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We theoretically study the phase sensitivity of an SU(1,1) interferometer, in which the phase shift is induced
by a Kerr medium, together with a coherent state input and homodyne detection. Considering both ideal and
photon-loss cases, the results show that compared with the linear-phase-shift-based SU(1,1) interferometer, the
Kerr-phase-shift-based SU(1,1) [KSU(1,1)] interferometer can show the significant enhancement of the phase
sensitivity and quantum Fisher information even in the presence of photon losses. In particular, without photon
losses, the phase sensitivity of the KSU(1,1) interferometer can break through the standard quantum limit and
the Heisenberg limit (HL), even close to the super-HL. From the perspective of quantum resource theory, it
is interesting that the phase shift induced by the Kerr medium shows an obvious advantage of low-cost input
resources to obtain higher phase sensitivity and larger quantum Fisher information. These findings may have
potential applications for state-of-the-art quantum information technology.
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I. INTRODUCTION

Quantum metrology has a close relation to various im-
portant information areas, such as Bose-Einstein condensates
[1–3], gravitational wave detection [4,5], and quantum imag-
ing [6–8]. It has been widely studied and highly developed
in recent years. To meet the high precision demand, all kinds
of optical interferometers have been proposed. For instance,
as a general model, the Mach-Zehnder interferometer (MZI)
has been used as an essential tool to provide insight into tiny
variations in phase shift [9–11].

In order to improve precise measurement, generally
speaking, we can focus on the following three stages [12]:
probe generation [13–16], probe modification [17–21], and
probe readout [22,23], as illustrated in Fig. 1(a). In particular,
for probe generation, the phase sensitivity is always confined
to the standard quantum limit (SQL) when classical resources
are injected into the input ports of the MZI. To surpass the
SQL, nonclassical quantum states have widely been used as
the input of the MZI, such as entangled states [13], twin Fock
states [24], and NOON states [25], by which the Heisenberg
limit (HL) can even be reached [26,27]. Although the usage of
nonclassical states can greatly improve the phase sensitivity of
optical interferometers, these states with large average photon
numbers are not only more difficult to prepare, but also very
fragile especially in the presence of environmental interfer-
ences [28–30]. Thus, from the viewpoint of resource theory,
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it will be a challenging task with a simple input state [such
as a coherent state (CS)] to further improve the precision of
measurement, especially in the realistic case.

On the other hand, many efforts have been made in the
stage of probe modification, especially when Yurke et al.
first proposed an SU(1,1) interferometer with a linear phase
shift [20]. In this system, the active nonlinear optical devices,
such as four-wave mixers (FWMs) and optical parametric
amplifiers (OPAs), are used instead of the passive linear beam
splitters (BSs) used in the conventional MZI [31–37]. To beat
the SQL, Plick et al. applied strong CS as the input into the
SU(1,1) interferometer [33]. Subsequently, Li et al. proposed
a scheme of reaching HL sensitivity via a squeezed vacuum
state (SVS) plus a CS with homodyne detection [31]. It is
interesting that Hudelist et al. pointed out that the signal-
to-noise ratio (SNR) of the SU(1,1) interferometer is about
4.1 dB higher than that of the MZI under the same phase-
sensing intensity [38]. This point may be one of reasons for
focusing on this interferometer. Actually, this implies the role
of a nonlinear process for improving the precision.

In addition to the SU(1,1) nonlinear process, nonlinear
phase shifts have also been proposed for enhancing the phase
estimation, which can be viewed as another method of probe
modification [9,39–42]. For instance, in the traditional MZI,
Zhang et al. investigated the phase estimation by replacing
the linear phase shift with a nonlinear one [9] using a CS and
parity measurement. Jiao et al. proposed an improved pro-
tocol of nonlinear phase estimation by inserting a nonlinear
phase shift into the traditional MZI, with active correlation
output readout and homodyne detection [39]. More recently,
Chang et al. suggested a scheme for enhancing phase sensi-
tivity by introducing a nonlinear phase shifter to the modified
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(a)

(b)

FIG. 1. (a) The general process of estimating an unknown pa-
rameter φ. (b) Schematic diagram of SU(1,1) interferometer with a
nonlinear phase shifter S(φ, k). The two input ports of this interfer-
ometer are a coherent state |α〉a and a vacuum state |0〉b, respectively.
OPA is an optical parametric amplifier and Hom is a homodyne
detection.

interferometer consisting of a balanced BS and an OPA [41].
It is shown that the OPA potential can be stimulated by a
nonlinear phase shifter, which is absent for the case of the
linear phase shifter. In addition, the estimation of nonlinear
phase has also lots of applications, such as the third-order
susceptibility of the Kerr medium [39], phase-sensitive am-
plifiers [43,44], and nonclassical quantum state preparations
[45,46]. These results show that nonlinear optical devices can
be considered powerful tools to effectively achieve both high
accuracy and sensitivity. However, on one hand, the research
on nonlinear phase estimation are not as systematic as those
on the linear one. On the other hand, most works on phase pre-
cision are based on either specific measurement, especially in
the presence of photon loss, or direct calculation of quantum
Fisher information for an ideal case.

In this paper, we mainly focus on the nonlinear phase
estimation of a Kerr-phase-shift-based SU(1,1) [KSU(1,1)]
interferometer, together with CS plus vacuum state (VS) (de-
noted as |α〉a ⊗ |0〉b) as inputs and homodyne detection. Then,
both the phase sensitivity and the quantum Fisher information
(QFI) are analytically investigated with and without photon
losses. The results show that, without photon losses, the phase
sensitivity of the KSU(1,1) interferometer can beat the SQL
and the HL, even approaching the super-HL (SHL). Com-
pared to the linear-phase-shift-based SU(1,1) interferometer
and other input resources including CS ⊗ CS and SVS ⊗ CS,
the KSU(1,1) interferometer presents much greater QFI and
higher phase sensitivity closer to the quantum Cramér-Rao
bound (QCRB), even under the photon losses [34,47–50].
From the viewpoint of resource theory, since the CS ⊗ VS
can be seen as the most simple and easily available input, the
KSU(1,1) interferometer scheme has an obvious advantage
of low-cost input, compared to other input resources of the
SU(1,1) interferometer one.

The remainder of this paper is arranged as follows. In
Sec. II, we introduce the phase estimation model in the
KSU(1,1) interferometer. In Sec. III, we investigate the phase
sensitivity of the output signal with homodyne detection,
and then compare them with the conventional SU(1,1) inter-
ferometer. In Sec. IV, we derive the QFI of the KSU(1,1)
interferometer by invoking the characteristic function (CF)
approach. In Sec. V, we mainly consider the effects of photon

losses on both phase sensitivity and QFI of the KSU(1,1) in-
terferometer. Finally, conclusions are drawn in the last section.

