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High-fidelity synchronization and transfer of quantum states in optomechanical hybrid systems
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In a hybrid scheme, consisting of a three-level atom-cavity-oscillator system, we show that synchronization
[J. Czartowski, R. Müller, K. Życzkowski, and D. Braun, Phys. Rev. A 104, 012410 (2021)] and transfer of
nonclassical states between the mechanical oscillator and the cavity field is possible. In this framework, we show
that an initially thermalized mechanical oscillator, when connected to a squeezed bath, evolves to a squeezed
state which in steady state is synchronized with the cavity mode. On the other hand, if the mechanical oscillator
is initially prepared in a nonclassical state, e.g., squeezed and Schrödinger’s cat states, while the cavity is in
a thermal state, then a periodic transfer between the mechanical oscillator and cavity mode occurs for given
interaction times. As qualitative results, we prove that the synchronization and transfer of the quantum states are
feasible with high fidelity.
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I. INTRODUCTION

With the remarkable state of the art of hybrid systems [1–3]
composed of mechanical oscillators (MO), cavities, spins,
etc., it is becoming more and more feasible to control such
systems in their quantum regime in the search for nonclassical
features of their elements. Besides MO have the ability to
easily interact with a wide range of physical systems, such
as ultracold atomic Bose-Einstein condensates (BECs) [4], su-
perconducting qubits [3], spin states in quantum dots [5,6] and
color and nitrogen-vacancy (NV) centers [2,7,8], cavity fields
in optomechanical systems [9,10], etc. Actually, the cooling
down to subkelvin temperatures of relatively large mechanical
objects can be reached through different techniques such as
feedback cooling [11,12] and dynamical decoupling in spin
mechanics [7,13], allowing the mechanical system to oscillate
with very low number of quanta excitations that is useful
for different applications in the framework of the hybrid de-
vices. The aforementioned hybrid mechanical architectures
are acquiring increasing attention in order to understand the
foundations of quantum theory, such as macroscopic quantum
superpositions [14–17] and quantum correlations at macro-
scopic scales [9,18]—very well-known questions of quantum
mechanics since Schrödinger’s times.

The hybrid setups are of paramount importance regarding
the development of quantum technologies. Therefore, to move
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forward the limits of fields such as quantum computing, quan-
tum networks, and quantum metrology and sensing, a very
desirable tool should be the high-fidelity transfer of the quan-
tum states between the components of a hybrid system. For
instance, in the realm of quantum networks, the mechanical
object can serve as light-matter transducer [19,20] or to map
or encode information from a qubit [3,21]. Particularly, spin-
mechanical systems have attained major attention, mainly
because spin systems exhibit long-coherence times and they
can be easily manipulated and read out [13,22]. A rapidly
emerging field is quantum metrology and sensing [23] by
using the quantum states and protocols with the aim to obtain
precision unreachable by classical sensing. There are several
experiments proving sensing near and beyond the standard
quantum limit, e.g., [24–26]. Nevertheless, quantum metrol-
ogy needs more elaborate techniques and methods in order to
improve the precision from shot noise to the Heisenberg limit.
Commonly quantum sensors are based on photonics setups,
involving cavities, atoms, photons, trapped ions, and solid-
state systems with electrons, superconducting junctions, etc.
Nevertheless, hybrid systems like opto- or spin-mechanical,
opto-electromechanical setups, etc., actually become more at-
tractive for their effectiveness and usefulness for a wide range
of quantum applications, from gravitational wave detectors
[27,28] to force microscopes [29,30], hence they are consid-
ered leading candidates for quantum metrology and sensing.

In this context, the squeezing of the modes in a hybrid
system, and particularly the squeezing transfer between them,
is of major importance and applicability. On the one hand, the
preparation of the mechanical and light modes in the squeezed
states has been widely investigated theoretically [31–34] and
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is nowadays experimentally feasible in versatile hybrid setups
[10,35–40].

