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Degenerate squeezing in a dual-pumped integrated microresonator:
Parasitic processes and their suppression
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Using a general Hamiltonian treatment, we theoretically study the generation of degenerate quadrature
squeezing in a dual-pumped integrated microring resonator coupled to a waveguide. Considering a dual-pump
four-wave mixing configuration in an integrated Si3N4 platform, and following the coupled-mode theory
approach, we investigate the effects of parasitic quantum nonlinear optical processes on the generation of
squeezed light. Considering five resonance modes in this approach allows us to include the most important
four-wave mixing processes involved in such a configuration. We theoretically explore the effects of the pump
detunings on different nonlinear processes and show that the effects of some of the parasitic processes are
effectively neutralized by symmetrically detuning the two pumps. This yields a significant enhancement in the
output squeezing quality without physically changing the structure, but suffers from the trade-off of requiring
substantially higher pump power for a fixed target level of squeezing.
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I. INTRODUCTION

Squeezed states of light, in which the quantum fluctuations
in one quadrature component are suppressed to a level below
the quantum noise limit, have a wide range of applications
in quantum metrology [1–4], quantum imaging [5–7], and
communication [8,9]. In addition, continuous variable (CV)
entanglement can be efficiently produced using squeezed light
and linear optics [10–12]. Of the methods used to generate
squeezed states [13–16], the most common involve the use
of either spontaneous four-wave mixing (SFWM) [17] or
spontaneous parametric down-conversion (SPDC) [18]. Im-
plementations in bulk optics can suffer from scalability and
complexity issues, but with the development of integrated
photonics technology it is possible to overcome these limita-
tions by integrating squeezed-light sources on one monolithic
platform [19–22]. In particular, squeezed light generation via
single-pass waveguides has been reported [23], and nonlinear
optical resonators such as microring resonators, whisper-
ing gallery mode resonators, and coupled-resonator optical
waveguides can be employed to enhance the squeezing of the
generated light [24–33].

Many CV protocols, such as CV quantum sampling [19],
require squeezing in a single mode. One effective strategy
for achieving this is based on dual-pump SFWM in mi-
croring resonators [19,34]. In general, the SFWM process
involves the conversion of two pump photons to signal and
idler photons [35], where from energy conservation we have
h̄ωP1 + h̄ωP2 = h̄ωS + h̄ωI , with ωP1 and ωP2 the two input
frequencies, and ωS and ωI the generated signal and idler
frequencies. For squeezing in a single mode, a prerequisite
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is to be in the degenerate squeezing regime, where the signal
and idler frequencies are within the same resonance. How-
ever, other concurrent processes can lead to parasitic effects
polluting the squeezed light [34,36,37]. The study of such
parasitic processes is essential to the identification of proper
suppression strategies.

In this work, we consider a ring resonator, made of a
third-order nonlinear optical material such as silicon nitride
(Si3N4), dual-pumped through a side-coupled waveguide. The
optical properties of such a structure, schematically shown in
Fig. 1(a), can be studied theoretically using either the Lugiato-
Lefever equations (LLE) or coupled-mode theory (CMT). The
former, which is a spatiotemporal method, requires the solu-
tion of only a single partial differential equation, and hence
is computationally cost effective. However, it does not allow
for an individual investigation of the consequences of each
frequency mixing process. In contrast, for low-enough input
pump powers one can employ CMT, which is a spectrotem-
poral method, limited to only five resonances; we label them
as {m, p1, s, p2, n}. As shown in Fig. 2, p1 and p2 are the two
resonances used for pumping, s is the desired resonance for
the squeezed light, and m and n are the adjacent resonances
of p1 and p2, respectively. In this paper we use the CMT
method to identify the role that the different frequency mixing
processes play in determining the squeezing and antisqueez-
ing of light in resonance s, restricting ourselves to pump
powers where an LLE analysis confirms that the restriction to
five resonances is a reasonable approximation. This extends
previous studies, where the calculations were limited to only
three resonances, or only considered a single pump [26,38].
The dual-pump configuration allows us to study degenerate
squeezing, and the inclusion of the two adjacent resonances
enables an investigation of the effects of parasitic processes
on the squeezing.
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FIG. 1. (a) Schematic of microring resonator, with the nominal
radius R, side-coupled to a physical channel and an effective phan-
tom channel, which is introduced to account for scattering losses.
The x coordinate for the phantom channel increases in the opposite
direction to that of the real channel. The inset shows the electric field
intensity of the fundamental mode at 1550 nm inside the ring. The
parameters for the ring and channel are given in Sec. X. (b) The range
KJ of k, given by Eq. (8), associated with the Jth ring resonance.

The paper is organized as follows. In Secs. II to V we in-
troduce the Hamiltonian terms associated with the ring fields,
the channel fields, the coupling of the ring and channel, and
the nonlinearity. With advances in both the fabrication of
integrated photonic structures and the measurement of their
nonlinear quantum optical properties, a careful identification
of the parameters that arise in the dynamical equations, which

m p1 s p2 n

DP-SFWM
HP-SFWM

SP-SFWM
SP-SFWM

BS-FWM
BS-FWM

FIG. 2. Four-wave mixing processes that occur in a ring res-
onator when two resonances p1 and p2 are pumped. DP-SFWM leads
to squeezing of the s mode while the unwanted processes of SP-
SFWM and BS-FWM generate noise and impurify the output. The
corresponding conjugate of each process is shown with the dotted
arrows with the same color. For the sake of illustration we present
these processes in four different levels. The lowest level shows the
two BS-FWM processes and the second level shows the HP-SFWM
process. In the third level we present the two SP-SFWM processes,
and the DP-SFWM process is shown in the fourth level.

we present here, is in order. The correlation functions of inter-
est are presented in Sec. VI, the dynamical equations that must
be solved in Sec. VII, and the operator dynamics in Sec. VIII.
The results for a sample structure are given in Sec. IX, and
we conclude in Sec. X. Some of the calculation details are
relegated to the three Appendixes.

II. RING FIELDS

We begin by considering an isolated ring resonator as
shown in Fig. 1(a), but imagined far from any channel. A
description that respects the symmetry uses the cylindrical
coordinates z, the angle φ, and the radial coordinate ρ =√

x2 + y2; see Fig. 1. It is convenient to introduce a nom-
inal radius R and use ζ = Rφ as a coordinate in place of
φ. Denoting r⊥ = (ρ, z), a volume element is dr = dr⊥dζ ,
where dr⊥ = R−1ρdρdz, and ζ varies from 0 to L ≡ 2πR.
We assume that the linear response of the structure can be
described by a relative dielectric constant ε(r, ω), and from
the symmetry of the system the relative dielectric constant
depends only on r⊥, ε(r, ω) = ε(r⊥, ω). We label the modes
of the ring by κJ , the wave number associated with their
propagation along the ring; we have κJ = 2πnJ/L, where n j

is an integer, and here we consider nJ > 0. We consider only
one transverse field structure relevant for each κJ , and identify
its frequency by ωJ ; this could be easily generalized. The
Hamiltonian for the modes in the ring is then of the standard
form

Hring =
∑

J

h̄ωJb†
JbJ , (1)

neglecting the zero-point energy, as we do throughout; here

[bJ , b†
J ′ ] = δJJ ′ , (2)

as usual. It is convenient to specify the electromagnetic field
amplitude of each mode in terms of the displacement field and
magnetic field [26], in particular, writing

D(r) =
∑

J

√
h̄ωJ

2
bJDJ (r) + H.c., (3)

where

DJ (r) = dJ (r⊥; ζ )eiκJ ζ

√
L

. (4)

The dependence of dJ (r⊥; ζ ) on ζ arises due to its components
in the xy plane. As ζ varies they will lead to a change in direc-
tion of dJ (r⊥; ζ ), despite the fact that d∗

J (r⊥; ζ ) · dJ (r⊥; ζ ) will
be independent of ζ ; we can then take d∗

J (r⊥; ζ ) · dJ (r⊥; ζ ) =
d∗

J (r⊥; 0) · dJ (r⊥; 0).

