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We propose and design a high-brightness, ultracompact electrically pumped GaSb-based laser source of entan-
gled photons generated by mode-matched intracavity parametric down-conversion of lasing modes. To describe
the nonlinear mixing in highly dispersive and dissipative waveguides, we develop a nonperturbative quantum
theory of parametric down-conversion of waveguide modes which takes into account the effects of modal disper-
sion, group and phase mismatch, propagation, dissipation, and coupling to noisy reservoirs. We extend our theory
to the regime of quantized pump fields with an approach based on the propagation equation for the state vector
which solves the nonperturbative boundary-value problem of the parametric decay of a quantized single-photon
pump mode and can be generalized to include the effects of dissipation and noise. Our formalism is applicable
to a wide variety of three-wave mixing propagation problems. It provides convenient analytic expressions for
interpreting experimental results and predicting the performance of monolithic quantum photonic systems.

DOI: 10.1103/PhysRevA.105.033707

I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) has
become a benchmark process for generation of entangled
photon pairs and heralded single photons in a variety of
experiments and for the needs of the rapidly growing field
of quantum information processing; see, e.g., [1,2] for recent
reviews. Typically, the second-order nonlinear susceptibility
χ (2) of birefringent crystals cut at an angle to satisfy the
phase-matching condition for a specific SPDC process is
used; see for instance [3]. The utilization of periodically
poled nonlinear crystals making use of quasi-phase matching
led to improved performance. Recent advances in high-quality
microcavities, nanoantennas, and metamaterials have led to
the prediction [4–6] and realization (e.g., [7–10]) of compact
chip-scale parametric down-conversion sources. An external
optical pump is still required in all cases. Strong second-order
nonlinearity of III-V semiconductors in combination with
their superior light emission properties can be used for both
generation of pump light and production of entangled photon
states where waveguides and other photonic integrated circuit
components can be utilized to facilitate phase matching and to
perform quantum information processing operations [11]. The
monolithic integration of the pump laser and SPDC source on
the same platform still remains a holy grail of this technology
as its availability will dramatically simplify the experimental
arrangements and pave the way to the long-sought scalable
approach to quantum sensing, quantum communications,
and optical quantum computing. It is natural to consider the
III-V heterostructures, which can produce high power and
stable pump lasers and also demonstrate strong second-order
nonlinearities required for SPDC as a potential platform for
such integration.

In a standard single core laser waveguide heterostructure
the phase-matching conditions for the efficient SPDC process
are virtually impossible to achieve because of normal disper-
sion: the refractive index of all materials away from resonance
transitions decreases with wavelength. One recent approach
to defeat the normal dispersion limitation was successfully
realized in Bragg-reflection waveguides (BRWs) [12], which
confine the pump Bragg mode and total internal reflection
guided signal and idler modes. The optically pumped BRW
devices have been extensively studied [12–14]. An intracavity
nondegenerate optical parametric generation in an electrically
injected GaAs-based BRW laser was demonstrated in [15]
and corresponding emitters of correlated photons generat-
ing broadband product states of the near-infrared signal and
idler photons were reported [16]. However, the design com-
plications associated with the presence of Bragg reflectors
comprising the device claddings so far led to strong degrada-
tion of the near-infrared pump laser performance parameters.
It is also not trivial to arrange for stable single mode operation
of the BRW pump laser for the same reason. These issues were
recognized even for near-infrared BRW emitters where the
vertical cavity surface emitting laser technology development
led to significant advances in design of the Bragg reflector
claddings. In GaSb-based lasers capable of intracavity SPDC
generation of midinfrared (MWIR) correlated photon pairs the
situation with BRWs is much less developed and it would be
extremely challenging to arrange for efficient carrier transport
through thick Bragg reflectors comprising the cladding layers
of these devices.

We propose a different approach to achieve phase matching
between ≈2-μm pump and ≈4-μm signal and idler waves
which is compatible with GaSb-based and any other semicon-
ductor laser technology. It relies on the natural TE polarized
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FIG. 1. (a) Band diagram of the GaSb-based coupled-waveguide laser heterostructure and (b) refractive index and electric-field profiles
for the TE polarized λ = 2.03 μm asymmetric pump mode (black solid line), TE polarized λ = 4.013 μm fundamental signal mode (blue
dashed line), and TM polarized λ = 4.114 μm fundamental idler mode (red solid line). The passive waveguide width is 470 nm and
the separation barrier between two waveguide cores is 150 nm. The position is along the growth direction. (c) Sketch of a generic laser device
with a coupled waveguide for mode-matched type-II intracavity SPDC of laser photons. The profiles of mode intensities [same as in (b)] are
superimposed on the inset. (d) Calculated wavelengths of the signal and idler modes at exact phase matching as a function of the pump mode
wavelength.

pump mode and utilizes type-II SPDC to produce biphotons
and polarization entangled photon pairs as required for quan-
tum technologies. Both degenerate and nondegenerate type-II
SPDC are possible and, moreover, can be easily selected by
tuning the pump wavelength using standard techniques. Our
proposed GaSb-based laser heterostructure illustrated in Fig. 1
has a coupled-waveguide design favoring lasing near ≈2 μm
(pump) in TE polarized asymmetric supermode. The type-II
SPDC process will produce entangled photon pairs in TE and
TM polarized symmetric supermodes. The use of the asym-
metric supermode allows us to reduce the effective refractive
index of the ≈2-μm pump to achieve efficient phase matching
with ≈4-μm signal and idler symmetric supermodes. The
device geometry makes maximum use of the large |χ (2)

xyz | >

200 pm/V of III-V zinc-blende semiconductors for the SPDC
process, which is significantly higher as compared to conven-
tional nonlinear crystals [17].

The theory of entangled photon state generation in semi-
conductor lasers and waveguides has important peculiarities
and challenges which have not been addressed before. First,
laser waveguides and other monolithic integrated photonic
systems are inherently highly dispersive and dissipative. In-
cluding the effects of dispersion, dissipation, and noise in a
consistent way is crucial for predicting the performance of
these devices. For example, we show below that the quantum
noise can make a significant and even dominant contribution
within the signal and idler bandwidth even at low ambient
temperature.

Second, while SPDC and a closely related process of
squeezed vacuum generation have been typically treated as an
initial-value problem for quantized signal and idler fields or a
problem of entanglement of quantized cavity modes coupled

with free space modes [18–20], the SPDC in a finite-length
waveguide presents a boundary-value eigenmode propagation
problem affected by phase and group velocity mismatch, dis-
persion, absorption, and noisy reservoirs.

Third, extra challenges arise in the case of a quantized
pump field, e.g., a single-photon pump, as the operator-valued
Heisenberg-Langevin equations become nonlinear. While the
case of all three quantum fields has been well studied as
a mean-field initial-value problem and in the perturbative
regime, here we present an approach based on the prop-
agation equation for the state vector which allows us to
describe the SPDC process with nonperturbative coupling
between quantized single-photon pump, signal, and idler
fields as a boundary-value propagation problem. Note that
the approaches close to the one presented in this paper were
developed in [21–24] for the propagation problem of entan-
gled state generation via four-wave mixing. However, those
approaches were not applied to the SPDC process.

The quantum theory of SPDC in monolithic nonlinear
waveguides is applicable to any nonlinear propagation prob-
lem involving three-wave mixing. It provides convenient
analytic expressions for interpreting experimental results. The
proposed device design principles can be applied to a wide
variety of III-V semiconductor diode lasers. The specific
implementation of the monolithic electrically pumped quan-
tum light source within the III-V-Sb platform offers an extra
bonus of covering the MWIR spectral region, which holds
strong promise for applications in quantum communications,
quantum sensing, and imaging. Free space quantum-secured
communication links operating in the MWIR range offer sig-
nificant advantages over near-infrared channels due to lower
scattering losses. Satellite-based quantum key distribution
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systems [25] based on near-infrared sources are severely
constrained by solar background radiation and, until the
introduction of λ ∼ 1.5 μm quantum light emitters, were
restricted to at night operation [26]. Systems operating near
4 μm will benefit from dramatically reduced solar background
and still moderate Earth thermal background [27,28]. Op-
eration at these wavelengths generally improves reliability
and throughput of free space quantum-secured links under
adverse weather conditions, scattering, and atmospheric tur-
bulence. Recently, quantum illumination protocols relying on
correlations between photons in entangled pairs have been
experimentally demonstrated to offer more than an order of
magnitude image contrast improvement in the presence of
background light, sensor noise, and loss [29].

Modern technology for emitting and detecting MWIR
entangled photon pairs is based on multiwave mixing in free-
standing nonlinear optical elements [30–32]. This puts many
exciting applications out of reach. The full integration of
the components of photonic quantum information technology
is not yet available even for the much more user friendly
near-infrared region of the spectrum. The development of
quantum information technology in the MWIR region of the
spectrum is even less advanced. For MWIR both generation
of the entangled photon pairs and single-photon detection
require nonlinear converters since even direct single-photon
counting photodetectors operating in midinfrared are yet to be
developed and realized. The III-V-Sb material system can host
electrically injected entangled photon pair emitters together
with all other quantum information processing photonic inte-
grated circuit components, thus serving as a common platform
for the advancement of MWIR quantum information technol-
ogy.

II. DIODE LASER DESIGN FOR INTRACAVITY
TYPE-II SPDC OF LASER MODES

One example of the laser device design for the intracavity
type-II SPDC process is shown in Fig. 1. The laser is grown
in the usual 〈001〉 direction and has a ridge cavity aligned
along the 〈110〉 direction; therefore, only the TE −→ TE+TM
SPDC decay is allowed by zinc-blende crystal symmetry. An
example of TM and TE signal and idler modes shown in
Fig. 1 corresponds to nondegenerate SPDC in which they
have different frequencies and refractive indices. Changing
the pump wavelength within the range of ≈10 nm will tune
the type-II SPDC from the nondegenerate to degenerate case.
Figure 1(d) plots the wavelengths of the phase-matched sig-
nal and idler TM and TE polarized photons in symmetric
supermodes versus wavelength of the TE polarized pump in
asymmetric supermode calculated for the coupled waveguide
in Fig. 1(b).

The tuning curves in Fig. 1 correspond to perfect phase-
matching conditions. The phase-matching lines are signif-
icantly broadened and the SPDC proceeds within a broad
bandwidth; see a detailed discussion below. Due to the broad-
ening the output of the close-to-degenerate SPDC process
can be split into many channels with the help of external
or integrated spectral filters. The inherent possibility of the
proposed device heterostructure to achieve and maintain the
phase-matching conditions while tuning the pump wavelength

in a relatively narrow range is one of the key advantages of
the proposed design making it a practical solution for the
development of robust and efficient entangled photon pair
emitters.

