the displacement to be ζi = −1/

√
2|β|, which yields an identity channel between Alice and Bob for each of the temporal modes:

ĵ′10 = − ĵ10 +
√

1 − α1(b̂0 − â†
0) + √

α1(û10 − v̂
†
10), (D13)

ĵ′20 = − ĵ20 +
√

α1(1 − α2)(b̂0 − â†
0) −

√
(1 − α1)(1 − α2)(û10 − v̂

†
10) + √

α2(û20 − v̂
†
20), (D14)

...

ĵ′(n)0 = − ĵ(n)0 +
√

α1α2 · · · (1 − αn)(b̂0 − â†
0) −

√
(1 − α1)α2 · · ·αn−1(1 − αn)(û10 − v̂

†
10)

−
√

(1 − α2)α3 · · · αn−1(1 − αn)(û20 − v̂
†
20) − · · · −

√
(1 − αn−1)(1 − αn)(û(n−1)0 − v̂

†
(n−1)0) + √

αn(û(n)0 − v̂
†
(n)0), (D15)

...

ĵ′(N )0 = − ĵ(N )0 −
√

(1 − α1)α2 · · ·αN−1(û10 − v̂
†
10) −

√
(1 − α2)α3 · · · αN−1(û20 − v̂

†
20)

− · · · −
√

(1 − αN−2αN−1(û(N−2)0 − v̂
†
(N−2)0) −

√
1 − αN−1(û(N−1)0 − v

†
(N−1)0). (D16)

Performing a similar recombination of the output modes on passive beam splitters (which are weighted in with respect to the
initial distribution of the entanglement resource modes across different temporal modes), we finally obtain

ô(l )
10 = −√

αN−1 ĵ(N−1)0 +
√

1 − αN−1 ĵ(N )0 + (û(N−1)0 − v
†
(N−1)0)︸ ︷︷ ︸

noise

,

ô(l )
20 = −√

αN−2 ĵ(N−2)0 +
√

(1 − αN−2)(1 − αN−1) ĵ(N−1)0 +
√

(1 − αN−2)αN−1 ĵ(N )0 + (û(N−2)0 − v̂
†
(N−2)0)︸ ︷︷ ︸

noise

,

...

ô(l )
(n)0 = −√

αN−n ĵ(N−n)0 + √
(1 − αN−n)(1 − αN−(n−1)) ĵ(N−(n−1))0

+ · · · + √
(1 − αN−n)αN−(n−1)αN−(n−2) · · · αN−3(1 − αN−2) ĵ(N−2)0

+ √
(1 − αN−n)αN−(n−1)αN−(n−2) · · · αN−2(1 − αN−1) ĵ(N−1)0

+ √
(1 − αN−n)αN−(n−1)αN−(n−2) · · · αN−2(1 − αN−1) ĵ(N−1)0

+ √
(1 − αN−n)αN−(n−1)αN−(n−2) · · · αN−1 ĵ(N )0 + (û(N−n)0 − v̂

†
(N−n)0 )︸ ︷︷ ︸

noise

,
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ô(r)
(N−1)0 = −√

1 − α ĵ10 −
√

α1(1 − α2) ĵ20 −
√

α1α2(1 − α3) ĵ30 − · · · −
√

α1α2 · · ·αN−2(1 − αN−1) ĵ(N−1)0

− √
α1α2 · · · αN−2αN−1 ĵ(N )0 + (b̂0 − â†

0)︸ ︷︷ ︸
entanglement

. (D17)

Here the discriminated mode is contained in ô(r)
(N−1)0. For this choice of beam-splitter settings, this is a superposition of the ĵi0

temporal modes with equal phases between them, along with the entanglement resource. Meanwhile, the other N output modes
contain orthogonal superposition modes with noise.
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