III. CHANNEL FIELDS

We next consider an isolated channel, as shown in the lower
part of Fig. 1(a), but imagined far from any ring. Here we
take the channel to range along the x coordinate, and now
use r⊥ = (y, z). Considering only one transverse field struc-
ture associated with each wave number k, in analogy with the
treatment of the ring resonator, the displacement field operator
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can be written [26]

D(r) =
∫ √

h̄ωk

4π
a(k)dk (r⊥)eikxdk + H.c., (5)

where ωk is the frequency of the field characterized by k, the
integral is over the range of k for which such modes exist, and

[a(k), a†(k′)] = δ(k − k′). (6)

The normalization condition for dk (r⊥) is given in Ap-
pendix A. The Hamiltonian of the channel [26] is given by

Hchannel =
∫

h̄ωka†(k)a(k)dk. (7)

It is useful to break up the range of k in (5,7) into portions
associated with each ring resonance. Letting kJ be the value of
k for which ωkJ = ωJ , the frequency of the Jth ring resonance,
we set the range KJ of k associated with ring resonance J to
be the values of k for which

kJ − (kJ − kJ−1)

2
< k � kJ + (kJ+1 − kJ )

2
, (8)

[see Fig. 1(b)]; then we write

D(r) =
∑

J

∫
KJ

√
h̄ωk

4π
a(k)dk (r⊥)eikxdk + H.c.

≈
∑

J

√
h̄ωJ

2
dJ (r⊥)eikJ xψJ (x) + H.c., (9)

where we put dJ (r⊥) ≡ dkJ (r⊥) and

ψJ (x) =
∫
KJ

a(k)ei(k−kJ )x dk√
2π

. (10)

In the second line of Eq. (9) we neglected the variation of ωk

and dk (r⊥) as k varies over the range (8), and approximated
them as ωJ and dJ (r⊥), respectively. Clearly ψJ (x) commutes
with ψJ ′ (x′) and ψ

†
J ′ (x′) for J ′ �= J; if the integral in Eq. (10)

ranged from −∞ to ∞ we would have

[ψJ (x), ψ†
J (x′)] = δ(x − x′). (11)

This is not exact, of course, but for fields ψJ (x) with relevant
components k centered near kJ and far from the boundaries of
KJ specified by Eq. (8) it will serve as a good approximation
and we adopt it. Breaking the integral in the Hamiltonian
(7) into different resonance ranges KJ and neglecting group-
velocity dispersion within each range by writing ωk = ωJ +
vJ (k − kJ ) in range KJ , where vJ is the group velocity of the
channel field at kJ , we have

Hchannel =
∑

J

∫
KJ

h̄[ωJ + vJ (k − kJ )]a†(k)a(k)dk

=
∑

J

h̄ωJ

∫
ψ

†
J (x)ψJ (x)dx − 1

2
ih̄

×
∑

J

vJ

∫ (
ψ

†
J (x)

∂ψJ (x)

∂x
− ∂ψ

†
J (x)

∂x
ψJ (x)

)
dx.

(12)

Finally, the operator for the total power flow in the waveguide
is given by

P(x) =
∫

S(r) · x̂ dr⊥, (13)

where S(r) is the Poynting vector operator. Omitting terms
that will be rapidly varying when we move to a Heisenberg
picture, we find [39]

P(x) →
∑

J

h̄ωJvJψ
†
J (x)ψJ (x). (14)

IV. RING-CHANNEL COUPLING

We now adopt an effective point-coupling model between
the channel and the ring [see Fig. 1(a)]. If we take ζ = 0 to
correspond to the location on the ring closest to the channel,
then the field in the ring at that point will include contributions
from all the bJ with prefactors that will vary little as we move
from one J to the next. Taking x = 0 to be the point in the
channel closest to the ring, the Hamiltonian for an effective
point-coupling model [26] is then

Hcoupling =
∑

J

(h̄γ ∗
J b†

Jψ (0) + H.c.), (15)

where we expect the coupling constants γJ to vary little as we
move from one J to the next.

Most of the nonclassical attributes of light, such as squeez-
ing and entanglement, are fragile with respect to loss [40–42];
this is an important issue when resonant structures are being
studied. To take into account scattering losses in the ring we
adopt a beam-splitter approach [26] by introducing a “phan-
tom” channel [Fig. 1(a)] with a coupling to the ring given by

H ph
coupling =

∑
J

(h̄γ ∗
J phb†

Jψph(0) + H.c.), (16)

where ψJ ph(x) is a field operator for the phantom channel

ψJ ph(x) =
∫
Kph

J

aph(k)ei(k−kJ ph )x dk√
2π

(17)

[cf. Eq. (10)], with a phantom channel Hamiltonian

H ph
channel =

∑
J

∫
Kph

J

h̄[ωJ + vJ ph(k − kJ ph)]a†
ph(k)aph(k)dk

(18)

[cf. Eq. (12)], where γJ ph, aph(k), kJ ph, and vJ ph are the
phantom channel analogs of the quantities γJ , a(k), kJ , and
vJ characterizing the actual channel and its coupling to the
ring. We take the initial state of the phantom channel to be a
vacuum, and note that we take the x coordinate of the phantom
channel to run in the opposite direction of that of the actual
channel.

V. NONLINEARITY

For the χ
i jkl
(3) nonlinearity considered here, the nonlinear

Hamiltonian is given [43–45] by

HNL = − 1

4ε0

∫
dr�i jkl

(3) (r)Di(r)D j (r)Dk (r)Dl (r), (19)
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where neglecting dispersion in this term we have

�
i jkl
(3) (r) = χ

i jkl
(3) (r)

ε2
0 n8(r)

, (20)

with n(r) is the local index of refraction; we take the integral in
Eq. (19) to range over the volume of the ring, where the non-
linear effect will be important. In this paper we focus on five
resonances of interest, taking the index J in equations such
as (3) to range over the labels {m, p1, s, p2, n} (see Fig. 2).
Here p1 and p2 label the two strong pumps, leading to the
generation of photons within resonances m, s, and n by the
nonlinear processes we detail below; since the frequencies of
these five resonances are very close, the neglect of dispersion
in Eq. (20) should be a good approximation. Using the dis-
placement field (3) in Eq. (19), and neglecting corrections due
to normal ordering, we find

HNL = − h̄

2

∑
J,K,L,M

�JKLMb†
Jb†

K bLbM , (21)

where we kept only the terms involving two creation and
annihilation operators since the others will be rapidly varying
in an interaction picture and can be neglected, and

�JKLM = 3h̄

4ε0

√
ωJωKωLωM

×
∫

dr�i jkl
(3) (r)

[
Di

J (r)D j
K (r)

]∗
Dk

L(r)Dl
M (r), (22)

where we used Eq. (3) and �κ = κL + κM − κJ − κK = 0 for
the energy-conserving terms. Again, since the frequencies of
the five resonances of interest are close to each other, and thus
to a reference frequency ω, for the energy-conserving terms
that arise all the coefficients of �JKLM are essentially the same
and we can set �JKLM → �. In Appendix A we show that

� = h̄ωv2γ

L , (23)

where v is the group velocity of light propagating in the ring
and γ is the waveguide nonlinear parameter. This corrects a
factor of 2 error that appeared in a recent study [19], and is in
agreement with earlier work [46].