III. INITIAL-VALUE PROBLEM FOR SPDC

Although our ultimate goal is to solve the boundary-value
propagation problem for coupled pump, signal, and idler
modes in a finite-length laser waveguide, to clarify some uni-
versal properties of SPDC here we outline the solution of the
initial-value problem, which is much better studied. This will
allow us to see which degrees of freedom can be entangled
in the intracavity SPDC process, and which ones cannot. The
initial-value problem describes SPDC of cavity modes [6,33],
especially in high-Q cavities, although in our case the laser
waveguide is long and lossy enough for the parametric decay
to develop in a single-pass propagation regime.

Consider a dispersive and anisotropic but uniform non-
linear medium of volume V . It is described by the linear
permittivity tensor ←→ε (ω) and the second-order (rank 3)

nonlinear susceptibility tensor
←→←→χ (2)(ω1 + ω2 = ω3). We are

using this double-arrow notation for dielectric response
tensors to save the hat notation for quantum-mechanical
operators.

Consider the fields at fixed frequencies satisfying the en-
ergy conservation in the parametric decay:

ωp = ωV + ωH , (1)

where the electric field at frequency ωp is a classical pump
field, Epe−iωpt+ikp·r+ c.c. The Schrödinger operators of the
quantum field at frequencies ωV,H are defined as [34,35]

Ê =
∑

k

(ĉV kEV keik·r + H.c.) +
∑

q

(ĉHqEHqeiq·r + H.c.).

(2)
Here ĉV k and ĉHq are standard bosonic annihilation operators;
wave vectors k(ωV ) and q(ωH ) are determined from the dis-
persion relations for the eigenwaves with periodic boundary
conditions; EV k and EHq are normalization amplitudes for
the fields. The direction of EV k and EHq corresponds to the
polarization of the eigenmodes in the medium with dielectric
permittivity tensor ←→ε (ω). We denote the polarizations by
indices V (vertical) and H (horizontal), although the polar-
ization state of the eigenmodes in an anisotropic medium can
be more complex [36].

The dispersion equations and polarizations of the normal-
ized field amplitudes in Eq. (2) are found by solving a classical
electrodynamics problem, whereas the magnitudes of these
vector amplitudes have to be determined by field quantization
in the volume V [34,35]:

E∗
V k

{
∂
[
ω2←→ε (ω)

]
ω∂ω

}
ω=ωV

EV k = 4π h̄ωV

V
,

E∗
Hq

{
∂
[
ω2←→ε (ω)

]
ω∂ω

}
ω=ωH

EHq = 4π h̄ωH

V
. (3)

The second-order nonlinearity gives rise to three-wave
mixing. Exactly at resonance described by Eq. (1) the
Hamiltonian of the system in the interaction picture and
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rotating-wave approximation takes the form (see, e.g., [37])

Ĥint = −
∑
k,q

(Mkqĉ†
V kĉ†

Hq + H.c.), (4)

where

Mkq = E∗
V k

←→←→χ (2)(ωp − ωH = ωV )Ep E∗
Hq

×
∫

V
ei[kp−k(ωV )−q(ωH )]·rd3r (5)

and

E∗
V k

←→←→χ (2)(ωp − ωH = ωV )Ep E∗
Hq

= E∗
Hq

←→←→χ (2)(ωp − ωV = ωH )Ep E∗
V k (6)

(for the last relationship see, e.g., Chap. 2.9 in [38]).
Now assume that there is only one wave vector k for each

wave vector q (and vice versa) in the sum
∑

k,q(· · · ) in Eq. (4)
for which the phase-matching condition kp(ωp) = k(ωV ) +
q(ωH ), the energy conservation Eq. (1), and polarization se-
lection rules imposed by the nonlinear susceptibility tensor
are satisfied simultaneously. In this case the Hamiltonian of
the system can be written as

Ĥint =
∑
k,q

Ĥkq(ĉ†
V k, ĉV k, ĉ†

Hq, ĉHq), (7)

in which any two terms Ĥkq and Ĥk′q′ of the sum have no
common operator. The operator Ĥkq does not act on the state
|�V k′;Hq′ 〉, if the pairs of vectors k, q and k′, q′ are different.
Here the notation |�V k;Hq〉 corresponds to the state vector for
two degrees of freedom of the field: the V mode with wave
vector k and the H mode with wave vector q, or signal and
idler in the SPDC process.

It is easy to show (see, e.g., [39]) by solving the
Schrödinger equation ih̄ ∂

∂t |�〉 = Ĥint|�〉 with the Hamilto-
nian (7) that if the state vector was in a factorized form at the
initial moment of time, i.e., |�(t = 0)〉 = ∏

k,q |�V k;Hq(t =
0)〉, it preserves the factorized form:

|�(t )〉 =
∏
k,q

e− i
h̄ Ĥkqt |�V k;Hq(t = 0)〉. (8)

Therefore, the state vector for each pair of the signal and idler
degrees of freedom V k and Hq corresponds to their entangled
state as they are coupled by the classical pump according to
the Hamiltonian (7), but any such pair is not entangled with
any other pair. This is the manifestation of the general result:
if the Hamiltonian of a system is a sum of the Hamiltonians
of the subsystems and the state vector of the system was a
product state of the state vectors of the subsystems at the
initial moment of time, it will always remain a product state.

For the vacuum initial state
∏

k,q |0V k〉|0Hq〉 one obtains

|�〉 =
∏
k,q

∞∑
n=0

1

n!

(
itint

h̄

)n

(Mkqĉ†
V kĉ†

Hq + M∗
kqĉV kĉHq)n

× |0V k〉|0Hq〉, (9)

where |0V k〉 and |0Hq〉 are vacuum states for the correspond-
ing degrees of freedom and tint is the characteristic time of
the SPDC development determined by the interaction length.

Within a pure initial-value problem, the value of tint cannot
be calculated and has to be estimated from some ad hoc
considerations. For example if the propagation is along the z
axis, the characteristic time can be estimated as tint ≈ Lz√

υVz υHz
,

where υVz and υHz are the group velocities of the eigenmodes
along z and Lz is the propagation length; see the discussion in
the end of Appendix A.

To simplify the result we assume the degenerate case
when ωV = ωH = ωp/2 and the sum in Eq. (4) contains
only two pairs of the wave vectors: k = k1, q = k2 and
k = k2, q = k1. We denote the states corresponding to wave
vectors k1 and k2 as 1 and 2. One often introduces “in-
tuitive” (although inaccurate) notations |1V 1〉|0H1〉 ⇒ |V1〉,
|1H1〉|0V 1〉 ⇒ |H1〉, etc.

Then an exact solution in Eq. (9) gives the state vector in
the factorized form as

|�V 1;H2;V 2;H1〉 = |�V 1;H2〉|�V 2;H1〉

=
( ∞∑

n=0

Cn(V 1)(H2)|nV 1〉|nH2〉
)

×
( ∞∑

m=0

Cm(V 2)(H1)|mV 2〉|mH1〉
)

,

where |n···〉 and |m···〉 are Fock states. It is obvious from the
exact solution that the entanglement takes place only within
each pair of the degrees of freedom V 1 ⇔ H2 and V 2 ⇔ H1
(see the sums in parentheses) whereas the states of differ-
ent pairs |�V 1;H2〉 and |�V 2;H1〉 are not entangled. This has
been pointed out many times before (e.g., [3,37]). One well-
known way to produce polarization-entangled Bell states out
of biphoton states generated by type-II SPDC in conventional
uniaxial nonlinear crystals is via detecting only the photons
coming from the two directions where the ordinary and ex-
traordinary cones overlap, so the “which mode” information is
lost [3]. Another approach to creating polarization-entangled
Bell states is by linear optical transformations as reviewed,
e.g., in [37]. Of course there are many selection and posts-
election techniques to achieve the same result. Finally, each
photon pair is still entangled with its corresponding vacuum
state as |�V 1;H2〉 ≈ |0V 1〉|0H2〉 + i

h̄ tintM12|1V 1〉|1H2〉 (in linear
approximation with respect to tintM12). This type of corre-
lations can be expressed as the superposition of Bell states
|
±

V 1;H2〉 = (1/
√

2)(|0V 1〉|0H2〉 ± |1V 1〉|1H2〉) and character-
ized in homodyne detection experiments. Other types of Bell
states can be obtained by further processing.

The above analysis is valid only for a classical pump. The
decay of the photons of a quantum field at frequency ωp leads
to a complete entanglement of all degrees of freedom; see
Sec. V and Appendix B.

IV. FINITE WAVEGUIDE: THE BOUNDARY-VALUE
PROBLEM FOR HEISENBERG OPERATORS

Now that we reminded the reader of the nature of biphoton
states generated in SPDC, we can move closer to the waveg-
uide propagation problem of the parametric decay of a given
laser mode. Consider the field propagating along the z axis,
with the waveguide cross section of the total area S in the x-y
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plane. To calculate the generation rate of two-photon states,
we again assume that the laser mode is described by a classical
coherent field (the pump):

Ep(r⊥)eikpz−iωpt + E∗
p(r⊥)e−ikpz+iωpt ,

where r⊥ = (x, y).
The quantized waveguide modes within each pair of decay

photons have to be of different polarizations, TE and TM type,
and satisfy energy conservation similar to Eq. (1):

ωp = ωTE + ωTM. (10)

In the boundary-value waveguide propagation problem we
need to describe the quantized field of decay photons with
time- and coordinate-dependent field operators. We will in-
troduce the mode index N = TE,TM for brevity, which labels
both the field polarization and the transverse profile of the
field EN (r⊥). Its dispersion equation is ω = ωN (k). It is con-
venient to set apart fast space-time oscillations at the optical
frequency and wave number, and introduce operators associ-
ated with slowly varying field amplitudes:

ÊN= ĉN (z, t )EN (r⊥)eikN (ωN )z−iωN t

+ ĉ†
N (z, t )E∗

N (r⊥)e−ikN (ωN )z+iωN t . (11)

The normalization of the field is∫
S

E∗
N (r⊥)

{
∂
[
ω2←→ε (ω, r⊥)

]
ω∂ω

}
ω=ωN

EN (r⊥)d2r = 4π h̄ωN ,

(12)

where ←→ε (ω, r⊥) is the linear dielectric permittivity tensor.
With this definition the dyadic ĉ†

N (z, t )ĉN (z, t ) is the operator
of a photon number per unit length along z, which can slowly
change with time and z.

To obtain commutation relations for the operators ĉ†
N (z, t )

and ĉN (z, t ) we select a segment of the waveguide of length L,
such that 2π

kN
� L � LE , where LE is a characteristic scale of

the inhomogeneity of the fields along z. The latter inequality
allows one to impose periodic boundary conditions in the
segment L, perform a standard quantization procedure in it,
and go to the limit of a continuous spectrum (see [23,40,41].
As a result, we obtain

[ĉN (z, t ), ĉN (z′, t ′)] = δNN ′δ[z − z′ − υN (t − t ′)], (13)

where υN = ∂ωN
∂k is the group velocity. For the particular

case z = z′ this procedure was used, e.g., in [23,24,40–42].
Note that the commutator (13) is only accurate within slowly
varying approximation, in the same way as the notion of the
photon number density [34].

