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and analytic approximations

Z. Sztranyovszky , W. Langbein, and E. A. Muljarov
School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom

(Received 22 September 2021; accepted 22 February 2022; published 25 March 2022)

Recent improvements in the resonant-state expansion (RSE), focusing on the static mode contribution, have
made it possible to treat transverse-magnetic (TM) modes of a spherically symmetric system with the same
efficiency as their transverse-electric (TE) counterparts. We demonstrate here that the efficient inclusion of
static modes in the RSE results in its quick convergence to the exact solution regardless of the static mode
set used. We then apply the RSE to spherically symmetric systems with continuous radial variations of the
permittivity. We show that in TM polarization, the spectral transition from whispering gallery to Fabry-Pérot
modes is characterized by a peak in the mode losses and an additional mode as compared to TE polarization.
Both features are explained quantitatively by the Brewster angle of the surface reflection which occurs in this
frequency range. Eliminating the discontinuity at the sphere surface by using linear or quadratic profiles of
the permittivity modifies this peak and increases the Fabry-Pérot mode losses, in qualitative agreement with
a reduced surface reflectivity. These profiles also provide a nearly parabolic confinement for the whispering
gallery modes, for which an analytical approximation using the Morse potential is presented. Both profiles
result in a reduced TE-TM splitting, which is shown to be further suppressed by choosing a profile radially
extending the mode fields. Based on the concepts of ray optics, phase analysis of the secular equation, and
effective quantum-mechanical potential for a wave equation, we discuss a number of useful approximations
which shed light on the physical phenomena observed in the spectra of graded-index systems.
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I. INTRODUCTION

Modeling inhomogeneous optical resonators is challeng-
ing, as generally a simple analytic solution is not available. A
special case are spherically symmetric systems, having an in-
homogeneity, for example, in the permittivity, only dependent
on the radius. Examples can be found in core-shell systems
which allow highly directional scattering [1], when modeling
surface contamination on a sphere due to diffusion [2] or high
pressure [3], or when modeling biological cells [4]. Graded
index profiles can be used to engineer the cancellation of
electric and magnetic dipole excitation, which reduces the
visibility of small particles at certain wavelengths [5]. With an
inhomogeneous and anisotropic sphere, one can even achieve
perfect cloaking of a cavity over a range of frequencies [6]. On
a larger scale, one may use inhomogeneous profiles to model
emission from stellar atmospheres [7].

The scattering properties of systems with graded per-
mittivity have been studied in the literature using various
approximate methods. In the multilayer approach (also re-
ferred to as stratified medium method), the graded index
profile is approximated by a piecewise constant function,
describing the system by homogeneous regions comprising
a core covered by a sequence of shells [8,9]. In the short
wavelength limit, a Debye series expansion for the scattered
field was used [10], and in the long wavelength limit a Born
approximation [11] or a dipole limit [5] was applied to dis-
persive systems with complex permittivity. Furthermore, the

dipole moment of dielectric spherical particles with power law
radial profiles of the permittivity was calculated in the elec-
trostatic limit [12]. A generalized scattered field formulation
developed in Ref. [2] requires solving scalar Schrödinger-
like equations, similar to the scalar wave equations solved in
this paper. To study the electromagnetic (EM) modes, first-
and second-order perturbation methods were developed [13]
and applied to deformations of a homogeneous sphere [14].
Whispering gallery (WG) modes in both transverse-electric
(TE) and transverse-magnetic (TM) polarizations were stud-
ied in Ref. [3] for small inhomogeneous perturbations of the
surface layer of a sphere. In that approach, the modes were
found in the complex frequency plane based on the expansion
coefficients of the generalized scattered field, and the secu-
lar equations were solved numerically using a Runge-Kutta
method. The effect of a linearly changing permittivity profile
was investigated in Ref. [15] for high-frequency TE modes in
large spheres, using Airy functions as an approximate solution
to the corresponding scalar problem. Finally, in Ref. [16],
a resonant mode of a sphere was treated in the electrostatic
limit for a negative and frequency-dependent permittivity, de-
scribed by an undamped (i.e., nonabsorbing) Drude model,
with radial dependencies of the permittivity and the electric
field approximated by polynomials.