The relevant processes described by HNL, and their associ-
ated Hamiltonians, are then self-phase modulation (SPM)

HSPM = −h̄
�

2
(b†

p1
b†

p1
bp1 bp1 + b†

p2
b†

p2
bp2 bp2 ), (24)

and cross-phase modulation (XPM)

HXPM = −2h̄�(b†
sb†

p1
bsbp1 + b†

sb†
p2

bsbp2 + b†
p1

b†
p2

bp1 bp2

+ b†
mb†

p1
bmbp1 + b†

mb†
p2

bmbp2 + b†
nb†

p1
bnbp1

+ b†
nb†

p2
bnbp2 ), (25)

which lead to frequency shifts of the ring resonances, together
with dual-pump spontaneous four-wave mixing (DP-SFWM)

HDP-SFWM = −h̄�b†
sb†

sbp1bp2 + H.c., (26)

single-pump SFWM (SP-SFWM)

HSP-SFWM = −h̄�(b†
mb†

sbp1 bp1 + b†
nb†

sbp2 bp2 ) + H.c., (27)

Bragg-scattering FWM (BS-FWM)

HBS-FWM = −2h̄�(b†
p2

b†
mbp1 bs + b†

p1
b†

nbp2 bs) + H.c., (28)

and hyperparametric SFWM

HHP-SFWM = −2h̄�b†
mb†

nbp1bp2 + H.c., (29)

which are processes that lead to transitions between the
different resonances. These processes, and the associated res-
onances involved, are illustrated in Fig. 2. For each process
the solid lines indicate the transitions that will be more impor-
tant for the excitation scenario considered; the dotted lines,
corresponding to the Hamiltonian terms denoted by +H.c. in
the expressions above, indicate the reverse transitions. For
example, for DP-SFWM, which is the desired process for
producing degenerate squeezed vacuum states in resonance
s, the important transitions are those where pump photons
from p1 and p2 are destroyed and two photons in resonance
s are created; the reverse transition, where two photons from
resonance s are destroyed and pump photons at p1 and p2 are
created, will be less important since there will always be many
more photons in p1 and in p2 than in s.

Finally, then, we can then write

HNL({bK}, {b†
L}) = HDP-SFWM + HSPM + HXPM

+ HSP-SFWM + HBS-FWM + HHP-SFWM.

(30)

VI. CORRELATION FUNCTIONS

We now write our full Hamiltonian as

H = H0 + V ({Ai}), (31)

where

H0 = Hring + Hchannel + H ph
channel,

V ({Ai}) = Hcoupling + H ph
coupling + HNL({bJ}, {b†

L}), (32)

and the set {Ai} consists of all the Schrödinger operators
appearing in Hcoupling, H ph

coupling, and HNL({bJ}, {b†
L}). The

evolution operators U0(t, t ′) and U (t, t ′) for H0 and H (t ),
respectively, satisfy

ih̄
∂

∂t
U0(t, t ′) = H0U0(t, t ′), (33)

ih̄
∂

∂t
U (t, t ′) = H (t )U (t, t ′), (34)

with U (t, t ) = U0(t, t ) = I for all t .
For the Hamiltonians H and the initial kets we consider,

there will be times tmin and tmax such that for all times t < tmin

and all times t > tmax the term V ({Ai}) will have no effect on
the evolution of the Schrödinger ket |�(t )〉. We choose t0 <

tmin and t1 > tmax, and define

|�in〉 = U0(0, t0)|�(t0)〉, (35)

|�out〉 = U0(0, t1)|�(t1)〉. (36)

Then, since |�(t1)〉 = U (t1, t0)|�(t0)〉 we have

|�out〉 = U (t1, t0)|�in〉
= U (∞,−∞)|�in〉, (37)
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where

U (t, t ′) ≡ U0(0, t )U (t, t ′)U0(t ′, 0), (38)

and the extension to ±∞ in the second line of Eq. (37) follows
because in the added times V ({Ai}) has no effect. This is
the approach of scattering theory. For our applications in this
paper we will be primarily interested in correlation functions,
and so a Heisenberg strategy, which is however connected to
this, will be more useful.

Defining Heisenberg operators referenced to t0 in the usual
way,

AH
i (t ) = U†(t, t0)AiU (t, t0), (39)

we use Eq. (38) to write U (t, t0) in terms of U (t, t0) and U0,
and we find

AH
k (t ) = U†

0 (0, t0)

(∑
l

gkl (t )Āl (t )

)
U0(0, t0). (40)

Here

Āl (t ) = U †(t,−∞)AlU (t,−∞), (41)

where we used the fact that U (t, t0) = U (t,−∞), while the
gkl (t ) are the functions that characterize an evolution accord-
ing to only H0,

U†
0 (t, 0)AiU0(t, 0) =

∑
j

gi j (t )A j, (42)

and we have taken the set {Ai} to be expanded, if necessary,
so that these equations can be written for the Ai originally
appearing in V ({Ai}; t ); we will see examples of Eq. (42), and
its extensions, below. The Āl (t ) are easily seen to satisfy the
equations

ih̄
d

dt
Āl (t ) =

[
Āl (t ),V

({∑
j

gi j (t )Ā j (t )

})]
, (43)

with the initial conditions Āl (−∞) = Al . Using Eq. (40) we
then have

〈�(t )|Ak|�(t )〉 = 〈�(t0)|AH
k (t )|�(t0)〉

=
∑

l

gkl (t )〈�in|Āl (t )|�in〉, (44)

〈�(t0)|AH
k (t )AH

l (t ′)|�(t0)〉
=

∑
l, j

gkl (t )gi j (t
′)〈�in )|Āl (t )Ā j (t

′)|�in〉, (45)

and so on for higher-order correlation functions, for arbi-
trary times t and t ′. Since for t > tmax we have U (t,−∞) =
U (∞,−∞), if t and t ′ are greater than tmax we have

〈�(t0)|AH
k (t )|�(t0)〉 →

∑
l

gkl (t )〈�in|Āl (∞)|�in〉, (46)

〈�(t0)|AH
k (t )AH

l (t ′)|�(t0)〉
→

∑
l, j

gkl (t )gi j (t
′)〈�in)|Āl (∞)Ā j (∞)|�in〉, (47)

and the remaining dynamics, governed only by H0, is captured
by the gi j (t ).

VII. DYNAMICAL EQUATIONS

In Appendix B we show that

V

({∑
j

gi j (t )Ā j (t )

})

= h̄
∑

J

γ ∗
J b̄J (t )ψ̄J (−vJt, t ) + H.c.

+ h̄
∑

J

γ ∗
J phb̄J (t )ψ̄J ph(−vJ pht, t ) + H.c.