When solving boundary-value problems it is usually con-
venient to use spectral components of the field operators and
their commutators at z = z′ (see [23,24,40,42]):

[ĉNν (z), ĉ†
N ′ν ′ (z)] = δNN ′

δ(ν − ν ′)
2πυN

, (14)

where

ĉN (z, t ) =
∫

ω

ĉNν (z)e−iνt dν, ĉ†
N (z, t ) =

∫
ω

ĉ†
Nν (z)eiνt dν,

(15)

ω being the frequency bandwidth occupied by the quan-
tized field. The factor 1

2πυN
comes from the density-of-states

argument and corresponds to the ratio nN
L , where nN is

the number of states in the interval dω when a given mode
with index N is quantized within a segment L with periodic
boundary conditions. Equations (14) and (15) reflect the fact
that the field envelopes occupy a narrow but finite bandwidth.

In this section we use the Heisenberg-Langevin formal-
ism to calculate the evolution of the field operators. We
will follow our previous work [23,24,33,39,40,42,43]. The
step-by-step derivation for the general nondegenerate SPDC
process is in Appendix A. Here we consider only the de-
generate SPDC case when ωTE = ωTM = ωp/2. We assume
that exact phase matching is reached for central frequencies,
kTM( ωp

2 ) + kTE( ωp

2 ) − kp = 0. The phase mismatch still accu-
mulates with finite detuning ν from the central frequencies,
determining the SPDC bandwidth as we see below. Generaliz-
ing to an arbitrary phase mismatch and nondegenerate SPDC
is straightforward but more cumbersome and the general result
is in Appendix A.

A. Heisenberg-Langevin equations for field operators

The coupled equations for the slowly varying field opera-
tors are (

∂

∂t
+ �TE + υTE

∂

∂z

)
ĉTE − i

h̄
Aĉ†

TM = L̂TE, (16)

(
∂

∂t
+ �TM + υTM

∂

∂z

)
ĉ†

TM + i

h̄
A∗ĉTE = L̂†

TM. (17)

Here

A =
∫

S
E∗

TE(r⊥)[
←→←→χ (2)(r⊥)Ep(r⊥)E∗

TM(r⊥)]d2r, (18)

where
←→←→χ (2) is the second-order nonlinear susceptibility, and

E∗
TE

←→←→χ (2)
p EpE∗

TM = E∗
TM

←→←→χ (2)
p EpE∗

TE [38]. The factors �N de-
termine modal losses for the field and are related to the
Langevin noise operators L̂N through fluctuation-dissipation
relations (see [23,24,39,40,42,43]). Equations similar to (16)
and (17) which however include the finite phase mismatch are
given in Appendix A [see Eqs. (A7) and (A8)].

Following [23,24,42], we will use the following relation-
ships for the Langevin noise operators:

[L̂Nν (z), L̂†
N ′ν ′ (z′)] = �N

π
δNN ′δ(ν − ν ′)δ(z − z′), (19)

〈L̂†
Nν (z)L̂N ′ν ′ (z′)〉 = �N nT (ωN )

π
δNN ′δ(ν − ν ′)δ(z − z′), (20)

where 〈· · · 〉 means averaging over both an initial quan-
tum state in the Heisenberg picture and the statistics of the
dissipative reservoir, nT (ω) = (eh̄ω/T − 1)−1:

L̂N =
∫

ω

L̂Nνe−iνt dν, L̂†
N =

∫
ω

L̂†
Nνeiνt dν.

Equation (19) ensures the conservation of the commutation
relation Eq. (14) despite the presence of dissipation.

In our previous work [33,43] we developed the version of
the Heisenberg-Langevin approach which takes into account
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the fluctuations of the field induced by fluctuating currents in
the dissipative material or due to the leaking of the external
fluctuating field into the waveguide. The effects depend on
the effective temperature of corresponding reservoirs. In this
paper we assume that the temperatures of the external radia-
tion field and the material which fills the waveguide are much
lower than the photon frequencies h̄ωN , and it is sufficient to
take the value of �N equal to the sum of radiative and Ohmic
losses in Eqs. (19) and (20) and take h̄ω/T → ∞.

Equations (16) and (17) have the boundary conditions

ĉN (t, z = 0) = ĉ(0)
N (t ). (21)

The slow time dependence in ĉ(0)
N is due to a finite (although

narrow) bandwidth ω:

ĉ(0)
N (t ) =

∫
ω

ĉ(0)
Nνe−iνt dν, ĉ(0)†

N (t ) =
∫

ω

ĉ(0)†
Nν eiνt dν, (22)

where ĉ(0)
Nν is the Schrödinger (constant) operator. If the field

at the boundary is an incoherent noise field with a certain
spectral photon distribution n(ω), the following useful rela-
tionships are satisfied:

〈
ĉ(0)†

Nν ĉ(0)
N ′ν ′

〉 = n(ωN )δNN ′
δ(ν − ν ′)

2πυN
,

〈
ĉ(0)

Nν ĉ(0)†
N ′ν ′

〉 = [n(ωN ) + 1]δNN ′
δ(ν − ν ′)

2πυN
. (23)

The photon flux in the narrow frequency band ω is QN =
υN 〈ĉ(0)†

N ĉ(0)
N 〉 = n(ωN )ω

2π
. In particular, for vacuum boundary

conditions in Eq. (23) we have n(ωN ) = 0. For a thermal noise
we have nT (ωN ) = (eh̄ωN /T − 1)−1, where T is temperature
in energy units. In the Rayleigh-Jeans limit we obtain QN ≈
T ω
2π h̄ωi

. The last expression corresponds to the known result:

the radiation power T ω
2π

received by a matched antenna in the
blackbody bath does not depend on the size and shape of an
aperture.

In the boundary-value problem, it is convenient to transfer
from the operators ĉN which determine the density of the
photon number per unit length along the waveguide, 〈ĉ†

N ĉN 〉,
to the operators âN = √

υN ĉN which determine the flux of
photons in the waveguide, 〈â†

N âN 〉.
Next, we transfer to the flux operators in Eqs. (16) and (17)

and use the Fourier expansion

âN (z, t ) =
∫

ω

âNνe−iνt dν, â†
N (z, t ) =

∫
ω

â†
Nνeiνt dν. (24)

The flux operators âNν satisfy the commutation relations that
follow from Eq. (14), namely,

[âNν (z), â†
N ′ν ′ (z)] = δNN ′

δ(ν − ν ′)
2π

. (25)

This gives(
−i

ν + i�TE

υTE
+ ∂

∂z

)
âTEν − igâ†

TM(−ν) = 1√
υTE

L̂TEν (z),

(26)(
−i

ν + i�TM

υTM
+ ∂

∂z

)
â†

TM(−ν) + ig∗âTEν = 1√
υTM

L̂†
TM(−ν)(z),

(27)

where the coupling coefficient

g = A

h̄
√

υTEυTM
. (28)

Vacuum boundary conditions for the flux operators follow
from Eqs. (23):〈

â(0)†
TEν â(0)

TEν ′
〉 = 〈

â(0)†
TM(−ν)â

(0)
TM(−ν ′ )

〉 = 0,

〈
â(0)

TEν â(0)†
TEν ′

〉 = 〈
â(0)

TM(−ν)â
(0)†
TM(−ν ′ )

〉 = δ(ν − ν ′)
2π

(29)

where â(0)
Nν = âNν (z = 0). Similar relationships which take

into account phase mismatch are given in Appendix A [see
Eqs. (A19) and (A20)].

B. Observable biphoton fluxes

The solution for operators âNν is given in Appendix A,
Eq. (A21) (see similar derivations in [23,24,40]). Here we
give the final expressions for the observable spectral fluxes
of photons at the cross section z = L of the waveguide. In
the absence of coherent incident fields at signal and idler
frequencies we have 〈â†

Nν (z)âNν ′ (z)〉 ∝ δ(ν − ν ′). Using the
solution for the flux operators from Appendix A for vacuum
boundary conditions and Langevin noise given by Eqs. (19)
and (20), we arrive at

QNν (L) =
∫

ω

dν ′〈â†
Nν (L)âNν ′ (L)〉 = Q(s)

Nν (L) + Qnoise
Nν (L),

(30)

where we separated the “signal” component of the flux Q(s)
Nν

and the noise component Qnoise
Nν which does not depend on the

boundary conditions for the fields:

Q(s)
TEν (L) = Q(s)

TM(−ν)(L) = e−( �TE
υTE

+ �TM
υTM

)L |g|2
2π

∣∣∣∣eκL − e−κL

2κ

∣∣∣∣
2

,

(31)(
Qnoise

TEν (L)

Qnoise
TM(−ν)(L)

)
=
(

�TM
υTM

�TE
υTE

)
|g|2

4π |κ|2 F (μ±, L), (32)

where

F (μ±, L) = e2Re[μ+]L − 1

2Re[μ+]
+ e2Re[μ−]L − 1

2Re[μ−]

− 2Re

[
e(μ∗

++μ− )L − 1

μ∗+ + μ−

]
, (33)

μ± = i
ν

2

(
1

υTM
+ 1

υTE

)
− 1

2

(
�TM

υTM
+ �TE

υTE

)
± κ, (34)

κ =
√

|g|2 − 1

4

[
D(ν) + i

(
�TE

υTE
− �TM

υTM

)]2

, (35)

D(ν) = ν

(
1

υTE
− 1

υTM

)
. (36)

Here D(ν) is the phase mismatch for TE and TM modes at
frequencies ωp

2 + ν and ωp

2 − ν, respectively. When calculat-
ing the noise components of the fluxes we assumed that at
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optical frequencies the reservoir can be treated as having zero
temperature. In this case we have nT (ω) = 0 in Eq. (20).

Note that the dynamic components of the fluxes in TE and
TM modes are equal to each other even though their absorp-
tion losses may be very different; see Eq. (31). This property
holds only for vacuum boundary conditions with zero average
number of photons. For a classical field or any multiquantum
field at the boundary the mode with lower losses will accumu-
late a higher flux.

The frequency spectrum of the down-converted photons is
determined by the dependence κ (ν) in Eqs. (35) and (36).
As follows from Eqs. (31), (35), and (36), in the absence
of dissipation the parametric amplification occurs in the fre-
quency interval |D(ν)| = |ν( 1

υTE
− 1

υTM
)| < 2|g|. For D(ν) →

0 the threshold for parametric amplification is determined
by dissipation: �TE�TM

υTEυTM
< |g|2. Taking into account Eq. (28),

the last inequality can be written as �TE�TM <
|A|2
h̄2 , which is

exactly the condition for the parametric amplification in the
initial-value problem [33]. In Appendix A these relationships
are generalized to the case of finite phase mismatch; see the
discussion after Eq. (A27).