Here we will use the resonant-state expansion (RSE) to
study the modes of graded index spherical resonators. The
RSE is a rigorous theoretical method in electrodynamics for
calculating the resonant states (RSs) of an arbitrary open
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optical system [17]. Using the RSs of a basis system, which
can be chosen to be analytically solvable, such as a homoge-
neous dielectric sphere in vacuum, the RSE determines the
RSs of the target system by diagonalizing a matrix equa-
tion containing a perturbation. This perturbation is defined
as the difference between the basis and target systems and
is expressed as a change of the permittivity and permeability
distributions with respect to the basis system [18].

For a general perturbation, one needs to include static
modes [19,20] alongside the RSs in the Mittag-Leffler (ML)
representation of the dyadic Green’s function. Note that the
latter is at the heart of the RSE approach. Recently, the RSE
has been reformulated [21] to eliminate static modes, and
the illustrations provided for perturbations of the size and
refractive index of a homogeneous sphere show a significantly
improved convergence compared to the original version of
the RSE [20]. The approach [21] has also proposed, though
without providing illustrations, another quickly convergent
version of the RSE—the one which keeps static modes in the
basis.

In this paper, we consider both versions of the reformu-
lated RSE, with and without static modes, demonstrating a
similar efficiency of both. Using the RSE, we then investigate
spherically symmetric inhomogeneous systems with graded
permittivity profiles. The RSs in such systems are still split
into TE and TM polarizations and are characterized by the
azimuthal (m) and angular (l) quantum numbers. Importantly,
while some graded profiles are approximately solvable ana-
lytically [7,22], the RSE can treat arbitrary perturbations and
finds all the RSs of the system within the spectral coverage
of the basis used, thus generating a full spectrum. This al-
lows us to identify some prominent features in spectra, such
as the quasidegeneracy of modes and the Brewster angle
phenomenon, and ultimately to engineer the shape of the
spectrum via changing the permittivity profile.

The paper is organized as follows. In Sec. II, we study
the TE and TM RSs of a homogeneous sphere, using the
ray picture of light propagation as well as a more rigorous
phase analysis of the secular equations describing the light
eigenmodes, both approaches introducing several useful ap-
proximations. In Sec. III, we briefly describe the RSE method
and its optimizations used here for calculating the RSs of
a graded index sphere. We then recap the analogy between
wave optics and quantum mechanics by introducing a radial
Schrödinger-like wave equation containing an effective po-
tential. The RSs of a sphere with linear and quadratic radial
permittivity profiles eliminating the discontinuity at the sphere
surface are then discussed, and an approximate analytical
solution using Morse’s potential is presented. In Sec. IV,
we investigate the TE-TM RS splitting and its reduction for
graded index profiles. Details of the calculations are provided
in the Appendices, including a comparison of the performance
of the two optimized versions of the RSE, with and without
elimination of static modes.

II. HOMOGENEOUS SPHERE

The secular equation determining the RS wave number
kn of a nonmagnetic homogeneous sphere of radius R with
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FIG. 1. Wave numbers of the TE and TM RSs of a homogeneous
sphere in vacuum, with a refractive index of nr = 2 and an angular
momentum quantum number of l = 20. The regions of leaky modes
(L), whispering gallery modes (WG), and Fabry-Perot modes (FP)
are indicated. Solid and dashed lines are the approximations to the
imaginary part of the wave numbers, given by Eqs. (3) and (9),
respectively. Note the double y-axis break.

vacuum outside is given by [21]

J ′(nrknR)

J (nrknR)
= 1

β

H ′(knR)