+ HNL({b̄K (t )e−iωK t }, {b̄†
L(t )eiωLt }), (48)

where, for example, ψ̄ (−vJt, t ), is the operator ψ̄ (x, t ) [see
Eq. (41)] evaluated at x = −vJt . Using this in Eq. (43) we
find the equation for ψ̄J (x, t ) is

ih̄
∂ψ̄J (x, t )

∂t
= h̄γJ b̄J (t )δ(x + vJt ), (49)

and subject to the initial condition ψ̄J (x,−∞) = ψJ (x) the
solution is

ψ̄J (x, t ) = ψJ (x) − i
γJ

vJ
b̄J

(
− x

vJ

)
θ

(
t + x

vJ

)
, (50)

where as usual θ (t ) = 1, 1/2, 0 as t > 0,= 0,< 0; thus

ψ̄J (−vJt, t ) = ψJ (−vJt ) − i
γJ

2vJ
b̄J (t ), (51)

and similarly for ψ̄J ph(−vJ pht, t ). Using these results in
Eq. (43) for b̄J (t ) we find(

d

dt
+ �̄J

)
b̄J (t ) = sJ (t ) + 1

ih̄
[b̄J (t ), HNL

× ({b̄K (t )e−iωK t }, {b̄†
L(t )eiωLt })], (52)

where the Schrödinger operator

sJ (t ) = −iγ ∗
J ψJ (−vJt ) − iγ ∗

J phψJ ph(−vJ pht ), (53)

and

�̄J ≡ |γJ |2
2vJ

+ |γJ ph|2
2vJ ph

(54)

describes the decay of the field in the ring due to coupling
to the channel and the scattering losses, the scattering losses
described by coupling to the phantom channel.

VIII. OPERATOR DYNAMICS

For the resonances L = p1, p2 associated with the
two pumps we make the classical approximation, taking
ψL(−vLt ) → 〈ψL(−vLt )〉, where in the center of long inci-
dent pump pulses we put

〈ψL(−vLt )〉 =
√

PL

vLh̄ωL
e−i�Lt ≡ CLe−i�Lt (55)

[cf. Eq. (14)], defining a CW approximation; here PL is
the incident power, and �L a detuning from the ring res-
onance at ωL. Similarly, for L = p1, p2 we take b̄L(t ) →
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〈b̄L(t )〉 ≡ βL(t ). Then the classical limit of Eq. (52) can be
constructed for βp1 (t ) and βp2 (t ), and introducing

Fp1 (t ) ≡ βp1 (t )ei�p1 t , (56)

Fp2 (t ) ≡ βp2 (t )ei�p2 t , (57)

they can be written as(
d

dt
+ �̄p1 − i�(|Fp1 (t )|2 + 2|Fp2 (t )|2) − i�p1

)
Fp1 (t )

= −iγ ∗
p1

Cp1 , (58)(
d

dt
+ �̄p2 − i�(|Fp2 (t )|2 + 2|Fp1 (t )|2) − i�p2

)
Fp2 (t )

= −iγ ∗
p2

Cp2 , (59)

in which we assumed there is no incoming pump energy
in the phantom channel. The steady-state solutions of these
equations are affected by SPM and XPM, which determine
the resonant frequencies of the structure in the presence of the
nonlinearity. We refer to these new resonant frequencies as
the “hot-cavity resonances.” Note that these two equations can
easily be solved numerically for the steady-state values of Fp1

and Fp2 , and one can use the transformations (56) and (57) to
determine the quantities βp1 (t ) and βp2 (t ).

With these in hand we can construct the equations for the
fluctuating quantities

b̃J (t ) ≡ b̄J (t ) − 〈b̄J (t )〉, (60)

which will be driven by the quantities

s̃J (t ) ≡ d̄J (t ) − 〈d̄J (t )〉, (61)

where since 〈s̄J (t )〉 = 0 for J = m, s, n we have 〈b̄J (t )〉 = 0
for those J . For reasons we discuss below, it is convenient to
work with the quantities

fJ (t ) ≡ b̃J (t )eiRJt , (62)

where

Rs = �p1 + �p2

2
+ ωp1 + ωp2 − 2ωs

2
, (63)

Rp1 = �p1 , (64)

Rp2 = �p2 , (65)

Rm = 3�p1 − �p2

2
+ 3ωp1 − ωp2 − 2ωm

2
, (66)

Rn = 3�p2 − �p1

2
+ 3ωp2 − ωp1 − 2ωn

2
. (67)

These are detuning-like quantities; in the limit where group-
velocity dispersion is negligible and both pumps are equally
detuned, �p2 = �p1 = �, all the R parameters are equal to
that single detuning RJ = �.

The resulting dynamical equations, presented in Ap-
pendix C, can be written in matrix form

d

dt
F (t ) = M(t )F (t ) + D(t ), (68)

where

F (t ) =

⎛
⎜⎜⎜⎜⎜⎝

↑
fl (t )
↓
↑

f †
l (t )
↓

⎞
⎟⎟⎟⎟⎟⎠, (69)

D(t ) =

⎛
⎜⎜⎜⎜⎜⎝

↑
s̃l (t )eiRl t

↓
↑

s̃†
l (t )e−iRl t

↓

⎞
⎟⎟⎟⎟⎟⎠, (70)

and M(t ) is a matrix, the components of which can be read
from Eqs. (C1)–(C5). From the form (68) we can construct
a formal solution by introducing a Green matrix G(t, t ′)
satisfying

dG(t, t ′)
dτ

= M(t )G(t, t ′), (71)

and G(t ′, t ′) = I for all t ′. We find the solution of Eq. (68) as

F (t ) = G(t, t0)F (t0) +
∫ t

t0

G(t, t ′)D(t ′) dt ′. (72)

We now consider t0 → −∞, and we can expect that
G(t,−∞) vanishes because, due to coupling with the
real and phantom channels, the initial state of the ring will be
inconsequential at much later times. Therefore, we can write

F (t ) =
∫ t

−∞
G(t, t ′)D(t ′) dt ′. (73)

The Green’s matrix can be written as

G(t, t ′) =
(

GD(t, t ′) GC (t, t ′)
G∗C (t, t ′) G∗D(t, t ′)

)
, (74)

where each element itself is a 5×5 matrix. This allows us to
write

fl (t ) =
∑

l ′

∫ t

−∞
GD

ll ′ (t, t ′) s̃l ′ (t
′)eiRl′ t ′

dt ′

+
∑

l ′

∫ t

−∞
GC

ll ′ (t, t ′) s̃†
l ′ (t

′)e−iRl′ t ′
dt ′, (75)

and correspondingly for f †
l (t ). Then using the commutation

relations

[s̃l (t
′), s̃l ′ (t

′′)] = 0, (76)

[s̃l (t
′), s̃†

l ′ (t
′′)] = 2�̄l δll ′ δ(t ′ − t ′′), (77)

it is possible to evaluate the correlation functions
〈ψin| fl (t ) fl ′ (t )|ψin〉 and 〈ψin| f †

l (t ) fl ′ (t )|ψin〉, and thus
〈ψin|b̃l (t )b̃l ′ (t )|ψin〉 and 〈ψin|b̃†

l (t )b̃l ′ (t )|ψin〉. We find

〈ψin| fJ (t2) fJ ′ (t1)|ψin〉

= 2 �(t2 − t1)
∑

m

�̄m

∫ t1

−∞
GD

Jm(t2, t ′)GC
J ′m(t1, t ′) dt ′

+2 �(t1 − t2)
∑

m

�̄m

∫ t2

−∞
GD

Jm(t2, t ′)GC
J ′m(t1, t ′) dt ′, (78)
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and

〈ψin| f †
J (t2) fJ ′ (t1)|ψin〉

= 2 �(t2 − t1)
∑

m

�̄m

∫ t1

−∞
G∗C

Jm(t2, t ′)GC
J ′m(t1, t ′) dt ′

+ 2 �(t1 − t2)
∑

m

�̄m

∫ t2

−∞
G∗C

Jm(t2, t ′)GC
J ′m(t1, t ′) dt ′.