As one can see from Eq. (32), the decay photon fluxes
“swap” their noise components in the SPDC process: the
photon flux in the TE mode is proportional to the absorp-
tion coefficient of the TM mode and vice versa. Therefore,
when the noise reservoir is at zero temperature, there occurs
parametric transfer of quantum noise between the two decay
modes while the photon flux of a given mode does not have
any contribution from its own noise component. This feature
is characteristic of the down-conversion and it illustrates that
the contribution of noise always has to be included in the anal-
ysis as it is present even at zero temperature of the reservoir.
In contrast, one can show that in the up-conversion process
the Langevin noise does not make any contribution to the up-
converted photon flux as long as the reservoir can be treated
as having zero temperature for high enough frequencies.

It follows from Eqs. (31)–(33) that the relative contribution
of the Langevin noises is negligible in the parametric ampli-
fication regime when |g| � �TE

υTE
, �TM

υTM
. Although this limit is

unrealistic for monolithic laser devices, we will still give the
result for the spectral flux:

QTEν (L) = QTM(−ν)(L) ≈ |g|2e−( �TE
υTE

+ �TM
υTM

)L

2π |κ|2

×
{

sinh2(|κ|L) for D(ν) < 2|g|
sin2(|κ|L) for D(ν) > 2|g| , (37)

where |κ|2 ≈ ||g|2 − 1
4 D2(ν)|. Clearly, the flux of down-

converted photons is nonzero even outside the parametric
amplification bandwidth; however, it decays at large detunings
as 1

|κ|2 and gets absorbed at propagation distances larger than
the absorption length.

If the parametric gain is low, |g| � �TE
υTE

, �TM
υTM

, the flux of
down-converted photons decays over distances larger than the
absorption length at all frequencies. This is the only realistic
situation for a laser device, as one can see from the numerical
estimates below. The expression for the flux is especially
simple for propagation distances shorter than the absorption

length, where the noise contribution is insignificant and we
obtain

QTEν (L) = QTM(−ν)(L) = |g|2 sin2(|κ|L)

2π |κ|2 , (38)

where |κ| ≈ 1
2 |D(ν)|. These expressions for spectral flux den-

sities have to be integrated over the bandwidth ω determined
by the detection system to obtain the total flux. The result
is in Appendix A, together with an alternative approach to
obtain the nonperturbative solution to Eqs. (16) and (17) in
the absence of dissipation following the Riemann-Volterra
method.

C. Numerical example for intracavity SPDC
in the GaSb-based laser

As a specific example, we calculate the performance of
the proposed parametric source of biphotons using the device
shown in Fig. 1. We consider the degenerate SPDC when
the pump wavelength is 2032 nm and the wavelength of
TE and TM polarized decay photons is 4064 nm at exact
phase matching [see the crossing point of phase-matching
curves in Fig. 1(d)]. Assuming conservatively the same value
of |χ (2)| = 300 pm/V in all layers, for an intracavity pump
power of 1 W and the waveguide width of 10 μm the coupling
coefficient g in Eq. (28) which according to Eq. (35) deter-
mines the maximum parametric gain is g ≈ 0.24 cm−1. This
number reflects the reduction by about a factor of 10 due to
opposite symmetry of the pump and signal modes which leads
to partial cancellation in the overlap integral in Eq. (18). The
actual cancellation is likely not that strong if the (unknown)
variation of the values of |χ (2)| between different layers is
taken into account.

Note that despite exact phase matching at central frequen-
cies the waveguide dispersion leads to significant difference
in the group velocities of the TE and TM decay modes:
υTE � 8.24 × 109 cm/s, whereas υTM � 8.34 × 109 cm/s.
This group velocity mismatch together with the magnitude
of the parametric gain control the spectral properties of the
generated biphotons.

For the sake of comparison, we start from the ideal case
of negligible dissipation. Figure 2 shows the spectral fluxes
of the parametric decay photons for different lengths of the
device for negligible absorption of the field modes. As follows
from Eqs. (A23), (A24), and (31), the parametric ampli-
fication occurs in the relatively narrow frequency interval
determined by |ν| � |g|( 1

υTE
− 1

υTM
)−1, or ν

2π
� 0.02 THz for

our parameters. This causes a sharp peak in the flux at low
detunings for long enough propagation lengths |g|L � 1. At
much larger detunings κ becomes imaginary and scales as
κ ∼ i |D(ν)|

2 . In this case the signal flux scales according to
Eq. (38) for low losses or short propagation lengths. There-
fore, the total SPDC bandwidth defined as the spectral width
of its main maximum is determined by |κ|L < π , or

|ν| <
ωtot

2
= 2π

L

(
1

υTE
− 1

υTM

)−1

, (39)

explaining strong dependence on the propagation length in
Figs. 2 and 3.
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FIG. 2. Spectral flux density of the signal photons given by
Eq. (31) for zero absorption losses at three different device lengths:
0.05 cm (black solid line, flux multiplied by 105), 0.2 cm (blue
dashed line, flux multiplied by 104), and 1 cm (red dotted line, flux
multiplied by 500). The horizontal axis is the frequency of detuning
from resonance ν

2π
in THz.

Now we include realistic modal losses and associated
noise. Figure 3 shows the spectral fluxes of the parametric
decay photons for different lengths of the waveguide and high
absorption losses and noise for a laser device: field absorption
coefficients �TE

υTE
= 4 cm−1 and �TM

υTM
= 3 cm−1 (the inten-

sity absorption would be two times higher, 8 and 6 cm−1).
The spectral width of its main maximum which determines
the total SPDC bandwidth is given by |κ|L < π , or |ν| <
4π
L ( 1

υTE
− 1

υTM
)−1. The signal flux is exponentially decreasing

for propagation lengths longer than the absorption length,
i.e., ( �TE

υTE
+ �TM

υTM
)L � 1. At the same time, the peak noise flux

becomes stronger than the peak signal flux at those lengths.
The noise bandwidth is narrower than the signal’s. It is deter-
mined by the condition �TE

υTE
, �TM

υTM
∼ ν( 1

υTE
− 1

υTM
). Therefore,

the optimal device length that maximizes the SPDC flux while
still avoiding noise throughout most of the SPDC bandwidth is
of the order of 1–2 mm, which happens to be also the optimal
length for high-performance GaSb-based diode lasers. The
total SPDC bandwidth ν

2π
for these lengths is around 10 THz.

As one can see from Fig. 3, the signal flux for a 1-mm-long
device within the bandwidth of ω

2π
= 2 THz near the peak is

around 108 biphotons/s even for high losses, which makes
it interesting for applications, especially for such a small
monolithic device. The flux into the total SPDC bandwidth
will be several times higher. The peak flux can be further
increased by increasing the intracavity pump field intensity
and modal overlap, and decreasing modal losses after some
design optimization.

D. Fluctuations and correlations between fluxes
of decay photons

The above results shed light on the kind of quantum corre-
lations (or entanglement) that could be detected in the decay
photon fluxes in the laser output. Suppose that one can detect
the photon fluxes with a given polarization (TE or TM) within
spectral bands ω+ and ω− that are symmetrically located
around the central frequency ωp

2 , i.e., they have their central
frequencies at ωp

2 ± δω0, and have the frequency bandwidth

FIG. 3. Spectral flux density of the signal photons given by
Eq. (31) (red solid line) and TE and TM polarized noise photons
given by Eq. (32) (black dashed line and green dotted line) for the
field absorption coefficients �TE

υTE
= 4 cm−1 and �TM

υTM
= 3 cm−1 at the

device length of 1 mm (top panel), 2 mm (middle panel), and 4 mm
(bottom panel). All fluxes are multiplied by 105. The horizontal axis
is the frequency of detuning from resonance ν

2π
in THz.

equal to ω. In other words, the photon fluxes are detected
within the frequency intervals δω0 − ω

2 � ω − ωp

2 � δω0 +
ω
2 and −δω0 − ω

2 � ω − ωp

2 � −δω0 + ω
2 , respectively.

Note that Eqs. (26) and (27) couple pairwise the following
operators of the spectral field harmonics: âTEν with â†

TM(−ν)

and âTM(−ν) with â†
TEν , where ν = ω − ωp

2 is defined as the
detuning from the central frequency, in the same way as in pre-
vious subsections. The fluxes of TE and TM photons between
the spectral intervals ω+ and ω− will be correlated. At the
same time, there are no correlations between the photon fluxes
with different polarizations within each bandwidth ω+
or ω−.

We can determine the degree of correlations between
photon fluxes quantitatively by calculating their correlation
function,

K(τ ) =
〈 ∫

ω+
â†

TEν eiν(t+τ )dν

∫
ω+

âTEν e−iν(t+τ )dν

×
∫

ω−
â†

TMν eiνt dν

∫
ω−

âTMν e−iνt dν

〉
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−
〈 ∫

ω+
â†

TEν eiνdν

∫
ω+

âTEν e−iνt dν

〉

×
〈 ∫

ω−
â†

TMν eiνt dν

∫
ω−

âTMν e−iνt dν

〉
, (40)

and comparing it with fluctuations of each flux, given by

DN =
〈( ∫

ω±
â†

Nν eiνt dν

∫
ω±

âNν e−iνt dν

)2〉

−
〈 ∫

ω±
â†

Nν eiνt dν

∫
ω±

âNν e−iνt dν

〉2

. (41)

Here N = TE,TM correspond to the top and bottom sign in
ω±, respectively.

The dimensionless parameter characterizing the degree of
correlations at the waveguide output L is

�(L, τ ) = K(L, τ )√
DTE(L)DTM(L)

. (42)

It reaches the maximum value of 1 for completely correlated
fluxes, and is smaller than 1 otherwise. The correlation time
for the photon fluxes is just an inverse of the detection band-
width, i.e., it is ≈1/ωtot if the photons are detected over the
whole SPDC bandwidth in Eq. (39) and it is of the order of
1/ω for a narrower bandwidth.

All terms on the right-hand side of Eq. (42) can be calcu-
lated from the solution for the flux operators âNν (L) obtained
in Appendix A. For an optimal case, we choose the frequency
intervals ω± outside the Langevin noise band in Fig. 3, when
D(ν) � �TE

υTE
, �TM

υTM
, and we can neglect the terms dependent on

the the Langevin operators in the expressions for âNν . Using
the equality 〈0|â†

Nν (0)âNν ′ (0)â†
Nν ′′ (0)âNν ′′′ (0)|0〉 = 0 and the

commutation relation Eq. (25) one can obtain

DTE(L) = Q(s)
TE(L)e−( �TE

υTE
+ �TM

υTM
)L |g|2

2π

×
∫

ω

dν

∣∣∣∣eκLK− − e−κLK+
2κ

∣∣∣∣
2

, (43)

DTM(L) = Q(s)
TM(L)e−( �TE

υTE
+ �TM

υTM
)L |g|2

2π

×
∫

ω

dν

∣∣∣∣eκLK+ − e−κLK−
2κ

∣∣∣∣
2

, (44)

and

K(L) = e−2( �TE
υTE

+ �TM
υTM

)L |g|4
4π2

∣∣∣∣∣
∫

ω

dν e−iντ

× (eκLK− − e−κLK+)(eκ∗L − e−κ∗L )

|2κ|2
∣∣∣∣∣
2

, (45)

where the functions κ (ν) and K±(ν) are given by Eqs. (A23)–
(A25) whereas the values of fluxes Q(s)

TE,TM(L) are determined
by integrating the flux spectral densities in Eq. (31) over the
spectral bandwidth.