II. PHASE ESTIMATION MODEL IN KSU(1,1)
INTERFEROMETER

Let us begin with the description of the phase estimation
model in the KSU(1,1) interferometer, where this interfer-
ometer consists of two OPAs (or FWMs) and a Kerr-type
medium, as shown in Fig. 1(b). Here we consider a CS |α〉a

with α = |α|eiθα and a VS |0〉b as the inputs in mode a and
mode b, respectively. Thus the probing state can be shown
as |ψin〉 = |α〉a ⊗ |0〉b. After going through the first OPA,
the resulting state is given by Ŝ(ξ1)|ψin〉, i.e., a two-mode
squeezed CS, where the operator Ŝ(ξ1) = exp(ξ ∗

1 âb̂ − ξ1â†b̂†)
represents the OPA process, ξ1 = g1eiθ1 , with a gain factor g1

and a phase shift θ1 and â (â†) and b̂ (b̂†) are the annihila-
tion (creation) operators for modes a and b, respectively. For
simplicity, we assume that the Kerr-type medium is inset into
the path b between the first and second OPAs to generate a
nonlinear phase shift φ to be estimated.

After the interaction between the state Ŝ(ξ1)|ψin〉 with the
Kerr-type medium, the corresponding modified state becomes

|ψφ〉 = Ŝ(φ, k)Ŝ(ξ1)|ψin〉, (1)

depending on the phase parameter φ, where

Ŝ(φ, k) = eiφ(b̂†b̂)k
(2)

is the nonlinear-phase-shift operator and the exponent k is the
order of the nonlinearity. In particular, for the case of k = 1,
Ŝ(φ, 1) = eiφb̂†b̂ just reduces to the linear phase shift, while
for the case of k = 2, Ŝ(φ, 2) = eiφ(b̂†b̂)2

corresponds to Kerr
nonlinear case. Throughout this paper, we only consider both
Kerr-type nonlinear medium and the linear one by taking k =
1, 2, respectively.

After the second OPA, the final output state is given by

|ψout〉 = Ŝ(ξ2)Ŝ(φ, k)Ŝ(ξ1)|ψin〉, (3)

where Ŝ(ξ2) = exp(ξ ∗
2 âb̂ − ξ2â†b̂†), with ξ2 = g2eiθ2 , is a

two-mode squeezing operator, corresponding to the second
OPA process. The Kerr nonlinear phase shifter Ŝ(φ, 2) sat-
isfies the transformation relation,

Ŝ†(φ, 2)b̂†Ŝ(φ, 2) = e−iφ b̂†e−i2φb̂†b̂, (4)

which is useful for the calculation of phase sensitivity. One
can refer to Appendix A for more details of the derivation for
this relation. Finally, the homodyne detection is performed on
mode a, so that one can read information about the value of φ.

III. PHASE SENSITIVITY VIA HOMODYNE DETECTION

Next, we investigate the phase sensitivity of the KSU(1,1)
interferometer. For this purpose, we need to choose a special
detection method for the readout of phase information at the
final output port. Actually, there are many different detection
methods, such as homodyne detection [11,31,32], intensity
detection [33,34,47], and parity detection [27,35,36]. Each
way of measurement has its own advantages. For example,
parity detection has been proven to be an optimal detection for
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FIG. 2. (a) Phase sensitivity based on homodyne detection and
(b) the output signal as a function of φ with g = 1, |α| = 1, and θα =
π

2 . The black dashed line and the blue solid line correspond to the
linear phase shift (k = 1) and the Kerr nonlinear phase shift (k = 2),
respectively.

linear phase estimation in lots of schemes [27,51]. Compared
with both intensity and parity detections, however, homodyne
detection can be not only easy to realize with current exper-
imental technology but also simple from the perspective of
theoretical calculation, thereby playing a key role in the field
of continuous-variable quantum key distribution [52–56]. For
this reason, we use the homodyne detection on mode a at
one output port to estimate the phase parameter φ, where the
detected variable is the amplitude quadrature X̂ , i.e.,

X̂ = (â + â†)/
√

2. (5)

Based on the error propagation formula, the phase sensitiv-
ity can be calculated by

�φ =
√
�2X̂

|∂〈X̂ 〉/∂φ| , (6)

with �2X̂ = 〈X̂ 2〉 − 〈X̂ 〉2. According to Eq. (6), for an ar-
bitrary value of φ, the corresponding phase sensitivity can
be analytically derived. For simplicity, the corresponding ex-
pression is not shown here. One can refer to Appendix B for
more details. In the following discussions, we assume that
the KSU(1,1) interferometer is in a balanced situation, i.e.,
θ2 − θ1 = π and g1 = g2 = g.

In Fig. 2(a), we show the phase sensitivity changing with
φ for the linear (k = 1) and nonlinear (k = 2) phase shifts
when given parameters g = 1, |α| = 1, and θα = π/2. It is
clearly seen that, for both cases above, the minimum value
of the phase sensitivity can be achieved at the optimal point
φ = 0. In addition, the phase sensitivity for k = 2 is always
significantly superior to that for k = 1 around the optimal

point. This implies that the nonlinear phase shift can be further
used to improve the phase sensitivity, compared to the linear
one. The reason lies in that the nonlinear phase shift can
increase the slope ∂〈X̂ 〉/∂φ of the output signal 〈X̂ 〉 at φ = 0,
which leads to the increase of the denominator in Eq. (6), as
shown in Fig. 2(b). In fact, this point will be clear by deriving
the phase sensitivity �φk for k = 1, 2 at φ = 0, which is
given by

�φ1 = 1√
NαNOPA

, (7)

�φ2 = �φ1

1 + NOPA(Nα + 2)
, (8)

where �φ1 represents the phase sensitivity of the traditional
SU(1,1) interferometer with a linear phase shift k = 1, Nα =
|α|2 is the mean photon number of the input coherent state,
and NOPA = 2 sinh2 g is the total photon number after the first
OPA with vacuum inputs. Obviously, �φ2 < �φ1.

Moreover, from Fig. 2(b) it is shown that the peak width
for the case of k = 2 is narrower than that for the case of k =
1. In this sense, the nonlinear phase shift can also improve
superresolution compared to the linear one. On the other hand,
to display the effects of both the coherence amplitude |α| and
the gain factor g on the phase sensitivity, at the optimal point
φ = 0, we also plot the phase sensitivity as a function of |α|
and g with different values of k = 1, 2, in Figs. 3(a) and 3(b),
respectively. It is found that the values of�φ rapidly decrease
with the increase of |α| and g, especially for the case of k = 2.

To further show the advantage of the KSU(1,1) interferom-
eter, we also make a comparison about phase sensitivities, in-
volving the SQL (�φ ∼ 1/

√
NTotal), the HL (�φ ∼ 1/NTotal),

and the SHL (�φ ∼ 1/N2
Total), as shown in Fig. 4. Note that

NTotal = 〈ψin|Ŝ†(ξ1)(â†â + b̂†b̂)Ŝ(ξ1)|ψin〉 is the total mean
photon number inside the KSU(1,1) interferometer. From
Fig. 4, the black dashed line is the sensitivity performance
of the linear phase shift, which can only break through SQL
and is always surpassed by that of the Kerr nonlinear phase
shift. In particular, the latter can break both the SQL and the
HL, but cannot beat the SHL. The reason may be that adopt-
ing the Kerr nonlinear phase shift to effectively improve the
maximum amount of information about the unknown phase
shift φ can result in a transition from HL (�φ ∼ 1/NTotal) to
SHL (�φ ∼ 1/N2

Total), as described in Refs. [9,57–62]. Nev-
ertheless, the common feature of these two is that the phase
sensitivity increases with the increase of |α| and g.