On the other hand, as far as we know, there are fewer pro-
posals for the effect of dynamical synchronization of quantum
states, particularly in hybrid systems. By dynamical synchro-
nization we mean a high-fidelity transfer of the quantum
stationary state from one subsystem to another one and keep-
ing both subsystems in the same state for as long a time as
possible under the effects of decoherence. This synchroniza-
tion is dynamically irreversible (cannot return to the initial
state) as the system reaches steady state when connected to
noisy channels. From a practical point of view, such an effect
may be useful for long time storage or protection of the
quantum information [17] for different degrees of freedom,
and further the quantum state can be transferred, for example
by another protocol, to a quantum network. The concept of
quantum-state synchronization as a general procedure was
recently proposed in [41] and our work can be regarded as
a practical realization of this idea in an atom-optomechanical
setup. The models developed in [42–44] can be considered
similar to quantum state synchronization. Another kind of
quantum-state transfer we propose here is the periodic re-
versible transfer of the squeezed and Schrödinger cat states
between the MO and cavity modes, realized at high fidelity
as well. The protocols of periodic transfer as compared to the
synchronization are more common and have been investigated
for a variety of configurations [45–47].

Therefore, in the present work we propose the optome-
chanical protocols of high-fidelity squeezing synchronization
and transfer of quantum states between the mechanical and
cavity modes. Our results show that a squeezing synchroniza-
tion can be realized with the system coupled to a squeezed
phononic bath, in order to get steady state squeezing of the
photons in the cavity. As well, we prove that the transfer of
squeezed or cat states between the MO and cavity modes
occurs with some periodicity during the interaction. These
effects are realizable in the regime of weak optomechanical
coupling; however the fidelity can be improved by enhanc-
ing the optomechanical and Jaynes-Cummings couplings and
reducing the loss rates, which is technologically attainable
nowadays.

II. MODEL

Consider a hybrid atom-cavity-mechanics system, as il-
lustrated in panel (a) of Fig. 1. The Jaynes-Cummings type
interaction between the two upper levels of the three-level
atom and the mode of the electromagnetic field of frequency
ωc is quantified by the coupling constant gac. The interaction
between the cavity and the MO of frequency ωm corresponds
to the standard optomechanical coupling and is quantified by
the coupling constant gcm.

The hybrid system is described by the Hamiltonian under
the rotating wave approximation as (h̄ = 1)

H =
2∑

i=0

ωiσii + ωca†a + ωmb†b

+igac(aσ+
21 − a†σ−

21) − igcma†a(b† − b), (1)

FIG. 1. (a) Schematic diagram of a hybrid cavity-atom-
mechanics system. (b) Visualization of the Wigner function to
explain how the MO is dynamically squeezed and the cavity mode
is synchronized to this squeezing in the steady state.

where ωi are the energy levels of the three-level atom. a (a†)
and b (b†) are the annihilation (creation) operators of the
cavity and the MO, respectively. The atomic operators of
lowering (raising) are denoted as σ−

i j (σ †
i j ) = |i〉〈 j|(| j〉〈i|), and

obey standard anticommutation relations.
In the following, we calculate the full Hamiltonian in the

interaction picture (rotating at the mechanical frequency ωm)
taking the form (see details in Appendix A)

H̃1 = igacσ
+
21aei�t e−iF ∗(t ) + H.c. (2)

Here we used the Hermitian operator F ≡ gcm

ωm
(b†η∗ + bη),

with η ≡ eiωmt − 1; � ≡ ω2 − ω1 − ωc is the detuning.
Considering the experiments in optomechanics [1] we as-

sume that the optomechanical coupling gcm is much smaller
than the mechanical frequency ωm, so that e−iF ∗(t ) ≈ 1 −
i gcm

ωm
(b†η∗ + bη). Then we have

H̃2 = iJ (σ+
21ab† − σ−

21a†b), (3)

where J ≡ gac × gcm/ωm is the tripartite atom-photon-phonon
interaction strength.