In our example of a dissipative laser waveguide |g| �
�TE
υTE

, �TM
υTM

, in which case κ � i|κ| and K± � −D(ν)
2g ± |κ|

g where
one can without loss of generality assume that g is real. This

FIG. 4. The correlation parameter �(L, τ ) as a function of time
delay τ for waveguide length L = 1 mm (top panel) and L = 2 mm
(bottom panel). The plots on each panel are for two values of signal
bandwidths: ω

2π
= 3 THz (red solid line) and ω

2π
= 0.3 THz (blue

dashed line). The frequency detuning of the signal bandwidth center
from the central frequency ωp

2 is δω0
2π

= 6 THz for the top panel and
3 THz for the bottom panel.

leads to further simplification of the above integrals, in which

eκLK− − e−κLK+ � −i
D(ν)

g
sin(|κ|L) − 2|κ|

g
cos(|κ|L),

eκLK+ − e−κLK− � −i
D(ν)

g
sin(|κ|L) + 2|κ|

g
cos(|κ|L).

It is straightforward to calculate that if the signal band-
widths are selected narrow enough as compared to the total
SPDC bandwidth defined in Eq. (39), namely,

ω � ωtot = 4π

L

(
1

υTE
− 1

υTM

)−1

, (46)

the photon fluxes at the output facet of a waveguide z = L
have a maximum possible correlation: �(L, τ = 0) = 1. With
increasing signal bandwidth the maximum correlation is re-
duced below 1 and its peak is shifted towards nonzero time
delays. This behavior is illustrated in Fig. 4.

Figure 4 shows the correlation parameter �(L, τ ) as a
function of time delay τ for two waveguide lengths, L = 1 and
2 mm, which correspond to the average flux spectra shown
in Fig. 3, top and middle panel, respectively. For these two
waveguide lengths we took the center frequencies of the detec-
tion bandwidths shifted by δω0

2π
= ±6 or ±3 THz, respectively,

from the central frequency ωp

2 . Clearly, for a narrow signal
bandwidth ω

2π
= 0.3 THz the correlation is close to its max-

imum value of 1 over time delays shorter than ≈1/ω. This
is true for both device lengths. When the signal bandwidth
becomes comparable in magnitude to the total SPDC band-
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width, the correlations degrade and the peak is shifted. This is
more pronounced for a L = 2 mm device which has the total
SPDC bandwidth ωtot

2π
= 7.6 THz, as compared to a shorter,

L = 1 mm device which has the total SPDC bandwidth of
15.2 THz.

The displacement of the maximum in Fig. 4 is due to the
difference between the arrival times of the photons traveling
with different group velocities. The inequality (46), which en-
sures that the maximum correlation function is reached at zero
delay, has a simple interpretation: it means that the correlation
time τcorr ≈ 2π

ω
of the signal detected in each mode is much

longer than the difference between the arrival times of the
photons with different group velocities, τ ≈ L( 1

υTE
− 1

υTM
).

In this case the effect of group velocity difference is unimpor-
tant and the maximum correlation is reached at τ ≈ 0. When
the correlation time τcorr approaches the group delay time τ ,
the maximum of the correlation function is shifted to nonzero
delays.

V. BOUNDARY-VALUE PROBLEM FOR THE
SCHRÖDINGER EQUATION

In the boundary-value problem solved in the previous
section, the observables are determined using a constant
Heisenberg-picture state vector |�(t = 0)〉 at the boundary
z = 0. Within the same approximation one can also introduce
the notion of a space-dependent state vector which would be
equivalent to the space evolution of Heisenberg operators.
With this goal in mind, let us look at Eqs. (26) and (27)
for the spectral components of the field operators neglecting
for simplicity the Langevin noise and dissipation. Since these
equations contain only spatial derivatives, taking into account
the commutation relations (25) for âNν one can write the
“lossless” version of Eqs. (26) and (27) and their Hermitian
conjugates as “spatial” versions of the Heisenberg equations,
namely,

∂

∂z
Ô = i

h̄
[Ĥeff , Ô], (47)

where Ô = âTEν, â†
TEν, âTM(−ν), â†

TM(−ν) and

Ĥeff = 2π h̄

{∫
dν

ν

υTE
â†

TEν âTEν +
∫

dν
ν

υTM
â†

TMν âTMν

−
∫∫

dνdν ′δ(ν + ν ′)(gâ†
TEν â†

TMν ′ + H.c.)

}
. (48)

Note that the operator Ĥeff in Eq. (47) generates translations
along z, not time, and therefore it has the dimension of
momentum.

The formal solution to Eq. (47) has a standard form:

Ô(z) = e
i
h̄ Ĥeff zÔ(0)e− i

h̄ Ĥeff z.

Note that one can represent in this way the z de-
pendence for any combination of operators, Ô(z) ⇒
(âTEν )n (â†

TEν )l (âTM(−ν) )p(â†
TM(−ν) )

s. After requesting
that the following condition be met, 〈�(0)|Ô(z)|�(0)〉 =
〈�(z)|Ô(0)|�(z)〉, we arrive at

|�(z)〉 = e− i
h̄ Ĥeff z|�(0)〉,

which gives the space evolution equation for the state vector:

ih̄
∂

∂z
|�〉 = Ĥeff |�〉. (49)

Equation (49) is quite intuitive and could be postulated
from the very beginning as was done, e.g., in [44]. However,
this ad hoc approach considers the decay into a single mode.
In our case the parametric decay occurs into two different
modes with different polarizations and group velocities, which
plays a principal role in all aspects of SPDC as we saw above.
It is also not clear without the derivation of how to relate the
empirical coupling coefficient between modes to the actual
χ (2)(r) and modal parameters.

For the classical pumping field there is no real need in
using Eq. (49) because the Heisenberg equations (26) and (27)
are linear and can be easily solved. The situation is different
when the pumping field is quantized too, for example if it is
given by

Êp = ĉp(z, t )Ep(r⊥)eikp(ωp)z−iωpt

+ ĉ†
p(z, t )E∗

p(r⊥)e−ikp(ωp)z+iωpt , (50)

where Ep(r⊥) is the normalization amplitude given by
Eq. (12) where one should replace subscript N with p.

Instead of Eqs. (26) and ( 27) we now obtain

− i
ν

υTE
âTEν + ∂

∂z
âTEν

= iG
∫∫

dν ′dν ′′δ(ν + ν ′ − ν ′′)âpν ′′ â†
TMν ′ , (51)

i
ν ′

υTM
â†

TMν ′ + ∂

∂z
â†

TMν ′

= −iG∗
∫∫

dνdν ′′δ(ν + ν ′ − ν ′′)â†
pν ′′ âTEν, (52)

− i
ν ′′

υp
âpν ′′ + ∂

∂z
âpν ′′

= iG∗
∫∫

dνdν ′δ(ν + ν ′ − ν ′′)âTEν âTMν ′ , (53)

where âpν ′′ = √
υpĉpν ′′ , υp is the group velocity of the pump

mode, and

G =
∫

S E∗
TE(r⊥)[

←→←→χ (2)(r⊥)Ep(r⊥)E∗
TM(r⊥)]d2r

h̄
√

υTEυTMυp
. (54)

Equations (51)–(53) correspond to the Heisenberg-like
equation (47) with effective “Hamiltonian”

Ĥeff = 2π h̄

[∫
dν

ν

υTE
â†

TEν âTEν +
∫

dν
ν

υTM
â†

TMν âTMν

+
∫

dν
ν

υp
â†

pν âpν −
∫∫∫

dνdν ′dν ′′δ(ν + ν ′ − ν ′′)

× (Gâpν ′′ â†
TEν â†

TMν ′ + H.c.)

]
, (55)

i.e., one can again arrive at the equation of the type of Eq. (49),
but with the Hamiltonian (55). The difference however is that
now the operator-valued equations (51)–(53) are nonlinear
whereas Eq. (49) for the state vector is always linear. This
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is a crucial advantage of the approach based on Eq. (49). It is
important that Eq. (49) can be generalized for open systems
with dissipation and fluctuation effects using the stochastic
equation for the state vector [45,46], and the method of quan-
tum jumps [20,47]. Here we illustrate our approach with an
example of an external flux of pump photons propagating in a
passive waveguide. Obviously, an active lasing device consid-
ered in the previous sections cannot produce a single-photon
pump flux.

To avoid cumbersome derivations, we will switch from
the continuous spectrum to a discrete set of frequencies; see,
e.g., Ch. 10 in [48]. This approach requires renormalization
of the operators âNν , where N = TE,TM, or p. The quanti-
ties 〈â†

Nν âNν〉 are now the total fluxes of photons of a given
polarization within a given spectral line, i.e., they have the
dimension of sec−1. This renormalization of the operators is
easiest to illustrate with an example of the parametric decay
of a quasimonochromatic pump mode at frequency ωp with
bandwidth ω � ωp. The spectrum of signal and idler pho-
tons is convenient to represent as a set of discrete spectral
lines at frequencies ωp

2 + ν, where ν spans a discrete set of
values symmetric with respect to ωp/2 and each spectral line
has the same width ω. The renormalized operators satisfy
the commutation relations that follow from Eq. (25) (see also
the Supplemental Material in [40]):

[âNν, â†
N ′ν ′] = ω

2π
δNN ′δνν ′ , (56)

where for N = p the only option is ν = 0. Therefore, one can
introduce standard states of the boson field:√

2π

ω
âNν |nNν〉 = √

nNν |(n − 1)Nν〉,√
2π

ω
â†

Nν |nNν〉 =
√

(n + 1)Nν |(n + 1)Nν〉. (57)

The discrete version of the effective Hamiltonian to be used in
Eq. (49) is

Ĥeff = 2π h̄

ω

∑
ν

[
ν

υTE
â†

TEν âTEν + ν

υTM
â†

TMν âTMν

− (Gâpâ†
TEν â†

TM(−ν) + H.c.)

]
. (58)

It is easy to verify that substituting Ĥeff from Eq. (58) into
Eq. (47) and taking into account the commutation relations
(56) will give a correct “discrete” version of Eqs. (51)–(53)
[see Eqs. (B1)–(B3) in Appendix B].