In addition, we make a comparison about the performance
of phase sensitivity. In Fig. 5, the phase sensitivity is plot-
ted as a function of the total average input photon number
N with several different input resources, including |α〉a ⊗
|β〉b, |α〉a ⊗ |ς, 0〉b and |α〉a ⊗ |0〉b used in the traditional
SU(1,1) interferometer (k = 1) and |α〉a ⊗ |0〉b used in the
KSU(1,1) interferometer (k = 2). It is shown that, for the tra-
ditional case, the phase sensitivity with the input |α〉a ⊗ |0〉b

performs the worst among these three inputs [31,32]. This
implies that the introduction of coherence amplitude |α| or
squeezing parameter ς is beneficial for the phase sensitivity
improvement. Particularly, it is interesting that, compared to
those input states of the traditional SU(1,1) interferometer,
the higher phase sensitivity can be achieved only using the
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FIG. 3. Phase sensitivity based on homodyne detection as a func-
tion of the gain factor g and the coherent amplitude |α| with θα =
π/2 and φ = 0 for (a) the linear phase shift (k = 1) and (b) the Kerr
nonlinear phase shift (k = 2), respectively.

simplest input |α〉a ⊗ |0〉b in the KSU(1,1) interferometer.
That is to say, for a simple input with less energy and less
resources, the phase sensitivity can be further improved by the
Kerr-medium-induced phase shift.

IV. THE QFI IN THE KSU(1,1) INTERFEROMETER

As an elegant approach, the QFI can be used to visually
describe the maximum amount of information about the un-
known phase shift φ, which is connected with the QCRB. In
fact, the QFI is the intrinsic information in a quantum state
and is independent of any specific detection scheme. In the
absence of losses, for a pure state, the corresponding QFI can
be calculated as [34,48,49]

F = 4[〈ψ ′
φ|ψ ′

φ〉 − |〈ψ ′
φ|ψφ〉|2], (9)

where |ψφ〉 = Ŝ(φ, k)Ŝ(ξ1)|ψin〉 is the state vector prior to the
second OPA and |ψ ′

φ〉 = ∂|ψφ〉/∂φ. Then, for the linear phase
shift (k = 1) and the Kerr nonlinear phase shift (k = 2), the
QFI can be, respectively, given by [45]

F1 = 4〈�2n̂〉, F2 = 4〈�2n̂2〉, (10)

where n̂ = b̂†b̂ is the photon number operator on mode b and
〈�2n̂ j〉 = 〈ψ̄out|(n̂ j )2|ψ̄out〉 − 〈ψ̄out|n̂ j |ψ̄out〉2 ( j = 1, 2) with
the state vector after the first OPA, i.e., |ψ̄out〉 = Ŝ(ξ1)|ψin〉.

FIG. 4. Phase sensitivity based on homodyne detection as a func-
tion of (a) the gain factor g with |α| = 1 and (b) the coherent
amplitude |α| with g = 1 (θα = π/2). The black dashed and blue
solid lines are respectively the linear phase shift (k = 1) and the Kerr
nonlinear phase shift (k = 2), while the purple, green, and red solid
lines respectively correspond to the SQL, HL, and SHL.

Using the normal ordering forms of the operators,

(b̂†b̂)4 = b̂†4b̂4 + 6b̂†3b̂3 + 7b̂†2b̂2 + b̂†b̂,

(b̂†b̂)2 = b̂†2b̂2 + b̂†b̂, (11)

and the characteristic function method for calculating average,
we have

F1 = 4
(
Ā2 + Ā1 − Ā2

1

)
, F2 = F1 + f , (12)

FIG. 5. Phase sensitivity based on homodyne detection as a func-
tion of the total average photon number N of input state with g = 1.
The orange and cyan dot-dashed lines respectively correspond to
SVS ⊗ CS and CS ⊗ CS as the inputs with the linear phase shift
(k = 1), as shown in Refs. [31,32], while the black dashed and blue
solid lines are CS ⊗ VS as the input with the linear phase shift
(k = 1) and the Kerr nonlinear phase shift (k = 2), respectively.
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FIG. 6. (a) The quantum Fisher information F and (b) the QCRB
as a function of gain factor g for |α| = 1 (θα = π/2), respectively.
The black dashed and blue solid lines correspond to linear phase shift
(k = 1) and Kerr nonlinear phase shift (k = 2), respectively.

with

f = 4[Ā4 + 6(Ā3 + Ā2) − Ā2(Ā2 + 2Ā1)], (13)

Ām = m!(sinh2m g)Lm(−|α|2), m ∈ {1, 2, 3, 4}, (14)

and Lm(•) are the Laguerre polynomials. One can refer to
Appendix C for more details about derivations of Ām. Based
on Eq. (12), we can give the QCRB�φQCRB,which represents
the lower bound of the phase sensitivity, i.e.,

�φQCRB = 1√
υFk

(k = 1, 2), (15)

where υ is the number of trials. For simplicity, here we set
υ = 1. In general, the smaller the values of �φQCRB, the
higher the phase sensitivity.

To clearly see this point, according to Eqs. (12) and (15),
at a fixed |α| = 1, Fig. 6 shows the QFI and the QCRB
changing with g for different k = 1, 2. It is clear that, for the
cases of k = 1, 2, the values of the QFI increase significantly
with the increase of g, thereby leading to more precise phase
sensitivity. Moreover, when given the same gain factor g, both
the QFI and the QCRB of k = 2 always outperform those of
k = 1, which distinctly shows the superiority of the nonlinear
phase shift compared to the linear case. This result originates
from the additional item f in Eq. (12), giving rise to the
increase of QFI.

As a comparison, we also consider the �φQCRB as a func-
tion of N for several different input resources in Fig. 7, similar
to the phase sensitivity (in Fig. 5). Some similar results are
obtained. For instance, although the QCRB with |α〉a ⊗ |0〉b is
worse than that with other resources in the traditional SU(1,1)

FIG. 7. The �φQCRB as a function of the total average photon
number N of input state with g = 1. The orange and cyan lines
respectively correspond to SVS ⊗ CS and CS ⊗ CS as the inputs
with the linear phase shift (k = 1), while the black and blue lines cor-
respond to CS ⊗ VS as the input with the linear phase shift (k = 1)
and the Kerr nonlinear phase shift (k = 2), respectively. The dashed
and solid lines correspond to the �φQCRB and the �φ, respectively.

interferometer [63], the smallest value of �φQCRB can be
realized by using |α〉a ⊗ |0〉b as the input of the KSU(1,1)
interferometer. In addition, from Figs. 5 and 7, it is found that,
compared with several different input resources in the tradi-
tional SU(1,1) interferometer, the simple input |α〉a ⊗ |0〉b of
the KSU(1,1) interferometer is closer to the ultimate phase
precision �φQCRB.