To obtain Eq. (3) we considered the blue-detuned regime
� = ωm that selects two possible processes: (i) a phonon is
absorbed, the atom decays from state |2〉 to |1〉, and a photon
is created; and (ii) a phonon is created, the atom is excited
from state |1〉 to |2〉, and a photon is absorbed. In addition, we
have considered the rotating wave approximation and ignored
high frequency terms (See details in Appendix A).

A. Theoretical framework in the presence
of driving and dissipation

In this section, we explain how to produce squeezed light
in the optical cavity through different types of driving applied
in the main model developed in the previous section. For
this, we can follow the sequence shown in panel (b) of the
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Fig. 1. Initially (I) the states of the cavity field and MO are in
vacuum states, and subsequently (II) the MO is squeezed via
its coupling to the squeezed reservoir, Lsq[b] (as explained
below).

Additionally two lasers E1 and E2 (proportional to the field
strengths) are introduced in the system, and are resonant with
the transitions of the levels |2〉 ←→ |0〉 and |1〉 ←→ |0〉,
respectively [see panel (a) of Fig. 1]. These coherent drives
are described by the Hamiltonian in the interaction picture,

H̃E = iE1(σ−
20 − σ+

20) + iE2(σ−
10 − σ+

10). (4)

Assuming that the |1〉 ←→ |0〉 transition (coupled to the
classical field E2) and the |2〉 ←→ |1〉 transition (coupled to
the quantum field) are dipole allowed, that is, of opposite
parity, then the driving field E1 will necessarily couple to
the |2〉 ←→ |0〉 transition, whose states have the same parity
and are thus dipole forbidden. To be able to achieve this cou-
pling, we can use a nonlinear process as an effective coherent
pump from a Raman type configuration resonant to the carrier
transition where a fourth level was present and adiabatically
eliminated. Basically, the role of each laser is quite different:
E1 populates level |2〉 to keep the creation of photons, while
E2 is necessary to transfer the coherence from the mechanical
oscillator state to the cavity field.

If we now include the dissipation caused by the system-
environment coupling, the dissipative dynamics of the hybrid
quantum system is described by the Markovian master equa-
tion (ME) for the the density matrix as follows:

dρ

dt
= −i[H̃2 + H̃E , ρ] + γ21

2
L[σ−

21]ρ

+γ10

2
L[σ−

10]ρ + κa

2
L[a]ρ + κb

2
Lsq[b]ρ, (5)

where the common Lindblad dissipative terms are defined
as follows: ∀O, L[O] = 2OρO† − O†Oρ − ρO†O, with
all the baths at nth = 0. Here γ21 (γ10) corresponds to
spontaneous emission rate from level 2 to 1 (level 1 to 0),
and κa (κb) is the decay rate of the optical (mechanical)
mode. Additionally, the Lindbladian corresponding
to the squeezed phononic bath reads Lsq[b] = (Nsq +
1)(2bρb† − b†bρ − ρb†b) + Nsq(2b†ρb − bb†ρ − ρbb†) +
Msq(2b†ρb† − b†b†ρ − ρb†b†) + M∗

sq(2bρb − bbρ − ρbb);
here Nsq = sinh2 r corresponds to the average number
of phonons in the squeezed bath at zero temperature
and the quantity Msq = − exp (iθ ) sinh r cosh r obeys the
relation |Msq| = √

Nsq(Nsq + 1). Here the parameters r and θ

represent the squeezing amplitude and the phase, respectively,
as they appear in the definition of the complex squeezing
parameter, ξ = r exp [iθ ].