When the state vector is expressed in terms of these number
states as �Nν = ∑

n C(n)
Nν (z)|n〉, the quantities |C(n)

Nν (z)|2 have
the meaning of the probability to detect the flux of photons
〈â†

Nν âNν〉 = Q0n at the cross section z, where Q0 = ω
2π

. The
quantity h̄ωN Q0 is the energy flux transported by a single
photon with waveform of duration 2π

ω
. The bandwidth ω

and the values of the amplitudes C(n)
Nν (z = 0) at the boundary

are determined by the properties of the pump. Therefore,
within the discrete approach we need to assign a certain
spectral bandwidth ω to the pump field, which is defined
by externally controlled properties of the pump, and to split
the spectrum of decay photons into the spectral lines of the

FIG. 5. Occupation probabilities |Cp(z)|2 (red solid line) and
|CW 1(z)|2 and |CW 2(z)|2 (blue dashed line) as a function of the nor-
malized propagation distance z along the waveguide for δ = 0 (top
panel) and δ = 3

√
2Q0|G| (bottom panel). The plots for |CW 1(z)|2

and |CW 2(z)|2 are identical.

same width. We are not considering a rather exotic situa-
tion in which the “allowed” spectral bands for the signal
and idler photons have to be narrower than the pump field
bandwidth.

Consider a parametric decay when the quantum state at
the boundary is |�(0)〉 = |1p〉|0TE,TM〉, where |0TE,TM〉 is
a vacuum state of the signal and idler photons at all fre-
quencies. In this case the solution to Eq. (49) must have
the form

|�〉 = Cp(z)|1p〉|0TE,TM〉 +
∑

ν

CW ν (z)|0p〉|1TEν〉|1TM(−ν)〉

×
∏

ν ′ �=ν,ν ′′ �=−ν

|0TEν ′ 〉|0TMν ′′ 〉. (59)

All other states are forbidden by energy conservation. Equa-
tion (59) is the generalization of a tripartite entangled state
of the Greenberger-Horne-Zeilinger (GHZ) type [45,49–52].
Note that such states can be also produced in four-wave mix-
ing via a pumped χ (3) nonlinearity which creates an effective
second-order nonlinearity for three coupled quantum modes;
see [53] where they also use conversion of a single-photon
state into entangled signal and idler states, similarly to our
initial conditions.

It is straightforward to solve coupled ordinary differ-
ential equations for the coefficients resulting from substi-
tuting Eq. (59) into Eq. (49) with the Hamiltonian (58).
The detailed derivation is in Appendix B. Figure 5 il-
lustrates the solution when the parametric decay of the
pump occurs into photon pairs within only two symmet-
ric spectral bands ωp

2 ± ν, where ν has only one value.
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The figure shows z dependence of the occupation prob-
abilities |Cp(z)|2, |CW 1(z)|2, and |CW 2(z)|2 of the photon
states |1p〉|0TE,TM〉, |0p〉|1TEν〉|0TMν〉|0TE(−ν)〉|1TM(−ν)〉, and
|0p〉|0TEν〉|1TMν〉|1TE(−ν)〉|0TM(−ν)〉, respectively. The periodic
modulation of the occupation probabilities with z is a spatial
analog of Rabi oscillations, in which the Rabi wave number
KR for the probability amplitudes is given by

K2
R = δ2 + 2Q0|G|2, (60)

where the detuning

δ = ν

(
1

υTM
− 1

υTE

)
. (61)

For zero detuning from the central frequencies, at some values
of z there is a complete transfer of energy from the single-
photon state of the pump to an entangled state of the decay
photons. With increasing detuning the modulation occurs with
a shorter spatial period according to Eq. (60) and the transfer
of excitation is incomplete: it occurs with decreasing proba-
bility. Note that the coefficients CW 1(z) and CW 2(z) have the
same amplitudes, although they may have different phases.

By comparing the expression (28) for g in the previous
section with the expression for the Rabi wave number KR =√

2Q0|G| at zero detuning, one can verify that when the power
of the classical pumping field in Eq. (28) is equal to the power
in the quantized single-photon flux h̄ωp

ω
2π

, the expressions
for KR and g coincide, which is an important verification of
the consistency of the two formalisms.

Numerically, for the same waveguide design as in Fig. 1
one obtains G � 10−10 s1/2 cm−1. Assuming the bandwidth
ω
2π

= 1 THz the value of KR is very small, KR ∼ 10−4 cm−1.
This means that the probability of one incident pump photon
to decay into the signal and idler photons after propagating
the waveguide length of 1 cm is 10−4. Multiplying it by the
flux of incident pump photons per second, one can obtain the
expected flux of decay biphotons.

Here we considered the parametric decay into two rel-
atively narrow spectral bands. For a broadband decay with
the total width of the SPDC spectrum � � ω, one can
split the overall SPDC bandwidth into many narrow bands
and perform the summation over these bands in the result-
ing expression for Cp using, e.g., the method developed in
[54] for strong coupling in the systems with inhomogeneous
broadening of the spectra; see Appendix B for the derivation
details. It is enough to calculate the expression for Cp(z), since
other amplitudes CW ν (z) can be expressed through Cp(z). Note
that our results will not depend on the way we split the total
bandwidth, i.e., on the parameter ω.

The general behavior of the solution for the probability am-
plitudes is controlled by the parameter α =

√
�
|G| | 1

υTM
− 1

υTE
|.

When α � 1, the solution for Cp(z) is qualitatively similar
to the one in the case of a parametric decay into two sym-
metric narrow lines as long as δ � √

2Q0|G|; see Fig. 5.
All occupation probabilities |CW ν (z)|2 are the same and they
are related to |Cp(z)|2 by conservation of the photon flux:
|Cp(z)|2 +∑

ν |CW ν (z)|2 = 1. The Rabi wave number which
describes spatial oscillations is given by

KR ≈ |G|
√

�

2π
. (62)

Since for two symmetric bands we have � = 2ω, Eq. (62)
coincides with Eq. (60) in the limit of small δ.

For the waveguide parameters shown in Fig. 1, we are in
the regime corresponding to the opposite limit α � 1. In this
case the dephasing due to spectral broadening dominates and
the probability amplitude Cp(z) decays exponentially along z
with an exponent:

κ � |G|2
2

1∣∣ 1
υTM

− 1
υTE

∣∣ . (63)

The attenuation rate 2κ of the occupation probability due to
spectral broadening is ≈10−8 cm−1, indicating a very low rate
of biphoton production, as expected for a single-photon pump.

VI. CONCLUSIONS

In conclusion, we advanced the quantum theory of the
SPDC of eigenmodes in finite-length semiconductor waveg-
uides which takes into account not only all propagation effects
such as phase and group velocity mismatch but also, most im-
portantly, the effects of dissipation and quantum and thermal
noise. The latter effects are crucial to include in the design of
any monolithic semiconductor quantum device and in fact any
emerging quantum photonic circuits that are based on lossy
materials with high nonlinearity. For example, we show that
for the SPDC process the quantum noise makes a significant
and even dominant contribution within the signal and idler
bandwidth even at low ambient temperature. Any experiment
aimed at creating monolithic sources of quantum light has
to take coupling to noisy reservoirs into account. Our paper
provides the theoretical foundation and convenient analytic
formulas to accomplish that.

We applied our formalism to propose and evaluate the
performance of a high-brightness, ultracompact electrically
pumped laser source of entangled photons generated by intra-
cavity SPDC of lasing modes. The specific design in the paper
is based on the III-Sb heterostructure and operation in the
atmospheric transparency window of 3–5-μm wavelengths.
However, the same device concept can be applied to any III-V
material system at other wavelengths.

We developed an approach based on the propagation equa-
tion for the state vector which solves the nonperturbative
boundary-value problem of the parametric decay of a quan-
tized single-photon pump mode and can include the effects
of dissipation and noise. Our formalism is applicable to a
wide variety of nonlinear wave mixing propagation problems
in which all fields are quantized. It unifies the SPDC process
with the strong-coupling regime of cavity QED. The paramet-
ric strong coupling between three or more degrees of freedom
leads to the formation of tripartite entangled states with many
applications in quantum information and connections to other
areas in quantum optics.
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APPENDIX A: DERIVATIONS FOR SEC. IV OF THE MAIN
PAPER: THE BOUNDARY-VALUE PROBLEM FOR

HEISENBERG OPERATORS

Here we derive the equations that describe evolution of the
operators ĉN (z, t ) which determine the quantized field of de-
cay photons. We use the mode index N = TE,TM for brevity,
which labels both the field polarization and the transverse pro-
file of the field EN (r⊥). Its dispersion equation is ω = ωN (k).
The normalization of the field is defined in Sec. IV of the main
paper; see Eq. (15) there.

The field operators for both quantized modes obey the
wave equation

∂2

∂t2
(ε̂Ê) + c2∇ × ∇ × Ê = −4π

∂2

∂t2
δP̂ (A1)

where

ε̂Ê =
∫ ∞

0

←→ε (r, τ )Ê(r,t − τ )dτ,

ε̂ is a linear Hermitian operator, and
∫∞

0
←→ε (r⊥, τ )eiωτ dτ =←→ε (ω, r⊥) is the dielectric tensor for a nonuniform medium

with frequency dispersion. The operator

δP̂ = δP̂diss + δP̂L + δP̂NL (A2)

includes the part describing linear dissipation (since we take
as ε̂ Hermitian), the noise component of the polarization, and
the nonlinear polarization.

Within the slowly varying amplitude approximation,
Eq. (A1) is reduced to

∂

∂t
ĉN + υN

∂

∂z
ĉN + �N ĉN

= L̂N + i

h̄
ei[κN −kN (ωN )]z

∫
S

E∗
N (r⊥)δP̂NL;N (r⊥, t, z)d2r.

(A3)

Here

δP̂NL =
∑

N=TE,TM

[δP̂NL;N (r⊥, t, z)eiκN z−iωN t

+ δP̂†
NL;N (r⊥, t, z)e−iκN z+iωN t ], (A4)

where δP̂NL;N is the operator of the nonlinear polariza-
tion at frequency ωN ; �N determines modal losses and is
related to the Langevin noise operator L̂N through fluctuation-
dissipation relations (see [23,24,39,40,42,43]). Following
[23,24,42], we will use the following relationships for the
Langevin noise operator:

[L̂Nν (z), L̂†
N ′ν ′ (z′)] = �N

π
δNN ′δ(ν − ν ′)δ(z − z′), (A5)

〈L̂†
Nν (z)L̂N ′ν ′ (z′)〉 = �N nT (ωN )

π
δNN ′δ(ν − ν ′)δ(z − z′),

(A6)

where 〈· · · 〉 means averaging over both an initial quantum
state in the Heisenberg picture and the statistics of the dis-

sipative reservoir, nT (ω) = (eh̄ω/T − 1)−1:

L̂N =
∫

ω

L̂Nνe−iνt dν, L̂†
N =

∫
ω

L̂†
Nνeiνt dν.

Equation (A5) ensures the conservation of the commutation
relations [Eq. (14) of the main paper] despite the presence of
dissipation.