V. THE EFFECTS OF PHOTON LOSSES

In the realistic scenario, there always exists the interac-
tion between the interferometer system and its surrounding
environment, e.g., in the presence of photon losses, the infor-
mation leakage from the system to the environment. For this
reason, the system performance would drop severely. In gen-
eral, there are many types of interactions with the environment
on the interferometer [64,65], such as photon loss, imperfect
visibility, phase diffusion, and so on. Here, for simplicity, we
only study the effects of photon losses on both the phase
sensitivity and the QFI in the KSU(1,1) interferometer.

A. The effects of photon losses on the phase sensitivity

First, let us consider the effects of photon losses on
the phase sensitivity of the KSU(1,1) interferometer. The
Kerr interaction can be described by the Hamiltonian, i.e.,
ω(b̂†b̂)2. Thus when considering both the nonlinear effect and
photon losses, the density operator satisfies the following mas-
ter equation, i.e.,

d ρ̂

dt
= −iω[(b̂†b̂)2, ρ̂] + 2γ b̂ρ̂b̂† − γ b̂†b̂ρ̂ − γ ρ̂b̂†b̂, (16)

where γ is the loss-rate parameter and ω = −φ/t is the third-
order nonlinear susceptibility χ (3), with t being the time for
the light to cross the Kerr-type medium [9,66,67].

Upon rescaling the quantities with respect to the loss pa-
rameter γ ,

τ = γ t, ω̃ = −ω/γ , (17)
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we can rewrite Eq. (16) as

d ρ̂

dτ
= iω̃[(b̂†b̂)2, ρ̂] + 2b̂ρ̂b̂† − b̂†b̂ρ̂ − ρ̂b̂†b̂. (18)

Under the representation of Fock states, the solution for the
master equation can be calculated as

ρ̂(τ ) =
∞∑

m,n,l=0

C2
m,n,l ρ̂0,m+l,n+l |m〉〈n|, (19)

where ρ̂0,m+l,n+l = 〈m + l|ρ̂0|n + l〉 is the matrix element of
the initial state ρ̂0 and

C2
m,n,l =

√
(n + l )!(m + l )!

n!m!

�l

l!
eiω̃τ (m2−n2 )−τ (m+n), (20)

� = τ (1 − e−2(τ−iω̃τ (m−n)) )

τ − iω̃τ (m − n)
. (21)

One can refer to Appendix D for more details of the derivation
for this solution in Eq. (19). For the KSU(1,1) interferometer
scheme, when the initial state is ρ̂0 = Ŝ(ξ1)|ψin〉〈ψin|Ŝ†(ξ1)
after the first OPA, the corresponding matrix element can be
expressed as

ρ̂0,m+l,n+l = Nm,n,l (â
†)m+l exp(â†αsechg)|0〉

× 〈0| exp(âα∗ sechg)ân+l , (22)

where

Nm,n,l = e−|α|2 (− tanh g)m+n+2l sech2g√
(m + l )!(n + l )!

.

By substituting Eq. (22) into Eq. (19), one can finally obtain
the evolution of the density operator ρ̂(τ ) over the photon-
loss channel. After undergoing the second OPA, the density
operator of output states can be further given by

ρ̂out (τ ) = Ŝ(ξ2)ρ̂(τ )Ŝ†(ξ2). (23)

Based on Eq. (23), it is not difficult to obtain the phase
sensitivity �φL2 under the case of losses (not shown here for
simplicity). In particular, at the optimal point φ = 0, for the
KSU(1,1) interferometer in the presence of photon loss, the
phase sensitivity �φL2 is derived as

�φL2 =
√

2(cosh2 g − e−τ sinh2 g)2 − 1

2|Re(∂�n,l/∂φ|φ=0)| sinh g
, (24)

where we have set

�n,l = e−|α|2 sech2g
∞∑

n,l=0

εl

l!n!
e−(τ−iφ)(2n+1)

× (− tanh g)2n+2l+1ϒn,l , (25)

with

ε = τ (1 − e−2(τ−iφ) )

τ − iφ
,

ε1 = s + α∗sechg,

ε2 = f + αsechg,

ϒn,l = ∂2n+2l+1

∂sn+l∂ f n+l+1
exp(ε1ε2)|s= f =0. (26)

Note that for the traditional SU(1,1) interferometer in the
presence of photon losses, one can refer to Appendix D for
more details.

In order to visually see the differences between the pho-
ton losses and the ideal cases, at fixed values of the gain
factor g = 1 and the rescaled time τ = 0.4, we plot the phase
sensitivity �φLk (k = 1, 2) as a function of the total average
input photon number N , as shown in Fig. 8(a). It is shown
that, for the case of k = 1, the gap with |α〉a ⊗ |β〉b (cyan
lines) rather than other input resources, between the ideal and
loss cases, is relatively smaller, which means that the two CS
inputs are more robust against photon losses. In addition, the
worst performance is still kept by using CS ⊗ VS as the input
of the traditional SU(1,1) interferometer. However, the best
performance of phase sensitivity (blue lines) can be achieved
by using the CS ⊗ VS as the input of the KSU(1,1) interfer-
ometer, even in the presence of photon losses.

Further, we also consider the effects of the rescaled time τ
on phase sensitivity �φLk (k = 1, 2) for several different in-
put resources, involving CS ⊗ SVS, CS ⊗ CS, and CS ⊗ VS,
when given some values g = 1 and N = 10, as shown in
Fig. 8(b). It is clear that for k = 1, 2, the value of �φLk

increases with the increase of τ, which shows that the phase
sensitivity can be deeply influenced by the photon losses.
Even so, the value of �φLk for k = 2 with |α〉a ⊗ |0〉b is
smaller than that for k = 1 with inputting |α〉a ⊗ |β〉b (or
|α〉a ⊗ |ς, 0〉b), and then increases much more slowly with
the increase of τ. These results above imply that the phase
sensitivity of k = 2 with |α〉a ⊗ |0〉b is more robust against
photon losses.

B. The effects of photon losses on the QFI

For a realistic case, the output state after a lossy channel
is usually a mixed state rather than a pure one. Thus the
QFI cannot be directly discussed according to Eq. (6). In
this situation, one may appeal to the spectral decompositions
of density operator [68,69]. Rossi et al. used this method to
study the characterization of dissipative bosonic channels and
showed that the introduction of Kerr nonlinearity can enhance
estimation of the loss rate by Gaussian probes (coherent or
squeezed) [70,71]. Generally speaking, this method is diffi-
cult not only to obtain the spectral decompositions, but also
to derive the analytical expression of the QFI. Fortunately,
Escher et al. proposed a way to obtain an upper bound to the
QFI in the presence of photon losses [72]. The basic idea is
to purify the whole system involving an initial pure state and
an environment by introducing additional degrees of freedom,
so that the present problem is converted to the parameter
estimation under a unitary evolution ÛS+E (φ). We use this
way to obtain the analytical QFI in a realistic case. For this
purpose, we first make a brief review in the following.