(79)

The reason for introducing the quantities fl (t ) in Eq. (62) is
that, in the CW limit where Fp1 (t ) and Fp2 (t ) are independent
of time, the coefficients of the matrix M(t ) are also
independent of time. In that limit, when M(t ) = M, the
elements of the full Green’s matrix G(t, t ′) can be written as

Gi j (t, t ′) =
∑

k

Vik eλk (t−t ′ ) V −1
k j , (80)

where the λk are the eigenvalues of M, and the matrix element
Vik is the ith component of the eigenvector associated with the
kth eigenvalue.

IX. RESULTS

In a CW experiment the squeezing spectrum can be de-
termined by mixing the output of channel J with a bright
coherent local oscillator (LO) at frequency ωJ , and with a
tunable phase, on a 50/50 beam splitter; the outputs are then
detected on two balanced fast photodiodes. The difference
photocurrent from these detectors is used to capture the power
spectral density of this photocurrent signal. Writing the signal
and the local oscillator electric fields as

E (t ) ∝ ψ̄J (−vJt,∞)e−iωJ t + ψ̄
†
J (−vJt,∞)eiωJ t (81)

and

ELO(t ) ∝ α e−iωJ t+iθ + α∗ eiωJ t−iθ , (82)

where the LO is considered classical with amplitude α, for a
fixed θ the squeezing spectrum is given by [47,48],

S(�) = vg

∫ ∞

−∞
dτ e−i�τ 〈Xθ (t )Xθ (t + τ )〉, (83)

where

Xθ (t ) ≡ ψ̄J (−vJt,∞)e−iθ + ψ̄
†
J (−vJt,∞)eiθ . (84)

In Appendix C we derive an analytic expression for S(�).
For our sample calculations we consider the ring and

waveguide, each with a cross section of 1500 nm×800 nm
(see Fig. 1), to be made of Si3N4, for which, unlike Si, there is
no two-photon absorption near 1550 nm. We take the structure
to be fully clad in SiO2. The ring is assumed to have ra-
dius R = 113 μm, with loaded and intrinsic quality factors of
Q = 2×105 and Qint = 1×106, respectively; these factors are
achievable with current technology [34,49]. Considering that
the five resonances are spectrally close to each other, identical
loaded quality factors can be considered for them, and thus the
decay of intensity in the ring resonator for each resonance is
about the same. The nonlinear coefficient � = 2π×0.62 Hz

is calculated by simulating the mode profile distribution in the
ring resonator using Lumerical’s Mode Solutions. We initially
consider CW pump fields at 1550.8 nm and 1553.6 nm, which
in the “cold cavity limit,” i.e., when the microresonator is sub-
ject only to weak fields and nonlinear effects can be neglected,
correspond to pump fields at ring mode orders nJ = 830 (p1)
and nJ = 832 (p2); we later envision tuning to get maximum
output intensity by compensating the resonances’ frequencies
shift due to SPM and XPM. The vacuum wavelength of res-
onance s in the cold cavity limit is 1551.9 nm, corresponding
to ring mode order nJ = 831.

Even in the cold cavity limit the frequency separations
between adjacent resonances are not identical due to group-
velocity dispersion. For instance, the frequency separation
between the resonances s and p2 is 3 MHz more than the
separation between the resonances s and p1. However, this is
so much smaller than the average of these two separations,
which is 0.2 THz, as well as so much smaller than the opti-
cally induced shifts and the resonance linewidths discussed
below, that the results we present would not be significantly
modified were group-velocity dispersion neglected in the
calculation.

Optically induced shifts arise as the resonances m, s, and
n experience XPM from each of the pumps, while the reso-
nances p1 and p2 are affected by both SPM and XPM. By
“hot-cavity” resonances we mean the cavity resonances in the
presence of these nonlinear effects. We always consider equal
pump powers in this paper, and so the frequency difference
between the hot and cold cavity resonances will be 4U for
the modes m, s, and n, and 3U for the modes p1 and p2,
where U = −�|Fp1 |2 = −�|Fp2 |2 is the frequency shift of
each pump resonance due to SPM. As a result, the frequency
separations of the resonances in the hot resonator, as shown
schematically in Fig. 3, differ from each other.

In practice, the pump detunings and the input powers are
the main parameters one can adjust to optimize the squeezing
achieved in the output. Although increasing the input power
results in enhancing DP-SFWM, the parasitic processes SP-
SFWM and BS-FWM are enhanced as well. Increasing the
input power can also lead to a transition into bistable or
OPO regimes [21,50]. In this paper we avoid these regimes
and only consider input powers for which the five-resonance
approximation is valid, as confirmed by LLE simulations that
show negligible intensity in the higher-order sidebands at the
pump intensities we consider.

In Fig. 4 we present the squeezing spectrum for dif-
ferent total input powers, where the pumps have equal
powers; for each configuration the pumps are tuned to the
hot-cavity resonance. For the total input powers of 11,
13, 15 dBm, the hot-cavity detunings of the pumps are
−2π×49.3, −2π×76.3, and −2π×122.5 MHz, respectively,
which are small fractions of the resonance linewidth 2�̄s ≈
2π×0.97 GHz. As can be seen, the highest degree of squeez-
ing and antisqueezing are achieved with the highest total input
power. These calculations include the desired process, DP-
SFWM, as well as all the others.

Our CMT analysis allows us to selectively turn on or off
individual nonlinear processes, thus offering us an insight
into their different roles. In Fig. 5 we plot the squeezing
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FIG. 3. Illustration of the hot (shown in dashed red) and cold (shown in solid blue) cavity resonances. The resonance frequencies do not
shift equally since the modes p1 and p2 are affected by SPM and XPM, while the modes m, s, and n are affected only by XPM. Considering the
frequency shift caused by SPM to be U , the modes p1 and p2 move 3U , and the other modes move 4U toward lower frequencies. The detuning
of the pumps from the hot-cavity resonances are indicated by δp1 and δp2 .

spectrum for different combinations of processes for a fixed
input power, always keeping the two pumps at the hot-cavity
resonances and always including the DP-SFWM process.

If only the DP-SFWM process is considered, we see that
we achieve higher squeezing than any other circumstance,
indicating that all the additional processes considered here are
parasitic. The antisqueezing is larger than the squeezing due
to the scattering loss from the ring resonator.