Besides energy conservation [Eq. (10) of the main paper]
one has to satisfy the momentum conservation (phase-
matching) condition

|kp(ωp) − kTE(ωTE) − kTM(ωTM)|L � 1,

where L is the length of the SPDC region, in the simplest
case the laser waveguide length. For our device geometry (see
Fig. 1) the combination of energy and momentum conserva-
tion at a given pump frequency ωp can be satisfied for two
pairs of frequencies ωTE and ωTM [Fig. 1(d)]. There is also
one value of frequency ωp for which the frequencies of decay
photons become equal, ωTE = ωTM = ωp/2. We will consider
degenerate and nondegenerate SPDC separately.

1. Nondegenerate case: The space-time propagation
problem and the perturbation method

Here we assume that the spectral widths of decay photons
≈ ω determined by phase-matching bandwidth are much
lower than the distance between their central frequencies:
ω � |ωTE − ωTM|.

The resulting operator-valued equations for the two modes
making up the entangled two-photon state at the output are

∂

∂t
ĉTE + υTE

∂

∂z
ĉTE + �TEĉTE

= L̂TE + i

h̄
e−i(kTM+kTE−kp)zAĉ†

TM, (A7)

∂

∂t
ĉ†

TM + υTM
∂

∂z
ĉ†

TM + �TMĉ†
TM

= L̂†
TM − i

h̄
ei(kTM+kTE−kp)zA∗ĉTE. (A8)

Here the parameter A is determined in Eq. (18).
To start with the simplest case, we assume that the length L

of the decay region is smaller than all absorption lengths υN
�N

.
This allows us to neglect dissipative and Langevin terms:

∂

∂t
ĉTE + υTE

∂

∂z
ĉTE = i

h̄
e−i(kTM+kTE−kp)zAĉ†

TM, (A9)

∂

∂t
ĉ†

TM + υTM
∂

∂z
ĉ†

TM = − i

h̄
ei(kTM+kTE−kp)zA∗ĉTE. (A10)

When treating the degenerate SPDC in the next subsection, we
will consider arbitrary propagation lengths and fully include
the effects of dissipation and noise.
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The formal solutions to Eqs. (A9) and (A10) are

ĉTE = ĉ(0)
TE

(
t − z

υTE

)
+ i

h̄

A

υTE

∫ z

0
e−i(kTM+kTE−kp)ζ ĉ†

TM

(
t − z − ζ

υTE
, ζ

)
dζ , (A11)

ĉ†
TM = ĉ(0)†

TM

(
t − z

υTM

)
− i

h̄

A∗

υTM

∫ z

0
ei(kTM+kTE−kp)ζ ĉTE

(
t − z − ζ

υTM
, ζ

)
dζ , (A12)

where

ĉTE

(
t − z − ζ

υTM
, ζ

)
= ĉTE(t, z){t⇒t− z−ζ

υTM
z⇒ζ }, ĉ†

TM

(
t − z − ζ

υTE
, ζ

)
= ĉ†

TM(t, z){t⇒t− z−ζ

υTE
z⇒ζ }.

Within the perturbation expansion in terms of the coupling parameter A we substitute unperturbed operators given by the first
terms in the right-hand side of Eqs. (A11) and (A12) (which describe the transfer of the boundary conditions with the group
velocity) into the integrands in Eqs. (A11) and (A12), namely,

ĉTE

(
t − z − ζ

υTM
, ζ

)
⇒ ĉ(0)

TE

(
t − z

υTM
+ ζ

υTM − υTE

υTEυTM

)
, ĉ†

TM

(
t − z − ζ

υTE
, ζ

)
⇒ ĉ(0)†

TM

(
t − z

υTE
+ ζ

υTM − υTE

υTEυTM

)
.

This gives

ĉTE(t, z) = ĉ(0)
TE

(
t − z

υTE

)
+ i

h̄

A

υTE

∫ z

0
e−i(kTM+kTE−kp)ζ ĉ(0)†

TM

(
t − z

υTE
+ ζ

υTM − υTE

υTEυTM

)
dζ , (A13)

ĉ†
TM(t, z) = ĉ(0)†

TM

(
t − z

υTM

)
− i

h̄

A∗

υTM

∫ z

0
ei(kTM+kTE−kp)ζ ĉ(0)

TE

(
t − z

υTM
+ ζ

υTM − υTE

υTEυTM

)
dζ . (A14)

Expressions (A13) and (A14) allow us to calculate any experimental observables. For example, we can calculate the photon
fluxes within the bandwidth ω in the cross section z = L for vacuum boundary conditions:

QTE = υTE〈ĉ†
TE(L)ĉTE(L)〉 ≈ ω

2π

|A|2
h̄2υTEυTM

∣∣∣∣
∫ L

0
ei(kTM+kTE−kp)zdz

∣∣∣∣
2

, (A15)

QTM = υTM〈ĉ†
TM(L)ĉTM(L)〉 = QTE. (A16)

The last equality corresponds to Manley-Rowe relations [55].
The expression (A15) is valid when the bandwidth ω satis-
fies Lω| 1

υTE
− 1

υTM
| � 1.

Using the spectral decomposition of the field operators
given by Eqs. (17) of the main paper, one can obtain the
solutions for the spectral amplitudes beyond the perturbation
approach. We will present such a solution for the degenerate
case below, because this is the most interesting case for most
applications.

2. Degenerate case: The nonperturbative solution
for spectral amplitudes

Consider now the degenerate SPDC when ωTE = ωTM =
ωp/2. We start with the most general case when there is still
finite phase mismatch δk at central frequencies ωTE = ωTM =
ωp/2, namely,

kTM

(
ωp

2

)
+ kTE

(
ωp

2

)
− kp(ωp) = δk,

and the field dissipation and Langevin noises cannot be ne-
glected. The coupled equations for the field operators are(

∂

∂t
+ �TE + υTE

∂

∂z

)
ĉTE − i

h̄
Aĉ†

TMe−iδkz = L̂TE, (A17)

(
∂

∂t
+ �TM + υTM

∂

∂z

)
ĉ†

TM + i

h̄
A∗ĉTEeiδkz = L̂†

TM. (A18)

Next, we transfer to the flux operators in Eqs. (A17) and
(A18) which were introduced in Sec. III A and use the Fourier
expansion (24). To get rid of the explicit z dependence in
the left-hand sides of Eqs. (A17) and (A18) we make the
substitution â†

TM(−ν) = ˆ̃a†
TM(−ν)e

i δk
2 z, âTEν = ˆ̃aTEνe−i δk

2 z. This
results in(

−i
ν + i�TE

υTE
− i

δk

2
+ ∂

∂z

)
ˆ̃aTEν − igˆ̃a†

TM(−ν)

= 1√
υTE

L̂TEν (z)e−i δk
2 z, (A19)

(
−i

ν + i�TM

υTM
+ i

δk

2
+ ∂

∂z

)
ˆ̃a†

TM(−ν) + ig∗ ˆ̃aTEν

= 1√
υTM

L̂†
TM(−ν)(z)ei δk

2 z. (A20)

The solution of Eqs. (A19) and ( (A20)) can be written as
(see the similar derivations in [23,40])(

âTEν (z)

â†
TM(−ν)z

)
= eμ+z

(
e−i δk

2 z

ei δk
2 zK+

)(
Û+ +

∫ z

0
e−μ+ξ F̂+(ξ )dξ

)

+ eμ−z

(
e−i δk

2 z

ei δk
2 zK−

)(
Û− +

∫ z

0
e−μ−ξ F̂−(ξ )dξ

)
,

(A21)
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where

μ± = i
ν

2

(
1

υTM
+ 1

υTE

)
− 1

2

(
�TM

υTM
+ �TE

υTE

)
± κ, (A22)

κ =
√

|g|2 − 1

4

[
D(ν) + i

(
�TE

υTE
− �TM

υTM

)]2

, (A23)

D(ν) = δk + ν

(
1

υTE
− 1

υTM

)
, (A24)

K± = −D(ν) − i
(

�TE
υTE

− �TM
υTM

)
2g

∓ i
κ

g
, (A25)

Û± = ± g

i2κ
[âTEν (0)K∓ − â†

TM(−ν)(0)], (A26)

F̂±(ξ ) = ± g

i2κ

[
K∓

1√
υTE

L̂TEν (ξ )e−i δk
2 ξ

− 1√
υTM

L̂†
TM(−ν)(ξ )ei δk

2 ξ

]
. (A27)

Here D(ν) is the phase mismatch for TE and TM modes
at frequencies ωp

2 + ν and ωp

2 − ν, respectively. The square

root in Eq. (A23) should be taken as
√

Z = √|Z|ei 1
2 Arg[Z]. It

follows from Eq. (A25) that K+K− = e−2iArg[g].
The frequency spectrum of the down-converted photons

is determined by the dependence κ (ν) in Eqs. (A23) and
(A24). As follows from Eqs. (A21), (A23), and (A24), in the
absence of dissipation the parametric amplification occurs in
the frequency interval |D(ν)| = |δk + ν( 1

υTE
− 1

υTM
)| < 2|g|.

In the absence of dissipation and detuning, i.e., when
�TE = �TM = D(ν) = 0, the spatial coefficient of amplifica-
tion is |g| = A

h̄
√

υTEυTM
, whereas the growth rate in time for an

associated initial-value problem is γ = |A|
h̄ ; see, e.g., [33]. The

relationship |g| = γ√
υTEυTM

allows one to express the character-
istic time of parametric interaction tint through the parametric
amplification length Lz as tint = Lz√

υTEυTM
which was used in

Sec. III of the main paper.
When the detection bandwidth ω is narrow enough,

namely, ω
|υTE−υTM|
2υTEυTM

� |g| ≈ κ (i.e., the detection bandwidth
is narrower than the parametric amplification bandwidth), af-
ter neglecting dissipation and noise and assuming δk = 0 the
solution in Eq. (A21) can be easily summed over frequencies.
Returning to the operators ĉN we obtain

ĉTE(z, t ) = ĉ(0)
TE

(
t − υTE + υTM

2υTEυTM
z

)
cosh (κz)

+ ieiφ

√
υTM

υTE
ĉ(0)†

TM

(
t − υTE + υTM

2υTEυTM
z

)
sinh (κz),

(A28)

ĉTM(z, t ) = ĉ(0)
TM

(
t − υTE + υTM

2υTEυTM
z

)
cosh (κz)

+ ieiφ

√
υTE

υTM
ĉ(0)†

TE

(
t − υTE + υTM

2υTEυTM
z

)
sinh (κz),

(A29)

where φ = Arg[g].
We can find an exact nonperturbative solution to

Eqs. (A17) and (A18) for negligible Langevin noise, losses,

and phase mismatch �TE = �TM = δk = 0 in a different way
if we notice that after the substitution x = z − υTEt and y =
z − υTMt they are reduced to the hyperbolic equation

[
∂2

∂x∂y
+ 1

h̄2

|A|2
(υTE − υTM)2

]

 = 0,

where 
 = ĉTE, ĉ†
TM. Its solution can be written in quadratures

following the Riemann-Volterra method; see, e.g., Chap. 10.3-
6 in [56]. However, the solution method based on the Fourier
transformation which we used is more convenient in this
case. Indeed, it gives us an explicit equation for the SPDC
frequency bandwidth and highlights the correlations between
the spectral photon fluxes in different frequency bins. Further-
more, the spectral approach provides a straightforward way of
including finite phase mismatch, Langevin noise, and absorp-
tion losses [see Eqs. (A21)–(A23)]. The spectral method also
makes it straightforward to incorporate the quantum dynamics
of the reservoir noise (e.g., squeezing) for a finite temperature
of the reservoir [24].