III. STEADY-STATE SYNCHRONIZATION OF SQUEEZING
IN MECHANICAL AND CAVITY MODES

After building the theoretical framework of the model, we
discuss the degree of squeezing present in the states of the
cavity and the MO. For this, we rely on numerical methods
according to [48] to solve Eq. (5) in the steady state, i.e., ρ̇ =
0, and so calculate the quadrature fluctuations defined by

(�xO=a,b)2 = 〈([Oe−iφ + O†eiφ]/2)2〉, (6)

(�yO=a,b)2 = 〈([Oe−iφ − O†eiφ]/2i)2〉, (7)
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FIG. 2. Quadrature fluctuations (a) (�ya)2 and (b) (�yb)2 as
functions of the phase θ , characterizing the squeezed bath, and the
phase, φ, defining the direction of the axes of squeezing as in Eq. 7.
The parameters (in units of ωm) are: gac = 102, gcm = 0.01, κa =
κb = 0.2, γ01 = 20, γ21 = 0, r = 0.3, E1 = E2 = 25. Both fields
reach the minimum fluctuations for the same values, e.g. {φ, θ} =
({0, 0}, {π/2, π}, {π, 0}, ...)

where φ permits us to generalize the direction of the quadra-
ture fluctuations; i.e., it indicates the squeezing along any
pair of axes (x′, y′) in the phase space. In order to minimize
the fluctuations and achieve an optimal squeezing synchro-
nization in the stable region, we chose one set of values as
{φ, θ} = {0, 0}; see Fig. 2. For a better understanding the
synchronization effect and stability of the hybrid system, we
get a set of first-order differential equations from Eq. (5):

d〈a†a〉
dt

= −2J〈a†b〉〈σ−
21〉 − κa〈a†a〉, (8)

d〈b†b〉
dt

= 2J〈a†b〉〈σ−
21〉 − κb〈b†b〉 + κbNsq, (9)

d〈a2〉
dt

= −2J〈ab〉〈σ−
21〉 − κa〈a2〉, (10)

d〈b2〉
dt

= 2J〈ab〉〈σ+
21〉 − κb〈b2〉 − κbMsq, (11)

d〈a†b〉
dt

= −J (〈b†b〉〈σ+
21〉 − 〈a†a〉〈σ+

21〉)

− κa

2
〈a†b〉 − κb

2
〈a†b〉, (12)

d〈ab〉
dt

= −J (〈b2〉〈σ−
21〉 − 〈a2〉〈σ+

21〉)

− κa

2
〈ab〉 − κb

2
〈ab〉, (13)

where we have considered the factorization of the form
〈a†bσ−

21〉 = 〈a†b〉〈σ−
21〉, thereby neglecting the quantum fluc-

tuations between the boson and atomic operators, i.e., a
semiclassical approximation. In order to confirm the vali-
dation of such approximation, we compare the analytical
solutions for the quadrature fluctuations with the numerical
solution of the master equation (5). Therefore, the results in
Fig. 3(a) show clearly that the semiclassical approximation is
successfully validated in the range of low values of the squeez-
ing parameter, r. By considering {E1, E2, γ10} � {J, κa, κb}
and γ21 = 0, we get the following semiclassical results for
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FIG. 3. (a) Quadrature fluctuations for photons, (�ya )2 (red and
blue line), and phonons, (�yb)2 (green and magenta line), as func-
tions of the parameter r for different optomechanical couplings
and γ21 = 0. Here we compare: (i) analytical solutions, Eqs. 14-15
(dashed) and (ii) numerical solution of the ME (5) (solid line). (b)
Numerical results of the fluctuations vs. time, evidencing the steady-
state for different γ21. The parameters (in units of ωm) are the same
as in Fig. 2 with θ = 0 and φ = 0.

the quadrature fluctuations in steady state (see details in Ap-
pendix B):

(�ya)2 = 1
4 p + l, (14)

(�yb)2 = 1
4 p[2(Nsq + Msq) + 1] + l, (15)

where

l = J2〈σ+
21〉2[κb(1 + 2[Nsq + Msq]) + κa]

(κa + κb)(4J2〈σ+
21〉2 + κaκb)

, (16)

p = κaκb

(4J2〈σ+
21〉2 + κaκb)

. (17)