Given an initial pure state |ψS〉 in the probe system S and an
initial state |0E 〉 in the environment, the purified state |ψS+E 〉
in the enlarged space can be given by

|ψS+E 〉 = ÛS+E (φ)|ψS〉|0E 〉

=
∞∑

l=0

�̂l (φ)|ψS〉|lE 〉, (27)
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FIG. 8. Phase sensitivity based on homodyne detection as a function of (a) the total average photon number N of the input state with g = 1,
τ = 0.4, and of (b) the rescaled time τ with g = 1, N = 10 (θα = π/2). The orange and cyan lines respectively correspond to SVS ⊗ CS and
CS ⊗ CS as the inputs with the linear phase shift (k = 1), while the black and blue lines correspond to CS ⊗ VS as the input with the linear
phase shift (k = 1) and the Kerr nonlinear phase shift (k = 2), respectively. The dashed and solid lines correspond to photon losses and no
photon losses, respectively.

where �̂l (φ) is the Kraus operator describing the photon
losses (also including the effect of phase shift), and |lE 〉 is
an orthogonal basis of the state |0E 〉. In this situation, for
the whole purified system, the QFI CQ[|ψS〉, �̂l (φ)] turns
out to be

CQ[|ψS〉, �̂l (φ)] = 4[〈ψ ′
S+E |ψ ′

S+E 〉 − |〈ψ ′
S+E |ψS+E 〉|2].

(28)

According to Eqs. (27) and (28), the upper bound
CQ[|ψS〉, �̂l (φ)] can be given in terms of Kraus operators,

CQ[|ψS〉, �̂l (φ)] = 4
[〈Ĥ1(φ)〉S − 〈Ĥ2(φ)〉2

S

]
, (29)

with the averages 〈·〉S being derived in |ψS〉 and

Ĥ1 =
∞∑

l=0

d�̂†
l (φ)

dφ

d�̂l (φ)

dφ
, (30)

Ĥ2 = i
∞∑

l=0

d�̂†
l (φ)

dφ
�̂l (φ). (31)

Actually, Eq. (29) provides an upper bound to the QFI
FL � CQ[|ψS〉, �̂l (φ)] for the reduced system [62]; thus one
needs to find the minimal value over all Kraus operators
{�l (φ)}, i.e.,

FL = min
{�l (φ)}

CQ[|ψS〉, �̂l (φ)]. (32)

Next, we consider the QFI of the KSU(1,1) scheme with
the photon losses placed before or after the Kerr nonlinear
phase shift in the b arm, as shown in Fig. 9. The corresponding
Kraus operator �̂l (φ) including the nonlinear phase can be

FIG. 9. Schematic diagram of the photon losses that occur before
and after the nonlinear phase. η is the transmissivity of the fictitious
BS; bv is the vacuum operator.

written as the general form

�̂l (φ) =
√

(1 − η)l

l!
eiφ[(b̂†b̂)2−2μ1b̂†b̂l−μ2l2]η

n̂
2 b̂l , (33)

where η denotes the strength of the photon loss. η = 0 and
η = 1 describe the complete absorption and lossless cases,
respectively. μ1 and μ2 are two variational parameters with
μ1 = μ2 = 0 andμ1 = μ2 = −1 corresponding to the photon
losses occurring before and after the Kerr nonlinear phase
shift, respectively.

To derive Eq. (29) using Eq. (33), we adopt the technique
of integration within an ordered product of operators (IWOP)
[73] to obtain the operator identity (see Appendix E), i.e.,

ηn̂n̂q =:
∂q

∂xq
e(ηex−1)b̂†b̂

∣∣∣∣
x=0

:, (34)

where : · : indicates the symbol of the normal ordering form,
which further leads to the formula (see Appendix E)

∞∑
l=0

(1 − η)l

l!
l pb̂†lηn̂n̂qb̂l = Dq,p[ηex + (1 − η)ey]b̂†b̂

, (35)

with Dq,p = ∂q+p

∂xq∂yp [·]|x=y=0 being a partial differential
operator.

Using Eq. (35) and the following transformation relations,

eλb̂†b̂b̂l e−λb̂†b̂ = e−λl b̂l ,

eλ(b̂†b̂)2
b̂l e−λ(b̂†b̂)2 = eλl2

b̂l e−2λl b̂†b̂, (36)

the upper bound of the QFI CQ[|ψS〉, �̂l (φ)] can be calculated
as (see Appendix F)

CQ[|ψS〉, �̂l (φ)] = 4(W 2
1 〈�2n̂2〉 − W2〈n̂3〉 + W3〈n̂2〉

− W4〈n̂〉 − W5
〈
n̂2

〉〈n̂〉 − W6〈n̂〉2), (37)

where 〈·〉 and 〈�2·〉 are, respectively, the average and vari-
ance under the state |ψS〉, where |ψS〉 = S(ξ1)|ψin〉 is the
state vector after the first OPA. Wj ( j = 1, 2, 3, 4, 5, 6) are
given in Appendix E and not shown here, for simplicity. In
particular, when CQ[|ψS〉, �̂l (φ)] reaches the minimum value
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FIG. 10. The �φQCRB as a function of (a) the transmissivity η
with g = 1 and |α| = 1, and (b) the gain factor g with |α| = 1. The
black and blue lines correspond to k = 1, 2, and the dashed and solid
lines correspond to the effects of photon losses and no photon losses,
respectively.

corresponding to the QFI FL, the variational parameters μ1

and μ2 are, respectively, given by

μ1opt = BE − CD

AD − 2ηB2
, (38)

μ2opt = AE − 2ηBC

AD − 2ηB2
, (39)

where A, B, C, D, and E are shown in Appendix E. Upon
substituting those optimal results μ1opt and μ2opt into CQ, the
minimum value of CQ, i.e., the QFI FL of the Kerr nonlinear
phase shift in the presence of photon losses, can be derived
theoretically.

Considering a CS and a VS input, here we numerically
analyze the QCRB �φQCRB which actually is equivalent to
the QFI due to the relation in Eq. (15). For fixed parameters
with |α| = 1 and θα = π/2, the QCRB �φQCRB as a function
of transmissivity η and gain factor g are shown in Fig. 10.
As a comparison, the linear case with k = 1 is also plotted
here. It is clear that the bound performance of phase sen-
sitivity becomes better and better with the increase of both
transmissivity η and gain factor g for k = 1, 2 [see the dashed
lines in Figs. 10(a) and 10(b)]. The QCRB for k = 2 always
outperforms that for k = 1, and the gap between them first
increases and then decreases with the increase of η and g.
Compared to the ideal cases [solid lines in Fig. 10(b)], it
is clear that photon losses present an obvious effect on the
QCRB [dashed lines in Fig. 10(b)]. However, it is interesting
that the gap of QCRB for k = 2 between ideal and nonideal
cases is significantly smaller than that for k = 1, which is also
going to be smaller with the increase of g especially for k = 2.
Again, this implies that the combination of Kerr nonlinearity

FIG. 11. The �φQCRB as a function of the total average photon
number N of the input state with g = 1, η = 0.6. The orange dashed
and cyan dashed lines respectively correspond to SVS ⊗ CS and
CS ⊗ CS as the inputs with the linear phase shift (k = 1), as shown
in Ref. [63]. The black and blue lines correspond to CS ⊗ VS as the
input with the linear phase shift (k = 1) and the Kerr nonlinear phase
shift (k = 2), respectively. The dashed and solid lines correspond to
the effects of photon losses and no photon losses, respectively.

and OPA can further reduce the influence of photon losses on
the QFI.