APPENDIX B: DERIVATIONS FOR SEC. V OF THE
MAIN PAPER: THE BOUNDARY-VALUE PROBLEM

FOR THE SCHRÖDINGER EQUATION

To avoid cumbersome derivations, we will switch from the
continuous spectrum to a discrete set of frequencies; see, e.g.,
[48]. We consider the parametric decay of a quasimonochro-
matic pump mode at frequency ωp. The spectrum of signal
and idler photons is convenient to represent as a set of discrete
spectral lines at frequencies ωp

2 + ν, where ν spans a discrete
set of values symmetric with respect to ωp/2. In this case
Eqs. (51)–(53) transform into

−i
ν

υTE
âTEν + ∂

∂z
âTEν = iGâpâ†

TM(−ν), (B1)

i
(−ν)

υTM
â†

TM(−ν) + ∂

∂z
â†

TM(−ν) = −iG∗â†
pâTEν, (B2)

∂

∂z
âp = iG∗ ∑

ν

âTEν âTM(−ν). (B3)

In Eq. (B3) we assume that ν = 0 is the only option for the
pump field and we define âp,ν=0 = âp.

The transition from Eqs. (51)–(53) to Eqs. (B1)–(B3) cor-
responds to the renormalization of the operators âNν . The
quantities 〈â†

Nν âNν〉 in Eqs. (B1)–(B3) are now the total fluxes
of photons of a given polarization within a given spectral line,
i.e., they have the dimension of sec−1. The operators defined
in this way satisfy the commutation relations that follow from
Eq. (25) (see also the Supplemental Material in [40]):

[âNν, â†
N ′ν ′] = ω

2π
δNN ′δνν ′ . (B4)

The Heisenberg equations (B1)–(B3) with commutation
relations (B4) correspond to Eqs. (57) and the discrete version
of the effective Hamiltonian in Eq. (58).
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Substituting Eq. (59) into Eq. (49) with the effective
Hamiltonian (58) leads to the following equations for the
coefficients:

∂

∂z
Cp = −iG∗

√
ω

2π

∑
ν

CW ν, (B5)

∂

∂z
CW ν = iδνCW ν − iG

√
ω

2π
Cp, (B6)

where

δν = ν

(
1

υTM
− 1

υTE

)
. (B7)

Let us assume for simplicity that the nonlinear waveguide
allows the parametric decay of the pump into photon pairs
within only two symmetric spectral bands ωp

2 ± ν, where ν

has only one value. In this case the solution should be sought
in the form

|�〉 = Cp(z)|1p〉|0TEν〉|0TMν〉|0TE(−ν)〉|0TM(−ν)〉
+CW 1(z)|0p〉|1TEν〉|0TMν〉|0TE(−ν)〉|1TM(−ν)〉
+CW 2(z)|0p〉|0TEν〉|1TMν〉|1TE(−ν)〉|0TM(−ν)〉. (B8)

Equations (B5)–(B7) become

∂

∂z
Cp = −iG∗

√
ω

2π
(CW 1 + CW 2), (B9)

∂

∂z
CW 1 = iδCW 1 − iG

√
ω

2π
Cp, (B10)

∂

∂z
CW 2 = −iδCW 2 − iG

√
ω

2π
Cp, (B11)

where

δ = ν

(
1

υTM
− 1

υTE

)
(B12)

and ν has only one positive value.
The solution for the initial conditions Cp = 1, CW 1,2 = 0 is

CW 1 = −i
G

√
Q0

KR

[
sin KRz − i

δ

KR
(cos KRz − 1)

]
, (B13)

CW 2 = −i
G

√
Q0

KR

[
sin KRz + i

δ

KR
(cos KRz − 1)

]
, (B14)

Cp = δ2

K2
R

+ 2Q0|G|2
K2

R

cos KRz (B15)

where Q0 =
√

ω
2π

and

K2
R = δ2 + 2Q0|G|2, (B16)

where KR is the Rabi wave number, introduced in analogy with
the Rabi frequency.

The resulting state vector is

|�〉 =
(

δ2

K2
R

+ 2Q0|G|2
K2

R

cos KRz

)
|1p〉|0TEν〉|0TMν〉|0TE(−ν)〉|0TM(−ν)〉 − i

G
√

Q0

KR

[
sin KRz − i

δ

KR
(cos KRz − 1)

]

× |0p〉(|1TEν〉|0TMν〉|0TE(−ν)〉|1TM(−ν)〉 + eiϕz |0TEν〉|1TMν〉|1TE(−ν)〉|0TM(−ν)〉), (B17)

where

ϕz = Arg

[
sin KRz + i δ

KR
(cos KRz − 1)

sin KRz − i δ
KR

(cos KRz − 1)

]
. (B18)

Equation (B17) is the generalization of a tripartite entangled state of the GHZ type [45,49–52] to the case when the selection
rules and conservation laws allow the decay of an initial excitation of the system into any of the two “allowed” boson pairs.

For small group velocity mismatch, when ν| 1
υTM

− 1
υTE

| �
√

2Q0|G|
h̄ ≈ KR, the quantum state in the waveguide cross sec-

tions defined by KRz = π
2 + πM,

|�〉 ≈ |0p〉 |1TEν〉|0TMν〉|0TE(−ν)〉|1TM(−ν)〉 + |0TEν〉|1TMν〉|1TE(−ν)〉|0TM(−ν)〉√
2

, (B19)

is one of the entangled Bell states.

Here we considered the parametric decay into two rela-
tively narrow spectral bands. Now consider a broadband decay
in which the total width of the SPDC spectrum is � � ω.
We will use the method developed in [54] for strong coupling
in the systems with inhomogeneous broadening of the spectra.

The solution to Eq. (B6) for the initial conditions CW ν = 0
is

CW ν = −iG

√
ω

2π

∫ z

0
eiδν (z−ξ )Cp(ξ )dξ . (B20)

Substituting it into Eq. (B5) gives

∂

∂z
Cp = −|G|2 ω

2π

∑
ν

∫ z

0
eiδν (z−ξ )Cp(ξ )dξ . (B21)

Since the spectrum of decay photons is split into the bands of
width ω, we can transform Eq. (B21) as

∂

∂z
Cp = −|G|2 ω

2π

m=M∑
m=−M

∫ z

0
eiδm (z−ξ )Cp(ξ )dξ, (B22)

033707-16



GENERATION OF ENTANGLED PHOTONS VIA … PHYSICAL REVIEW A 105, 033707 (2022)

where

δm = mω

(
1

υTM
− 1

υTE

)
(B23)

and M = [ �
2ω

]. Going from summation to integration in
Eq. (B22),

m=M∑
m=−M

∫ z

0
eiδm (z−ξ )Cp(ξ )dξ

⇒
∫ �/2

−�/2

dδ

ω
∣∣ 1
υTM

− 1
υTE

∣∣
∫ z

0
eiδ(z−ξ )Cp(ξ )dξ, (B24)

where

� = �

∣∣∣∣ 1

υTM
− 1

υTE

∣∣∣∣, (B25)

we arrive at

∂

∂z
Cp = − |G|2∣∣ 1

υTM
− 1

υTE

∣∣
∫ z

0
dξ

[
sin

[
�
2 (z − ξ )

]
π (z − ξ )

]
Cp(ξ ).

(B26)

Let us denote by λ a typical spatial scale of the function

Cp(ξ ). If �
2 λ � 1, one can replace

sin[ �
2 (z−ξ )]

π (z−ξ ) ⇒ δ(z − ξ ) in
Eq. (B26), which gives

∂

∂z
Cp = −κCp, (B27)

where

κ = |G|2∣∣ 1
υTM

− 1
υTE

∣∣ . (B28)

For the initial condition Cp = 1 we obtain

Cp = e−κz. (B29)

Equations (B27) and (B29) are valid when �
2κ

� 1, which
corresponds to the condition

α =
√

�

|G|
∣∣∣∣ 1

υTM
− 1

υTE

∣∣∣∣ � 1. (B30)

In the opposite limit �
2 λ � 1 we will seek the solution

of Eq. (B26) as Cp ∝ eqz. The right-hand side of Eq. (B26)
can be expanded in powers of q−1 by repeated integration by

parts. Denoting
sin[ �

2 (ξ−z)]
π (ξ−z) = D(ξ − z) and taking into account

�z � 1, we obtain∫ z

−∞
dξD(ξ − z)eqξ

=
(

D(0)

q
+

∞∑
n=1

(−1)n

[
dnD(ξ − z)

dξ n

]
ξ=z

1

qn+1

)
eqz,

where

[
d2n+1D(ξ − z)

dξ 2n+1

]
ξ=z

= 0,

[
d2nD(ξ − z)

dξ 2n

]
ξ=z

= (−1)n
(

�
2

)2n+1

π (2n + 1)
.

Taking into account that |G|2
| 1
υTM

− 1
υTE

|
�

2π
= |G|2 �

2π
, we obtain

from Eq. (B26) that

q2 + |G|2 �

2π

[
1 −

∞∑
n=1

(−1)n

2n + 1

(
�

2q

)2n
]

= 0. (B31)

In zeroth order with respect to a small parameter �
2q we have

q2 + |G|2 �

2π
= 0; Cp ∝ e±i|G|

√
�
2π

z. (B32)

For the initial condition Cp = 1 this solution corresponds to
spatial Rabi oscillations:

Cp ≈ cos

(
|G|

√
�

2π
z

)
. (B33)

Equation (B33) is valid when �

2|G|
√

�
2π

� 1, which cor-

responds to the region of parameters opposite to that of
Eq. (B30), i.e., α � 1.

Let us now discuss the corrections due to higher-order
terms with respect to a small parameter �

2q . Substituting q =
q0 + η into Eq. (B31), where q0 = ±i|G|

√
�
2π

and |q0| � |η|,
we obtain

η =
|G|2 �

2π

∑∞
n=1

(−1)n

2n+1

(
�

2q0

)2n

2q0 + |G|2 �
2π

q0

∑∞
n=1

(−1)n2n
2n+1

(
�

2q0

)2n
. (B34)

It is easy to see that all terms in the numerator of Eq. (B34)
are real whereas all terms in the denominator are imaginary.
Therefore, η is imaginary, i.e., it changes the wave number but
not the decay constant. This is true in any order with respect
to �

2|q0| .
The amplitudes CW ν are easily calculated by substituting

the expression for Cp from Eq. (B29) or Eq. (B33) into
Eq. (B20).
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