In panel (a) of Fig. 3 the quadrature fluctuations are presented
as functions of the parameter r using both the analytical re-
sults [Eqs. (14) and (15)] as well as numerical calculations
based on the Hamiltonian given by Eq. (5). The results show
that for gcm = 0.01 the synchronization is performed opti-
mally; i.e., since the curves are closer, the fluctuations are
similar. In panel (b) of Fig. 3, we show the time evolution
of the quadrature fluctuations. Without loss of generality, we
have fixed the parameters r = 0.3 and gcm = 0.01. As a result
of this analysis, one sees how the interaction with a squeezed
bath of MO leads to mechanical and cavity squeezing in
steady state.

A. Feasible synchronization via the optomechanical coupling

To achieve the optimal synchronization we need to study
the parameters in our hybrid system in which quadrature
fluctuations reach their minimum values. To illustrate the
differences between optical and mechanical states, we numer-
ically investigate effect of synchronization in the steady state
of our model, computing the fidelity F , defined as the overlap
between the final mechanical and cavity states. The fidelity is
defined by [49]

F (ρss
c , ρss

m ) ≡ Tr
√√

ρss
c ρss

m

√
ρss

c , (18)
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0.0

0.5

1.0

g c
m

×10−2 (a) F
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gac

0.98

0.99

1.00

F

(b)

gcm = 4 × 10−3

gcm = 5 × 10−3

gcm = 1 × 10−2

FIG. 4. (a) Fidelity of squeezing synchronization between the
mechanical and cavity modes as a function of the couplings gcm and
gac. (b) Fidelity as a function of gac for some couplings gcm. The
fidelity is close to unity as the optomechanical and Jaynes-Cummings
couplings increase. The parameters (in units of ωm) are the same as
in Fig. 3 with r = 0.3.

where ρss
c and ρss

m are the density operators of the cavity and
mechanical modes in the steady state. In panel (a) of Fig. 4
we show the fidelity as a function of gcm and gac. Notice
that the fidelity is close to unity as the optomechanical and
Jaynes-Cummings couplings increase, even in the presence
of dissipation in the system. In panel (b) of Fig. 4 we show
the fidelity as a function of gac for some values of gcm. This
result allows us to conclude that in the strong coupling regime
the open system allows the squeezing synchronization with a
reliability close to 100%.

IV. DYNAMICAL TRANSFER OF QUANTUM STATES

In this section, we show that a mechanical nonclassical
state can be transferred to the photons in the cavity at certain
times and given an initial preparation of both states. Taking the
model under study explained in Sec. II and using only atomic
pumps of the type HE , we numerically develop the study of
transfer of squeezed and cat-type states.

A. Squeezed state transfer

We assume the MO to be initially prepared in a squeezed
state [10,38,39] given by

|ψ (0)〉m = S(ξ )|0〉, (19)

where

S(ξ ) = exp
[

1
2 (ξ ∗b2 − ξb†2)

]
(20)

is a unitary transformation and ξ = r exp (iθ ) is the squeeze
parameter. Whereas the state of the cavity field is assumed
initially to be in a thermal state, that in the coherent basis can
be written as

ρc(0) = 1

π n̄

∫
|α〉〈α|e− |β|2

n̄ d2α, (21)

where n̄ = {exp [ωc/(κbT )] − 1}−1, is the average value of
photon occupation number and κb is Boltzmann’s constant.