In addition, under the photon-loss processes (e.g., η =
0.6), we further consider the �φQCRB as a function of
total average input photon number N for those different input
resources above, when given parameter g = 1, as shown in
Fig. 11. Here the solid lines correspond to the ideal cases for
a comparison. It is clearly seen that, compared to other input
resources, the input |α〉a ⊗ |0〉b of the traditional SU(1,1) in-
terferometer has larger values of the QCRB with and without
photon losses, but for the KSU(1,1) interferometer, the input
|α〉a ⊗ |0〉b is always smaller values of the QCRB even in the
nonideal case. This means that the KSU(1,1) interferometer
with and without photon losses shows an obvious advantage
of low-cost input resources to obtain a better QCRB.

VI. CONCLUSIONS

In summary, we have investigated the phase estimation of
the KSU(1,1) interferometer, accompanied with |α〉a ⊗ |0〉b

and homodyne detection. One of the major innovations pre-
sented in this paper is that, by using the CF method and
the IWOP technique, the analytical expression of the QFI is
derived in both ideal and unideal scenarios. It is shown that
the increase of both gain factor g and coherent amplitude
|α| is beneficial for improving both the phase sensitivity and
the QCRB. Compared to the linear-phase-shift-based SU(1,1)
interferometer, the KSU(1,1) interferometer presents a sig-
nificantly better performance about both of them, especially
around the optimal point φ = 0. In particular, for the ideal
case, the KSU(1,1) interferometer at the large g and |α| levels
beats both the SQL and the HL, even approaching the SHL.
In addition, we investigate the effects of the photon losses
on the phase sensitivity by invoking the master equation. It is
found that the KSU(1,1) interferometer with inputting simple
resources CS ⊗ VS still provides a significant improvement
for the phase estimation in contrast to the linear-phase-shift-
based SU(1,1) interferometer in the presence of photon losses.
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To further show the advantages of the KSU(1,1) interfer-
ometer, with and without photon losses, we also evaluate the
QCRB changing with total average input photon number N
for several different input resources, including |α〉a ⊗ |0〉b,
|α〉a ⊗ |β〉b, and |α〉a ⊗ |ς, 0〉b, when given a parameter g =
1. It is found that the best performance can be achieved only
using the simplest input |α〉a ⊗ |0〉b in the KSU(1,1) interfer-
ometer, which is significantly superior to those input resources
in the traditional SU(1,1) interferometer. This means that,
for a simple input with less energy and less resources, the
KSU(1,1) interferometer also presents larger QFI. Finally,
we should mention that the QFI in the presence of photon
losses can be enhanced by using the quantum error correc-
tion, proposed by Zhou et al. [74], which may be a powerful
tool for considering and investigating state-of-the-art quantum
metrology in the future work.
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APPENDIX A: PROOF OF THE TRANSFORMATION
RELATION

For completeness, here we give the proof about the trans-
formation relation, i.e., Ŝ†(φ, 2)b̂†Ŝ(φ, 2) = e−iφ b̂†e−i2φb̂†b̂. It
is well known that any operator ζ̂ can be expanded in Fock
state space,

ζ̂ =
∞∑

m,n=0

ζm,n|m〉〈n|, (A1)

where ζm,n = 〈m|ζ̂ |n〉 is the matrix element ζ̂ in Fock space.
Thus, if we take

ζ̂ = Ŝ†(φ, 2)b̂†Ŝ(φ, 2)

= e−iφ(b̂†b̂)2
b̂†eiφ(b̂†b̂)2

, (A2)

then the matrix element ζm,n can be calculated as

ζm,n = √
n + 1e−iφ(2n+1)δm,n+1, (A3)

where we have used b̂†b̂|n〉 = n|n〉 and b̂†|n〉 = √
n + 1|n +

1〉. Substituting Eq. (A3)into Eq. (A1), we can get

ζ̂ = Ŝ†(φ, 2)b̂†Ŝ(φ, 2)

=
∞∑

m,n=0

√
n + 1e−iφ(2n+1)δm,n+1|m〉〈n|

=
∞∑

n=0

√
n + 1e−iφ(2n+1)|n + 1〉〈n|

= e−iφ
∞∑

n=0

e−i2nφ
√

n + 1|n + 1〉〈n|

= e−iφ b̂†e−i2φ(b̂†b̂). (A4)

APPENDIX B: PHASE ESTIMATION BASED ON
HOMODYNE MEASUREMENT

Combining Eqs. (3) and (5), we can derive the standard
deviation �X̂ as

�X̂ =
√

|U |2 + |V |2 + O, (B1)

where we have set

|U |2 + |V |2 = cosh2 2g − Re(eiφI ) sinh2 2g, (B2)

and

O = 2|α|2|u|2(1 − ∣∣I (g, φ)
∣∣2

) + 2Re(Z1 + Z2), (B3)

with

u = −e−iφ sinh2 g,

χ (g, φ) = 1

cosh2 g − ei2φ sinh2 g
,

I (g, φ) = χ2(g, φ) exp{|α|2[χ (g, φ) − 1]},
Z1 = 2(|α|2 + α∗2)u∗I (g, φ)[χ (g, φ) − 1] cosh2 g,

Z2 = α2u2I
∗
(g, 2φ)[e−i2φχ∗(g, 2φ) − I

∗
(g, 2φ)], (B4)

and the derivative of 〈X̂ 〉
∂〈X̂ 〉/∂φ = 2Re(Z3Z4), (B5)

where Re denotes the real part, and

Z3 = iα∗u∗I (g, φ),

Z4 = 1 + 4ei2φ |u|χ (g, φ) + 2|α|2ei2φ|u|χ2(g, φ). (B6)

Substituting Eqs. (B1) and (B5) into the error propagation for-
mula in Eq. (6), the explicit expression of the phase sensitivity
can be derived theoretically. In particular, when φ = 0,we can
get |U |2 + |V |2 = 1 and O = 0. Therefore, the standard devi-
ation �X̂ = 1. Moreover, utilizing the results from Eq. (B5)
at the optimal phase point φ = 0, one can find the absolute
value of the derivative,

|∂〈X̂ 〉/∂φ| =
√

NαNOPA[1 + NOPA(Nα + 2)] sin θα. (B7)

Then, after taking θα = π
2 leading to sin θα = 1, we can

obtain Eq. (8).