H (knR)
, (1)

where β = nr (β = n−1
r ) for TE (TM) polarization. Here

J (x) = x jl (x) and H (x) = xh(1)
l (x), with jl and h(1)

l being,
respectively, the spherical Bessel function and Hankel func-
tion of the first kind, and primes denote the first derivatives of
functions with respect to their arguments. Figure 1 shows the
spectrum of the RSs of a homogeneous dielectric sphere in
vacuum in the complex wave-number plane for a refractive
index of the sphere of nr = 2 and an angular momentum
quantum number of l = 20. For the example given, the com-
bination of parameters nr and l are chosen such that the
spectrum contains a few WG modes. Here, k = 2π/λ0 is the
wave number in vacuum, and λ0 is the wavelength of light
in vacuum. Only Re k � 0 is shown, noting that RSs come in
pairs with both signs of the real part of their wave number.
The spectrum consist of TE and TM modes which appear
in alternating order, with one exception related to the Brew-
ster’s angle phenomenon, as discussed later. The RSs of a
sphere can be divided into three groups: leaky (L) modes, WG
modes, and Fabry-Pérot (FP) modes. Physically, all of them
are formed as a result of interference of EM waves interacting
with the sphere surface.

L modes typically have quality factors (Q factors) which
are very low, and their EM fields are located mainly out-
side the sphere. The number of L modes is exactly l in TE
and l − 1 in TM polarization, although the Brewster mode
discussed later can be regarded as a hybrid L-FP mode, so
that the number of L modes is effectively the same in both
polarizations. For comparison, the case of l = 5, with the
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same refractive index nr , can be seen in Ref. [19]. L modes
arrange around the origin in the complex wave-number plane,
forming a roughly semicircular arc.

WG modes are formed due to the total internal reflection
and therefore have wave numbers with |Re k| < l/R, as dis-
cussed below. The number of WG modes increases with nr

and l . The Q factor of the fundamental WG mode increases
exponentially with l , and values of up to 1010, only limited by
material properties, have been demonstrated experimentally
[23]. The EM field of the WG modes is concentrated inside
the sphere close to the surface.

FP modes of a sphere have moderate Q factors and are
named for their similarity to the original FP modes [24] of
a double-mirror planar resonator. In fact, at large frequency,
the FP modes of a sphere approach the limit of an equidistant
spectrum of a dielectric slab, with all the eigenfrequencies
having the same imaginary part [17]. The number of FP modes
is countable infinite. Their EM fields are distributed within
the sphere, avoiding the center due to the nonzero angular
momentum (l > 0). The FP modes are spectrally separated
from the WG modes by the critical angle of the total internal
reflection, as discussed in more depth later.

The arrangement of the RSs in Fig. 1 is overall similar
in the TE and TM polarizations. The imaginary part of their
wave numbers approaches the same high frequency asymp-
tote, albeit from opposite sides. Additionally, there is a peak
in the imaginary part of the TM RS wave numbers near the
transition region from WG to FP modes, which occurs around
the Brewster angle in the ray picture of light propagation,
and we therefore refer to it as a Brewster peak. At this peak,
an additional TM mode is formed, breaking the otherwise
alternating order of TE and TM RSs.

Let us now discuss and analyze the spectrum of the RSs
of a sphere in more detail, using two different approaches:
the ray picture and a phase analysis. Both approaches provide
some useful approximations for the mode positions and line
widths and offer an intuitive understanding of the origin and
properties of the RSs of a sphere.

A. Ray picture: Brewster’s phenomenon and total
internal reflection

To understand the observation of the Brewster peak in the
spectrum of the RSs, we recall that increasing the angle of
light incidence θ at a planar interface between two media, the
Fresnel reflection coefficient for TM (aka p) polarized light
passes through zero, changing its sign at the Brewster angle
[25]. The same occurs at the surface of a sphere in the ray pic-
ture, which is valid in the limit of wavelengths much smaller
than the surface curvature. This local geometry is illustrated in
the inset of Fig. 2. The magnitude of the incident wave vector
is n1k, where n1 is the refractive index of the corresponding
medium, i.e., that of the sphere, n1 = nr . Since the angular
momentum l gives the number of wave periods along one
circumference 2πR, the wave vector component p parallel to
the surface is determined by 2π l = 2πRp, so p = l/R. With
simple trigonometry, we can see that sin θ = p/(n1k). The
Brewster angle θb is determined by tan θb = n2/n1, so for a
sphere in vacuum (n2 = 1), the wave number corresponding