If only the DP-SFWM and SP-SFWM processes are
considered, we find that the squeezing decreases and the
antisqueezing increases from what would result if only
DP-SFWM were present. This arises because uncorrelated
photons are injected into resonance s by SP-SFWM (see
Fig. 2). On the other hand, if only the DP-SFWM and
BS-FWM processes are considered, we find that both the
squeezing and the antisqueezing decrease from what would
result if only DP-SFWM were present. This arises because
photons are removed from resonance s by BS-FWM (see
Fig. 2), and although the associated noise leads to a decrease
in the squeezing, the removal of photons leads to a decrease in
the antisqueezing as well. Finally, we see that if we include all
processes except HP-SFWM, and then compare with the situa-
tion when all processes are included, we find a small decrease
in squeezing and a small increase in antisqueezing when
HP-SFWM is included. This arises because HP-SFWM in-

FIG. 4. Squeezing (solid lines) and antisqueezing (dashed lines)
spectra for different input powers. The pumps are on resonance with
the hot resonator. Black solid line is shot-noise level. The two outer
lines correspond to 15 dBm and the two inner lines correspond to
11 dBm.

jects photons in resonances m and n (see Fig. 2), which
then can lead to photons being injected into resonance s
through BS-FWM, analogous to the effect of SP-SFWM. Of
the parasitic processes, SP-SFWM is the most effective in
reducing the squeezing, justifying efforts to design a struc-
ture to suppress this unwanted process without significantly
compromising the generation efficiency [34]. Even without
modifying the structure, e.g., by adding an auxiliary ring [34],
and without relying on materials or designs yielding larger
group velocity dispersion so that dispersion engineering can
be employed [51,52], pump detuning can be be employed as
a parameter to affect the squeezing achieved in the output,
and when chosen properly can lead to enhanced squeezing by
suppressing the unwanted processes. To enhance the squeez-
ing generated in the resonance s, the effectiveness of the
SP-SFWM process should be degraded while keeping the
DP-SFWM process as effective as possible.

FIG. 5. Squeezing (solid lines) and antisqueezing (dashed lines)
spectra for different combinations of nonlinear processes. Black solid
line is shot-noise level. The pumps are on resonance with the hot
resonator. The highest squeezing is achieved when only DP-SFWM
is included and the lowest is obtained when all the processes are
involved. As can be seen at 0 GHz, the squeezing levels of the
different nonlinear process combinations can be listed from bottom
to top as (1) DP-SFWM, (2) DP-SFWM and BS-FWM, (3) DP- and
SP-SFWM, (4) no HP-SFWM, and (5) all processes. Similarly for
the antisqueezing level at at 0 GHz we have (1) DP-SFWM and
BS-FWM, (2) DP-SFWM, (3) no HP-SFWM, (4) all processes, and
(5) DP- and SP-SFWM.
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FIG. 6. Squeezing in dB (top) when only DP-SFWM is included
and (bottom) when both SP- and DP-SFWM are included as func-
tions of the detunings of the first and the second pumps from the
hot-cavity resonances. Both cases were simulated using the same
total input power of 16 dBm.

This can be achieved by breaking the frequency matching
condition for SP-SFWM, while keeping that for DP-SFWM.
As can be seen in Figs. 2 and 3, this can be done by intro-
ducing δp1 and δp2 as detunings of the first and second pumps
from the hot-cavity resonances, respectively. To illustrate the
effects of these pump detunings on the squeezing achieved in
resonance s, in Fig. 6 we plot the squeezing in that resonance
as a function of δp1 and δp2 , for a fixed total input power of 16
dBm. Focusing on SP-SFWM as the main parasitic process
degrading the squeezing, we plot the generated squeezing
in resonance s considering only DP-SFWM, and considering
both DP-SFWM and SP-SFWM. When only DP-SFWM is
considered, the highest squeezing is achieved where the two
pumps tuned very close to the hot-cavity resonances, δp1 =
δp2 = 0; the maximum squeezing actually occurs when the
detunings are negative and on the order of 2π×10 MHz, due
to both SPM and XPM effects (see Fig. 3) and group velocity
dispersion. However, when SP-SFWM processes are included
the highest amount of squeezing occurs far from δp1 =δp2 = 0.
There are two local minima in the squeezing at points very
close to the symmetric detuning line δp1 = −δp2 . Here energy
conservation still allows DP-SFWM, but forbids SP-SFWM.
Yet while such a detuning configuration suppresses the SP-

FIG. 7. Highest squeezing (solid lines) achievable for different
pump powers with and without SP-SFWM. The values were obtained
by searching for the highest values in the 2D detuning space (similar
to Fig. 6) for each total input power in the range; we also plot the
value of the antisqueezing (dotted lines) under these conditions. The
top and the bottom lines correspond to the SP- and DP-SFWM,
and the two middle lines correspond to only DP-SFWM. The inset
shows the difference between the highest squeezing when including
SP-SFWM and the case when only DP-SFWM is considered.

SFWM processes, it also changes the energy of the pump
fields in the ring, Ep1 and Ep2 , respectively, for the first and
second pumps, and hence decreases the number of generated
correlated photons in resonance s via DP-SPWM. Note that
the close proximity of the two minima to the symmetric detun-
ing line arises because of the low group velocity dispersion of
the structure; this would hold generally over a few resonances
for Si3N4 structures, but would be violated for wide frequency
spans, and indeed for narrow frequency spans in structures
made of other materials, such as Si. To emphasize the role
of SP-SFWM on squeezing, in Fig. 7 we plot the highest
squeezing achievable by adjusting the pump detunings for a
range of input powers, with and without including SP-SFWM;
we also plot the antisqueezing under these conditions. Clearly
in both instances the squeezing improves as the total input
power is increased. However, the parasitic effect of SP-SFWM
becomes more significant at higher pump powers; as shown in
the inset of Fig. 7, the difference in the maximum squeez-
ing with and without SP-SFWM becomes more significant
as the power of the pumps is increased. The result is that
a higher pump power penalty is required to compensate for
the parasitic effects of SP-SFWM as the level of desired
squeezing is raised. If one accepts this penalty, then signifi-
cant improvements in squeezing can be achieved by detuning.
Restricting our calculations to the main processes, DP-SFWM
and SP-SFWM, in Fig. 8 we plot the level of squeezing
that can be achieved keeping the product Ep1 Ep2 fixed by
adjusting the input powers, as different symmetric detunings
from the hot-cavity resonance (which to good approximation
yield the best values of squeezing) are considered. The results
presented in Fig. 8 with solid lines are obtained by setting
Ep1 Ep2 = 69.6 pJ2, which is the product of the energies for
the total input power at 15 dBm when the pumps are both
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FIG. 8. Squeezing (top) and ratio of the total generated photons
in the modes m and n to the number of generated photons in the
mode s (bottom) as a function of the detuning of the first pump from
the hot-cavity resonance for three different scenarios of fixing the
product of the energies at 69.6 pJ2 (solid lines), total energy in the
ring at 16.7 pJ (dashed lines), and antisqueezing at 2.64 dB (dotted
lines). The pumps are detuned symmetrically, i.e., δp1 = −δp2 , and
the calculations included DP-SFWM and SP-SFWM.

tuned to the hot-cavity resonances. As the product of powers
is kept fixed and symmetric detuning is introduced, the total
input power ranges up to 21.5 dBm over the range of detuning
shown in Fig. 6. Moving away from the center (δp1 = 0),
there is a significant enhancement in squeezing, which is
the result of suppressing the SP-SFWM while keeping the
effect of DP-SFWM essentially unchanged. To confirm this, in
Fig. 8 we also plot the corresponding ratio of the total number
of generated photons in the modes m and n to the number
of photons in the mode s. Calculating the squeezing while
holding fixed the total energy in the ring, Ep1 + Ep2 , or the
antisqueezing in the mode s, leads to similar improvements in
the squeezing, as shown in the top diagram of Fig. 8, linked
to the same behavior of the photon-number ratio, as shown in
the bottom of that figure.