APPENDIX C: THE QFI IN THE IDEAL CASE

For a pure quantum system, the QFI can be calculated by
Eq. (10), where the average value of operator Am = b̂†mb̂m is
needed [see Eq. (11)]. In order to obtain the QFI, here we use
the characteristic function (CF) method. For any two-mode
system, the CF is defined as

CW (z1, z2) = Tr[ρoutD(z1)D(z2)], (C1)

where D(z) = exp(zâ† − z∗â) is the displacement operator
and ρout = |ϕout〉〈ϕout| is the density operator after the first
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OPA. Then the expectation value Ām = 〈b̂†mb̂m〉 can be cal-
culated as

Ām = DmCN (0, z2), (C2)

where CN (0, z2) = e
1
2 |z2|2CW (0, z2) is the CF corresponding to

normal ordering and Dm = ∂2m

∂zm
2 ∂ (−z∗

2 )m . . . |z2=z∗
2=0 is a partial

differential operator. Thus one can use Eq. (C2) to calcu-
late the expectation value Ām. For our scheme, the input
state |ψin〉 = |α〉a ⊗ |0〉b. After going through the first OPA
and the phase shift, the output state is given by |ψφ〉 =
Ŝ(φ, k)Ŝ(ξ1)|ψin〉. Here we should note that these average
values of Ām are under the state Ŝ(ξ1)|ψin〉. Then one can
obtain

Ām = m!(sinh2m g)Lm(−|α|2), (C3)

where we have utilized the relation between Laguerre polyno-
mials and two-variable Hermit polynomials,

Lm(xy) = (−1)m

m!
Hm,m(x, y), (C4)

and the generating function of Hm,m(x, y) is

Hm,m(x, y) = ∂2m

∂sm∂tm
exp (−st + sx + ty)|s=t=0. (C5)

Thus, substituting Eqs. (11) and (C3) into Eq. (10), one can
get the explicit expression of the QFI, for the linear phase shift
(k = 1) and Kerr nonlinear phase shift (k = 2), respectively:

F1 = 4
(
Ā2 + Ā1 − Ā2

1

)
,

F2 = F1 + f ,

f = 4 [Ā4 + 6(Ā3 + Ā2) − Ā2(Ā2 + 2Ā1)]. (C6)

APPENDIX D: THE PHASE SENSITIVITY OF THE SU(1,1)
INTERFEROMETER UNDER THE PHOTON LOSSES

Before showing the phase sensitivity of the traditional
SU(1,1) interferometer in the presence of photon losses, we
first derive Eq. (19). For this purpose, by using the represen-
tation of thermal entangled states [67], i.e.,

|η̃〉 = exp
(− 1

2 |η̃|2 + η̃b̂† − η̃∗b̂†
f + b̂†b̂†

f

)|0, 0 f 〉, (D1)

where b̂†
f is a fictitious mode accompanying the real photon

creation operator b̂†, |0, 0 f 〉 = |0〉 ⊗ |0 f 〉, and |0 f 〉 is annihi-
lated by b̂ f with the relations [b̂ f , b̂

†
f ] = 1 and [b̂, b̂†

f ] = 0,
one can give the formal solution of Eq. (18):

|ρ̂〉 = exp[iω̃τ ((b̂†b̂)2 − (b̂†
f b̂ f )2)

+ τ (2b̂b̂ f − b̂†b̂ − b̂†
f b̂ f )]|ρ̂0〉, (D2)

where |ρ̂0〉 = ρ̂0|η̃ = 0〉. Finally, using Eq. (D2) and the oper-
ator identity [67]

eϑ (T̂ +σ Ĝ) = eϑ T̂ exp[σ (1 − e−ϑ� )Ĝ/�], (D3)

which is valid for [T̂ , Ĝ] = �Ĝ, one can achieve Eq. (19).
Next, similar to the derivation of Eq. (19), the effects

of photon losses on the phase sensitivity of the SU(1,1)

interferometer that can also be described by the master
equation

d ρ̂

dt
= −iω[b̂†b̂, ρ̂] + 2γ b̂ρb̂† − γ b̂†b̂ρ̂ − γ ρ̂b̂†b̂. (D4)

According to Eq. (17), we can get

d ρ̂

dτ
= iω̃[b̂†b̂, ρ̂] + 2b̂ρ̂b̂† − b̂†b̂ρ̂ − ρ̂b̂†b̂, (D5)

and the solution for the master equation can be given by

ρ̂(τ ) =
∞∑

l=0

(1 − e−2τ )l

l!
e−(τ−iω̃τ )b̂†b̂b̂l ρ̂0b̂†l e−(τ+iω̃τ )b̂†b̂.

(D6)

After the second OPA, the density operator of output states is
then given by

ρ̂out (τ ) = Ŝ(ξ2)ρ̂(τ )Ŝ†(ξ2). (D7)

Based on the density operator ρ̂out (τ ), one can derive an
analytical expression of the phase sensitivity of the SU(1,1)
interferometer with the optimal point φ = 0 in the presence
of photon losses. Specially, for several different input states,
including |α〉a ⊗ |0〉b (CS&VS), |α〉a ⊗ |β〉b (CS&CS), and
|α〉a ⊗ |ς, 0〉b (CS&SVS), we can respectively obtain the cor-
responding phase sensitivity as

�φL1(CS&V S) =
√
 (g, τ ) − 1

2|α|e−τ sinh2 g
,

�φL1(CS&CS) =
√
 (g, τ ) − 1

2e−τ (|β| cosh g + |α| sinh g) sinh g
,

�φL1(CS&SV S) =
√
 (g, τ )!(r) − 1

|α|e−τ sinh 2g
, (D8)

where  (g, τ ) = 2(cosh2 g − e−τ sinh2 g)2 and !(r) =
(cosh r − sinh r) cosh r.

APPENDIX E: THE PROOF OF EQS. (34) AND (35)

Using the completeness relation of the Fock state, one
can get

ηn̂n̂q
∞∑
λ=0

|λ〉〈λ| =
∞∑
λ=0

ηλλq b̂†λ

λ!
|0〉〈0|b̂λ

=:
∞∑
λ=0

ηλλq 1

λ!
b̂†λe−b̂†b̂b̂λ :

=: e−b̂†b̂
∞∑
λ=0

(ηb̂†b̂)λ

λ!

∂q

∂xq
exλ

∣∣∣∣∣
x=0

:

=:
∂q

∂xq
e(ηex−1)b̂†b̂

∣∣∣∣
x=0

:, (E1)

where we have used the normal ordering form of the vacuum
projection operator,

|0〉〈0| =: e−b̂†b̂ : . (E2)
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Then, using Eq. (E1), one can calculate the following sum
operator, i.e.,

∞∑
l=0

(1 − η)l

l!
l pb̂†lηn̂n̂qb̂l

=
∞∑

l=0

(1 − η)l

l!
l p : (b̂†b̂)l ∂

q

∂xq
e(ηex−1)b̂†b̂

∣∣∣∣
x=0

:

=:
∞∑

l=0

[
(1 − η)b̂†b̂

]l

l!

∂q+p

∂xq∂yp
e(ηex−1)b̂†b̂+yl

∣∣∣∣∣
x=y=0

:

=:
∂q+p

∂xq∂yp
e[ηex+(1−η)ey−1]b̂†b̂

∣∣∣∣
x=y=0

:

= ∂q+p

∂xq∂yp
[ηex + (1 − η)ey]b̂†b̂

∣∣∣∣
x=y=0

. (E3)

In the last step, we have used the following operator identity
about eλb̂†b̂, i.e.,

eλb̂†b̂ =: e(eλ−1)b̂†b̂ :, (E4)

to remove the symbol of normal ordering.