Now, for the study of the transfer, both states are submitted
to the kernel given by H̃2 + H̃E (see Fig. 5). The dynamics
of the system subjected to different types of losses—atomic,

033708-4



HIGH-FIDELITY SYNCHRONIZATION AND TRANSFER OF … PHYSICAL REVIEW A 105, 033708 (2022)

FIG. 5. Scheme for transfer of nonclassical states (squeezing and
cat states). The MO initialized in a nonclassical state and a thermal
state in the cavity are subjected to kernel H̃2 + H̃E generating a
complete transfer of the initial states in the target.

mechanical, and of the cavity—is governed by the master
equation

dρ

dt
= −i[H̃2 + H̃E , ρ] + γ21

2
L[σ−

21]ρ

+γ10

2
L[σ−

10]ρ + κa

2
L[a]ρ + κb

2
L[b]ρ, (22)

In Fig 6, we calculate the Wigner functions of the mechanical
oscillator and cavity fields for a lossless case, observing the
transfer from one mode to the other one after a given time, t =
2π/ωm. In order to quantify the feasibility of the state transfer,
in the following we will use the fidelity function, similarly as
in the synchronization effect.

B. Schrödinger’s cat state transfer

Following the scheme shown in the previous subsection
(see Fig. 5), here it is shown that the transfer can also oc-
cur for cat-type [16,17] entries. To do this, we initialize the

FIG. 6. Wigner function visualization of the transfer from a
squeezed mechanical state (upper panel) to the cavity field (lower
panel). The other parameters (in units of ωm) are gac = 102, gcm =
0.01, κa = κb = 0, γ10 = 0, γ21 = 0, E1 = E2 = 100, ξ = 0.5, and
n̄ = 0.5.

FIG. 7. Wigner function visualization of the transfer of a me-
chanical cat state (upper panel) to the cavity field (lower panel).
The other parameters (in units of ωm) are gac = 102, gcm = 0.01,
κa = κb = 0, γ10 = 0, γ21 = 0, E1 = E2 = 100, n̄ = 0.5, and α = 2.

mechanical state of the form

|ψ (0)〉m = N (|α〉 + | − α〉) (23)

where N is a normalization constant. The cavity field is ini-
tially assumed to be in a thermal state [Eq. (21)]. In Fig. 7
it is shown that the cavity field achieves the cat state transfer
for ωmt = 2π and with the same periodicity as for the transfer
of squeezing. We use the measure of fidelity as a figure of
merit to quantify the degree of transfer of states during their
evolution, which is defined as

F (ρm(0), ρc(t )) ≡ Tr
√√

ρm(0)ρc(t )
√

ρm(0). (24)

The above definition shows that the measurement is made
between the initial state of MO and the state of the cavity
during its evolution.

Therefore, in Fig. 8 we show the fidelity of transferring
the quantum states as squeezed (a) and Schrödinger’s cat

FIG. 8. Fidelity of transferring from the MO to the cavity field:
(a) a squeezed state (with ξ = 0.5) and (b) a cat state (with α = 2).
For situations: no losses (black line), losses with γ21 = γ10 = κa =
0.01, κb = κa/100 (blue line), and losses with γ21 = γ10 = κa =
0.05, κb = κa/100 (red line). The other parameters (in units of ωm)
are: gac = 102, gcm = 0.01, E1 = E2 = 100 and n̄ = 0.5.
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(b) between the mechanical and the cavity modes. It can be
seen that the fidelity is close to its maximum value for the
lossless system (black line). However, for the hybrid system
with losses, the transfer is not perfect (red and blue lines),
where one observes the optimal state transfer for t = 2π/ωm

and after each period of 4π the fidelity decreases.

V. CONCLUDING REMARKS

In summary, we have proposed a hybrid system consisting
of a three-level atom, an optical cavity, and a mechanical
resonator that allows the steady-state squeezing synchroniza-
tion. We demonstrated that by considering the hybrid system
connected to a bath of squeezed phonons and also adding two
coherent atomic drives, one can synchronize a steady-state
squeezing in the mechanical and cavity modes at high fidelity,
close to unity (see Fig. 4). It is important to remark that the
synchronization effect in our model occurs only under the blue
detuned regime, i.e., � = ωm. For a qualitative description
of how the squeezing is synchronized, one gets the sequence
of processes from the initial state, where an arbitrary state is
defined as |ns, na, nb〉 (ns, na, nb label the excitation numbers
in atom, cavity, and oscillator, respectively):