X. CONCLUSION

We studied the generation of squeezed vacuum states via
spontaneous four-wave mixing (SFWM) in a dual-pumped
nonlinear ring resonator, taking into account scattering losses
in the ring and the plethora of third-order nonlinear optical
processes. We applied coupled-mode theory and only con-
sidered five resonances, which is a reasonable approximation
for the range of input pump powers considered. This ap-
proach allowed us to investigate the role of different processes
by including or omitting them in the calculation, which is
not possible in calculations based on the Lugiato-Lefever
equations (LLE). Including self- and cross-phase modulation
allowed us to take into account hot-cavity frequency shifts.
We studied CW excitation and employed a Green’s function
strategy to calculate the relevant physical quantities, such as
squeezing and the number of generated photons. We showed
that parasitic processes generate uncorrelated photons in the

resonance of interest, and therefore degrade the quality of
squeezing in the output; the most important of these parasitic
processes is single-pump SFWM. We demonstrated that with-
out changing the ring resonator structure the use of symmetric
pump detuning can suppress these unwanted processes, in
particular, by breaking the energy conservation condition for
single-pump SFWM but not that for dual-pump SFWM. How-
ever, a power penalty must be accepted because the dual-pump
SFWM is then detuned from resonance. We intend to present
LLE calculations, which are valid at higher pump powers than
the five-resonance calculation used here, and studies in the
regime of pulsed excitation, in future work.

It is worth mentioning that the parameters considered in
this work, while achievable and indeed typical, have not been
optimized to provide maximum squeezing generation effi-
ciency. Moreover, it is possible to combine the pump-detuning
technique with dispersion engineering to suppress the para-
sitic processes more efficiently in a dual-pumped single-ring
resonator configuration. Finally, considering that the purpose
of this paper is to emphasize the effect of different nonlinear
optical processes on squeezing and how we can overcome the
parasitic processes via pump detuning, we have not consid-
ered the lossy effect of imperfect mode matching at the chip
interface which may affect the squeezing quality.
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APPENDIX A

In this Appendix, we first write the normalization condition
for each mode with considering the effects of mode disper-
sion. We then simplify the expression (22) for �JKLM in the
limit where all frequencies are very close.

The dk (r⊥) satisfy the normalization condition (A1), with
dJ (r⊥; 0) replaced by dk (r⊥) with r⊥ = (y, z). We include
dispersion effects in the normalization of each mode [43,53]
by taking∫∫

d∗
J (r⊥; 0) · dJ (r⊥; 0)

ε0ε(r⊥, ωJ )

vp(r⊥, ωJ )

vg(r⊥, ωJ )
dr⊥ = 1, (A1)

where vp(r⊥, ωJ ) and vg(r⊥, ωJ ) are, respectively, the local
phase and group velocities at the frequency ωJ of the mode;
in general,

vp(r⊥, ω) = c/n(r⊥, ω), (A2)

vg(r⊥, ω) = vp(r⊥, ω)

[
1 + ω

n(r⊥, ω)

∂n(r⊥, ω)

∂ω

]−1

, (A3)

where n(r⊥, ω) = √
ε(r⊥, ω) is the local index of refraction.

Here we also reduce the expression (22) for �JKLM in the
limit where all frequencies are very close and we can take
�JKLM → �. In this limit we use ω to denote a typical ring
frequency (ωJ , ωK , ωL, or ωM), d(r⊥; ζ ) to denote a typical
mode amplitude, and v to denote the group velocity of light
in the ring at frequency ω. The expression (20) for �

i jkl
(3) (r)
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neglects material dispersion, but we take the n(r) there to be
n(r⊥; ω), and use the relation

d(r⊥; ζ ) = ε0n2(r⊥; ω)e(r⊥; ζ ), (A4)

where e(r⊥; ζ ) is the electric field mode amplitude, to write
Eq. (22) as

� = 3h̄ω2ε0

4L2

∫
dr⊥dζ χ

i jkl
(3) (r⊥)

× (ei(r⊥; ζ )e j (r⊥; ζ ))∗ek (r⊥; ζ )el (r⊥; ζ ),

or

� = h̄ωv2γ

L ,

where the parameter γ is given by

γ = 3ω2ε0

4v2L

∫
dr⊥dζ χ

i jkl
(3) (r⊥)

× (ei(r⊥; ζ )e j (r⊥; ζ ))∗ek (r⊥; ζ )el (r⊥; ζ ).

Introducing typical values χ (3) and n, respectively, for the

elements of χ
i jkl
(3) and n(r⊥; ω) in the region where the field

amplitudes are concentrated, we can write

γ = 3ωχ (3)

n2ε0c2

1

A
, (A5)

where

1

A
= L−1

∫
dr⊥dζ

(
χ

i jkl
(3) (r⊥)/χ (3)

)
(ei(r⊥; ζ )e j (r⊥; ζ ))∗ek (r⊥; ζ )el (r⊥; ζ )( ∫

e∗(r⊥; 0) · e(r⊥; 0) n(r⊥;ω)/n̄
vg(r⊥;ω)/v dr⊥

)2 , (A6)

and we used the normalization condition (A1) together with
Eq. (A4); thus Eq. (A6) can be evaluated using electric field
amplitudes that are not normalized. Here A has units of area,
which we see below can be identified as the effective area of
the ring mode [35].

The general form of the electric field mode amplitude
e(r⊥; ζ ) can be written as

e(r⊥; ζ ) = (x̂ sin φ − ŷ cos φ)eρ (r⊥)

+ (x̂ cos φ + ŷ sin φ)eφ (r⊥) + ẑez(r⊥), (A7)

where recall φ = ζ/R. It is worth considering two special
cases, where the electric field is mainly in the plane of the
wafer (normal to the wafer), known as TE (TM) ring modes.
For a TM ring mode, to a good approximation, we can take

e(r⊥; ζ ) = ẑez(r⊥). (A8)

Then, choosing χ (3) = χ zzzz
(3) , and using the approximation

n(r⊥; ω)/n̄

vg(r⊥; ω)/v
≈ 1 (A9)

in the region where the fields are concentrated, we find

1

A
=

∫
dr⊥|e(r⊥)|4

(
∫

dr⊥|e(r⊥)|2)2
, (A10)

where e(r⊥) = ez(r⊥). If instead we consider a TE ring mode,
for which to good approximation we can take

e(r⊥; ζ ) = (x̂ sin φ − ŷ cos φ)eρ (r⊥). (A11)

Then assuming an isotropic material, for which χ xxxx
(3) =

χ
yyyy
(3) = χ zzzz

(3) and χ
xxyy
(3) = χ zzzz

(3) /3 (and correspondingly for
all other tensor components with two x indices and two y
indices), and using again the approximation (A9), we also find
Eq. (A10), with now e(r⊥) = eρ (r⊥), as might be expected. Of
course, the eρ (r⊥) of Eq. (A11) need not be the same as the
ez(r⊥) of Eq. (A8).