APPENDIX F: THE SPECIFIC EXPRESSION OF CQ

Using Eqs. (29), (35), (31), and (33), one can get

CQ = 4(W 2
1 〈�2n̂2〉 − W2〈n̂3〉 + W3〈n̂2〉

− W4〈n̂〉 − W5〈n̂2〉〈n̂〉 − W6〈n̂〉2), (F1)

where we have set

W1 = w1η
2 − 2w2η − μ2,

W2 = 2η
(
3w2

1η
3 − 3w3η

2 − w4η + w5
)
,

W3 = η
(
11w2

1η
3 − 2w6η

2 + w7η − 4w1w2
)
,

W4 = η(6η3 − 12η2 + 7η − 1)w2
1,

W5 = 2η(1 − η)w1W1,

W6 = η2(1 − η)2w2
1, (F2)

as well as

w1 = 1 + 2μ1 − μ2,

w2 = μ1 − μ2,

w3 = 1 + 2(3μ1 − 2μ2)

+ (2μ1 − μ2)(4μ1 − 3μ2),

w4 = 7μ2 − 6μ1 + 24μ1μ2 − 14μ2
1 − 9μ2

2,

w5 = μ2w1 − 2w2
2,

w6 = 9 + 40μ1 − 22μ2 + 44μ2
1 − 48μ1μ2 + 13μ2

2,

w7 = 7 + 40μ1 − 26μ2 + 52μ2
1 − 64μ1μ2 + 19μ2

2. (F3)

In particular, when μ1 = μ2 = −1, one can obtain the ex-
pected result, i.e.,

FL2 � CQ = 4〈�2n̂2〉. (F4)

While for μ1 = μ2 = 0, corresponding to the photon losses
before the Kerr nonlinear phase shift, one can get the upper
bound, i.e.,

FL2 � CQ = 4[η4〈�2n̂2〉 + 6η3(1 − η)〈n̂3〉
+ η2(11η2 − 18η + 7)〈n̂2〉
− η(6η3 − 12η2 + 7η − 1)〈n̂〉
− 2η3(1 − η)〈n̂2〉〈n̂〉 − η2(1 − η)2〈n̂〉2], (F5)

as expected.
In order to minimize CQ, one can take ∂CQ/∂μ1 =

∂CQ/∂μ2 = 0 for this purpose. Using Eqs. (F1)–(F3), it is not
difficult to obtain two optimization parametersμ1opt andμ2opt,
which are, respectively, given by

μ1opt = BE − CD

AD − 2ηB2
, μ2opt = AE − 2ηBC

AD − 2ηB2
, (F6)

where we have set A = 2B1H , B = B2H , C = B3H , D =
B4H , and E = ηB5H. Here the column matrix H and row
matrix Bj ( j = 1, 2, 3, 4, 5) are defined as the following:

H = (
〈
�2n̂2

〉
,
〈
n̂3

〉
,
〈
n̂2

〉
, 〈n̂〉, 〈n̂2

〉〈n̂〉, 〈n̂〉2)T ,

A1 = η − 1,

A2 = 6η2 − 6η + 1,

A3 = 11η2 − 11η + 2,

A4 = 2η − 1,

B1 = (ηA1,−A2,A3,−A2, 2ηA1,−ηA1),

B2 = (
A2

1,−3A1A4,A3 − A4,−A2,A1A4,−ηA1
)
,

B3 = (η2,−3ηA4,A3 + A4,−A2, ηA4,−ηA1),

B4 = η
(
η−1A3

1,−6A2
1,A3 − 2A4,−A2, 2A2

1,−ηA1
)
,

B5 = (
ηA1,−A2,A3,−A2, η

2 + A2
1,−ηA1

)
, (F7)

where the average value 〈·〉 is in the state after the first OPA.
Here we should note that only H are dependent on the input
state, and the other quantities (such as Aj and Bj) are inde-
pendent of the input state. If CQ can take the minimum value,
then it is also the QFI FL2 of the Kerr nonlinear phase shift in
the presence of photon losses. In our scheme, if we choose the
states |ψin〉 = |α〉a ⊗ |0〉b as the inputs of the KSU(1,1) inter-
ferometer, then the states after the first OPA are Ŝ(ξ1)|ψin〉.
Thus the column matrix H can be calculated as

H =
[

F2

4
, (Ā3 + 3Ā2 + Ā1),

(Ā2 + Ā1), Ā1, Ā1(Ā2 + Ā1), Ā2
1

]T

, (F8)

where F2 is a lossless result in Eq. (12) and Ā j ( j = 1, 2, 3)
and Wl (l = 1–6) can be obtained from Eqs. (C3) and (F2),
respectively.
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Further substituting Eqs. (F8) and (F6) into Eq. (F1), the
upper bound to the QFI CQ(|α〉a ⊗ |0〉b) in our scheme can be
obtained as

CQ(|α〉a ⊗ |0〉b)

= W 2
1 F2 − 4

[
W2(Ā3 + 3Ā2 + Ā1) − W3(Ā2 + Ā1)

+ W4Ā1 + W5Ā1(Ā2 + Ā1) + W6Ā2
1

]
, (F9)

which is just the analytical expression of the QFI. In Wl (l =
1–6), the variational parametersμ1 andμ2 should be replaced,
respectively, by

μ1opt (|α〉a ⊗ |0〉b) = BE − CD

AD − 2ηB2
,

μ2opt (|α〉a ⊗ |0〉b) = AE − 2ηBC

AD − 2ηB2
, (F10)

where A = 2B1H , B = B2H , C = B3H , D = B4H , and E =
ηB5H with the column matrix H are shown in Eq. (F8).

In addition, for a comparison between the linear phase
shift and the Kerr nonlinear one, here we give the QFI
with the linear phase shift in the presence of photon
losses, for several different input states, including |α〉a ⊗
|0〉b (CS&VS), |α〉a ⊗ |β〉b (CS&CS), and |α〉a ⊗ |ς, 0〉b

(CS&SVS). In a similar way to derive Eq. (F9), for these states
above together with the linear phase shift, the QFI FL1 can be

calculated as [72]

FL1(CS&V S) = 4ηF1Ā1

(1 − η)F1 + 4ηĀ1
,

FL1(CS&CS) = 4ηF(CS&CS)〈n̂〉(CS&CS)

(1 − η)F(CS&CS) + 4η〈n̂〉(CS&CS)
,

FL1(CS&SV S) = 4ηF(CS&SV S)〈n̂〉(CS&SV S)

(1 − η)F(CS&SV S) + 4η〈n̂〉(CS&SV S)
, (F11)

where 〈n̂〉(CS&CS) and 〈n̂〉(CS&SV S) are given by

〈n̂〉(CS&CS) = (|α| sinh g + |β| cosh g)2 + sinh2 g,

〈n̂〉(CS&SV S) = (|α|2 + 1) sinh2 g + cosh2 g(sinh2 r), (F12)

and F(CS&CS) and F(CS&SV S) are the lossless results which can
be seen from Ref. [63], i.e.,

F(CS&CS)

= (|α|2 + |β|2) cosh 4g + sinh2(2g) + 2|α|β| sinh 4g

+ |α|2 + |β|2 − 2(|α|2 − |β|2) cosh 2g, (F13)

F(CS&SV S) = cosh2 (2g)
[

1
2 sinh2 (2r) + |α|2]

+ sinh2(2g)(|α|2e2r + cosh2 r)

+ |α|2(1 − 2 cosh 2g)

+ 1
4 (cosh 4r − 1)(2 cosh 2g + 1). (F14)
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