|000〉 −→
E1

|200〉 −→
r

|202〉 −→
J

|111〉

−→
E2

|011〉 −→
E1

|211〉 −→
J

|120〉 −→
r

|122〉,

where we have chosen the process σ−a†b + H.c.. In the pre-
vious sequence, it can be seen that the occupational number
for the cavity field and mechanical oscillator ends with a pair
of photons and phonons (presence of squeezed state). On the
other hand, if we go to the red detuned regime, i.e., � = −ωm,
the corresponding sequence leads to an amplification effect:

|000〉 −→
E1

|200〉 −→
r

|202〉 −→
J

|113〉

−→
E2

|013〉 −→
E1

|213〉 −→
J

|124〉 −→
r

|126〉.

This last effect is not relevant in this study, but it may be
a motivation to explore effects such as radiation-pressure-
driven optomechanical parametric amplification [50,51]. As
for experimental applications, it is important to mention that
by increasing the optomechanical coupling one gets better re-
sults in producing closer phonon and photon squeezed states,
i.e., improving the protocol of synchronization. Moreover, we
highlight that the “synchronization” process is clearly irre-
versible, since the system is subject to losses throughout the
process in which it reaches a stationary state, so that it is not
possible to return to the initial state in this scheme. In addition,
we present another scheme that allows reversibility in the
transferring of states. In this case, we show (for negligible
losses), at specific interaction times, a possibility of transfer
of quantum states, that is from an initial squeezed or cat
vibrational state to the cavity or vice versa, by using the model
under study (see results in Sec. IV). The parameters used in
this work are compatible with recent experiments using op-
tomechanical hybrid setups, e.g., [1]. The proposed protocols
of high-fidelity synchronization and periodic transfer of the
squeezing and Schrödinger cats, between the mechanical and
cavity modes in a hybrid system, attest to the novelty of this

work, thereby contributing to the state of the art of the field of
optomechanics.

As a matter of fact, in a very recent study [41], an exper-
iment of quantum state synchronization is simulated on the
five-qubit IBM quantum computer. For this simulation, the
authors demonstrate the synchronization of a quantum state
in a two-qubit circuit with one ancillary qubit. As well, in
such an experiment the quantum hardware’s imperfection is
witnessed as asynchronicity.
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APPENDIX A: ANALYTICAL MODEL

In this Appendix, we provide the derivation of the Hamil-
tonian in the interaction picture used as a theoretical model.
Initially, we calculate a Hamiltonian in the first interaction
picture, that is

V = eiH0tHI e
−iH0t , (A1)

where we have defined the quantities

H0 =
2∑

i=0

ωiσii + ωca†a + ωmb†b, (A2)

HI = igac(aσ+
21 − a†σ−

21) − igcma†a(b† − b). (A3)

From Eq. (A1), we readily get

V = igac(σ+
21aei�t − σ−

21a†e−i�t )

− igcma†a(b†eiωmt − be−iωmt ), (A4)

where � = ω2 − ω1 − ωc.
Now, we move on to a second interaction picture, defined

as (for gcm/ωm � 1)

H̃1 = exp

{
i
∫

V0dt

}
VI exp

{
−i

∫
V0dt

}
, (A5)

where

V0 = −igcma†a(b†eiωmt − be−iωmt ), (A6)

VI = igac(σ+
21aei�t − σ−

21a†e−i�t ), (A7)

readily getting

H̃1 = igac(σ+
21aei�t e−iF ∗(t ) − σ−

21a†e−i�t eiF (t ) ), (A8)

where we have introduced a Hermitian operator F (t ) =
gcm

ωm
(b†η∗ + bη) with η = eiωmt − 1. We notice that the

exp[iF (t )] term in Eq. (A8) corresponds to mechanical dis-
placement operators.