Using Eq. (A10) in Eq. (A5) we see that since A is the
effective area of the mode, within the usual approximations
we made here γ is the standard result for the waveguide

nonlinear parameter of an optical fiber or channel waveguide
[35]. Naturally, the expression (A6) for A can be evaluated
numerically using Eq. (A7) instead of Eq. (A11) or Eq. (A8),
and without the use of the approximations (A9), and the value
of γ and thus of � determined directly. This is in fact what
we do in Sec. IX.

APPENDIX B

Here we detail some of the steps in the derivation of
Eq. (48). We first note that taking the time derivative of

ψo
J (x, t ) ≡ U†

0 (t, 0)ψJ (x)U0(t, 0), (B1)

using Eq. (12), leads to the equation

∂ψo
J (x, t )

∂t
+ vJ

∂ψo
J (x, t )

∂x
= −iωJψ

o
J (x, t ), (B2)

the solutions of which are

ψo
J (x, t ) = e−iωJ tψo

J (x − vJt, 0) = e−iωJ tψJ (x − vJt ). (B3)

Thus we can write

U†
0 (t, 0)ψJ (x)U0(t, 0) = e−iωJ tψJ (x − vJt )

=
∫

g(x, x′; t )ψJ (x′)dx′, (B4)

where we defined

g(x, x′; t ) = e−iωJ tδ(x′ − x + vJt ), (B5)

so Eq. (B4) is the immediate generalization of Eq. (42). A
corresponding result holds for the phantom channel field, and
since we immediately have

U†
0 (t, 0)bJU0(t, 0) = e−iωJ t bJ , (B6)

using the definition (32) of V ({Ai}t ) we have, for example,

U†
0 (t, 0)V ({Ai}; t )U0(t, 0)

= V

({∑
j

gi j (t )A j

})
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= h̄
∑

J

γ ∗
J bJψJ (−vJt ) + H.c.

+ h̄
∑

J

γ ∗
J phbJψJ ph(−vJ pht )+H.c.

+ HNL({bJe−iωJ t }, {b†
LeiωLt }), (B7)

where ψJ (−vJt ), for example, is the Schrödinger opera-
tor ψJ (x) evaluated at x = −vJt . We require not this but

V ({∑ j gi j (t )Ā j (t )}); nonetheless, noting that Eq. (B7) can be
taken to simply identify the gi j (t ), Eq. (48) then follows.

APPENDIX C

Here we present the dynamical equations of the five modes
and later derive an analytic expression for S(�) in a case
where |ψin〉 is the vacuum state.

The dynamical equations of the modes are

(
d

dt
+ �̄s − iRs

)
fs(t ) = s̃s(t )eiRst + 2i�[Fp1 (t )Fp2 (t ) f †

s (t ) + F ∗
p1

(t )Fp2 (t ) fm(t ) + F ∗
p2

(t )Fp1 (t ) fn(t ) + F ∗
p1

(t )Fp1 (t ) fs(t )

+ F ∗
p2

(t )Fp2 (t ) fs(t )] + i�[Fp1 (t )Fp1 (t ) f †
m(t ) + Fp2 (t )Fp2 (t ) f †

n (t )], (C1)(
d

dt
+ �̄m − iRm

)
fm(t ) = s̃m(t )eiRmt + 2i�[F ∗

p2
(t )Fp1 (t ) fs(t ) + F ∗

p1
(t )Fp1 (t ) fm(t ) + F ∗

p2
(t )Fp2 (t ) fn(t )]

+ i�[2Fp1 (t )Fp2 (t ) f †
n (t ) + Fp1 (t )Fp1 (t ) f †

s (t )], (C2)(
d

dt
+ �̄n − iRn

)
fn(t ) = s̃n(t )eiRnt + 2i�[F ∗

p1
(t )Fp2 (t ) fs(t ) + F ∗

p1
(t )Fp1 (t ) fn(t ) + F ∗

p2
(t )Fp2 (t ) fn(t )]

+ i�[2Fp1 (t )Fp2 (t ) f †
m(t ) + Fp2 (t )Fp2 (t ) f †

s (t )], (C3)(
d

dt
+ �̄p1 − iRp1

)
fp1 (t ) = s̃p1 (t )eiRp1 t + 2i�[|Fp2 (t )|2 + |Fp1 (t )|2] fp1 (t )

+ 2i� F ∗
p2

(t )Fp1 (t ) fp2 (t ) + 2i� Fp1 (t )Fp2 (t ) f †
p2

(t ) + i� F 2
p1

(t ) f †
p1

(t ), (C4)(
d

dt
+ �̄p2 − iRp2

)
fp2 (t ) = s̃p2 (t )eiRp2 t + 2i�[|Fp2 (t )|2 + |Fp1 (t )|2] fp2 (t )

+ 2i� F ∗
p1

(t )Fp2 (t ) fp1 (t ) + 2i� Fp2 (t )Fp1 (t ) f †
p1

(t ) + i� F 2
p2

(t ) f †
p2

(t ), (C5)

It is also useful to derive an analytic expression for S(�) in
a case where |ψin〉 is the vacuum state; this is the situation of
interest here. Using Eq. (51) in this special case we find

〈ψ̄†
J (−vJt2,∞)ψ̄J (−vJt1,∞)〉 = |γJ |2

v2
J

〈b̃†
J (t2)b̃J (t1)〉, (C6)

and

〈ψ̄J (−vJt2,∞)ψ̄J (−vJt1,∞)〉

= −γ 2
J

v2
J

(〈b̃J (t2)b̃J (t1)〉�(t2 − t1) + 〈b̃J (t1)b̃J (t2)〉

× �(t1 − t2)). (C7)

By employing Eq. (80) in Eqs. (78) and (79) we find the
required expectation values in terms of the eigenvalues and
eigenvectors of M(t ) as

〈ψin|b̃J (t2)b̃J (t1)|ψin〉

= −2
N∑

m=1

2N∑
k′=1

2N∑
k′′=1

�̄m
VJ k′ V −1

k′ m VL k′′ V −1
k′′ m+N

λk′ + λk′′

× [eλk′ (t2−t1 )�(t2 − t1) + eλk′′ (t1−t2 )�(t1 − t2)] (C8)

and

〈ψin|b̃†
J (t2)b̃J (t1)|ψin〉

= −2
N∑

m=1

2N∑
k′=1

2N∑
k′′=1

�̄m
VJ+N k′ V −1

k′ m VJ k′′ V −1
k′′ m+N

λk′ + λk′′

× [eλk′ (t2−t1 )�(t2 − t1) + eλk′′ (t1−t2 )�(t1 − t2)], (C9)

where N = 5 when only considering five modes. Letting t1 =
t2 + τ , and using the equations above, we can finally derive

SJ (�) = 1 −
N∑

m=1

2N∑
k′=1

2N∑
k′′=1

�̄m

vg
V −1

k′ m V −1
k′′ m+N

× (
e−2iθ γ 2

J VJ k′ VJ k′′ Ak′,k′′ − |γJ |2 VJ+N k′ VJ k′′

× (Ak′,k′′ + Ak′′,k′ ) + e2iθ (γ ∗
J )2VJ+N k′ VJ+N k′′ Ak′′,k′

)
,

(C10)

where

Ai, j ≡ 4λi

(λi + λ j )
(
λ2

i + �2
) . (C11)
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