1. Approximation gcm � ωm

Here, we assume the optomechanical coupling gcm is much
smaller than the mechanical frequency ωm, so that e−iF ∗(t ) ≈
1 − i gcm

ωm
(b†η∗ + bη). Thus

H̃2 = igac(σ+
21aei�t − σ−

21a†e−i�t )

+ J (σ+
21ab†ei(�−ωm )t − σ+

21ab†ei�t
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+ σ+
21abei(�+ωm )t − σ+

21abei�t )

+ J (σ−
21a†b†e−i(�+ωm )t − σ−

21a†b†e−i�t

+ σ−
21a†be−i(�−ωm )t − σ−

21a†be−i�t ). (A9)

Now, by applying the unitary operator U = exp (−iχa†a)
with χ = π/2 and considering the blue detuned regime � =
ωm, the above equation leads to (keeping only the time inde-
pendent terms)

H̃2 = iJ (σ+
21ab† − σ−

21a†b). (A10)

APPENDIX B: DETERMINATION OF THE MOMENTS
〈a†a〉, 〈b†b〉, 〈a2〉, AND 〈b2〉

In this Appendix, to study the synchronization effect, we
analytically solve the quadrature fluctuations [Eq. (7)] and for
this we need to determine the quantities 〈a†a〉, 〈b†b〉, 〈a2〉, and
〈b2〉.

As the set of equations (8)–(13) is not closed, in order to
obtain all the moments for the bosonic operators, it is nec-
essary to build another set of equations. For this purpose, we
take the equations for the atomic moments in the semiclassical
approximation:

d〈σ †
21〉

dt
= J〈a†b〉〈σ z

21〉 − E1〈σ−
10〉 − E2〈σ+

20〉

− γ21

2
〈σ+

21〉 − γ10

2
〈σ+

21〉, (B1)

d〈σ †
10〉

dt
= J〈a†b〉〈σ+

20〉 + E1〈σ−
21〉 − E2〈σ z

10〉 − γ01

2
〈σ+

10〉,
(B2)

d〈σ †
20〉

dt
= −J〈a†b〉〈σ+

10〉 + E1〈σ z
20〉 + E2〈σ+

21〉 − γ21

2
〈σ+

20〉,
(B3)

d〈σ1〉
dt

= J〈a†b〉〈σ−
21〉 − E2(〈σ+

10〉 − 〈σ−
10〉)

+ γ21〈σ2〉 − γ10〈σ1〉, (B4)

d〈σ2〉
dt

= −2J〈a†b〉〈σ−
21〉 − E1(〈σ+

20〉 + 〈σ−
20〉) − γ21〈σ2〉,

(B5)
d〈σ0〉

dt
= −d〈σ2〉

dt
− d〈σ1〉

dt
, (B6)

where we have considered the factorization of the form
〈a†bσ−

21〉 = 〈a†b〉〈σ−
21〉. Solving this set of equations and con-

sidering {E1, E2, γ10} � {J, κa, κb} and γ21 = 0 we get an
expression for the atomic moment 〈σ+

21〉 given by

〈σ+
21〉 = 2E1E2

γ 2
01 + 4

(
E2

1 + E2
2

) . (B7)

From Eq. (B7), we can now easily derive the moments for the
bosonic operators, necessary to calculate the relevant quadra-
ture fluctuations:

〈a2〉 = − 4J2〈σ+
21〉2κbMsq

(κa + κb)(4J2〈σ+
21〉2 + κaκb)

, (B8)

〈b2〉 = Msq

(
4J2〈σ+

21〉2κaNsq

(κa + κb)(4J2〈σ+
21〉2 + κaκb)

− 1

)
, (B9)

〈a†a〉 = 4J2〈σ+
21〉2κbNsq

(κa + κb)(4J2〈σ+
21〉2 + κaκb)

, (B10)

〈b†b〉 = Nsqκb(4J2〈σ+
21〉2 + κa[κa + κb])

(κa + κb)(4J2〈σ+
21〉2 + κaκb)

. (B11)

These last expressions allow us to directly calculate the
Eqs. (14) and (15).
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