FIG. 2. Real part of the wave number of the TM RS at the
Brewster peak (circles) as a function of the sphere refractive index
n1 = nr , for l = 10, l = 20, and l = 80, compared with the ray optics
approximation Eq. (2) (lines). Inset: Sketch of the ray geometry at the
boundary.

to the Brewster angle is given by

kb = l

R

√
1

n2
1

+ 1. (2)

At this angle, the reflectivity vanishes. This would correspond
to a divergence of the imaginary part of the RS wave number
for an ideal planar geometry. Here instead, it is kept finite due
to the finite curvature of the surface and the RS discretization,
resulting in the Brewster peak.

In Fig. 2, we compare Eq. (2) with the real part of the wave
number of the Brewster mode (the TM mode at the Brewster
peak in the spectrum), for l = 10, l = 20, and l = 80, all
showing good agreement. We find that the relative error for
small n1 increases with decreasing l . For smaller l , the peak
position shifts to longer wavelength, and the ratio of internal
wavelength to the radius increases, therefore the validity of the
ray picture reduces. With increasing n1, the RSs are packed
more densely in the complex k plane, so the discretization
does not result in significant deviations. At the same time, the
light wavelength within the sphere 2π/(n1k) decreases with
n1, thus improving the accuracy of the ray picture.

The Brewster mode can also be associated with the leaky
branch. In fact, as n1 increases, the Brewster peak in the
spectrum is getting sharper, so the Brewster mode is taking
a significantly larger imaginary part of the wave number com-
pared to the neighboring FP modes and is thus getting more
isolated from them, at the same time approaching the edge of
the leaky branch. Indications of this can be seen in Figs. 7 and
10 in the Appendix. We also note that for high l , the Brewster
peak can be shifted further into the FP spectral region. This
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happens because the Brewster angle θb is always smaller than
the critical angle θc of the total internal reflection. The latter
determines the point in the spectrum separating WG from
FP modes and can be evaluated in a similar way, leading to
kc = l/R. Comparing it with Eq. (2), we see that as l increases
or n1 decreases, the difference kb − kc is getting larger, so the
corresponding region in the spectrum between the critical and
Brewster angles can accommodate more RSs.

The ray picture is also useful for understanding the imag-
inary part of the FP mode wave numbers. Assuming the
reflectivity amplitude rP at the sphere surface in polarization
P is given by the corresponding Fresnel coefficient, we equate
it to the ratio of the field amplitude before and after each
reflection. This ratio is in turn given by the temporal decay
of the field, |rP| = exp(−t/τ ), where t is the time between
consecutive reflections and τ is the mode decay time which
is given by the imaginary part of its eigenfrequency, 1/τ =
−Im (kc). At the same time, the optical path length across the
sphere between two reflections is given by L = 2Rnr cos θ .
Finally, using the fact that t = L/c and taking the logarithm
of the reflectivity results in

Im k = ln |rP|
2Rnr cos θ

, (3)

where the Fresnel coefficient rP depends on the angle of
incidence θ and the refractive index of the sphere nr . The
expression is valid up to the critical angle θc of total internal
reflection, at which ln |rP| = 0. The values obtained according
to Eq. (3) are shown in Fig. 1 as solid lines. We can see
good agreement for both polarizations, including the Brewster
peak and the asymptotic value for FP modes, evaluated to
−0.27465/R for nr = 2 and θ = 0, which again validates
the ray optics interpretation of the RS properties. The WG
modes are located in the total internal reflection region of the
spectrum where Eq. (3) is not applicable—their nonvanishing
imaginary parts are the result of the finite curvature of the
sphere making the reflection imperfect. We therefore consider
in the following subsection an approximation (shown in Fig. 1
by dashed lines) which is based on the phase analysis of the
secular equation determining the RSs.

B. Phase analysis: Mode positions and line widths

To develop a better understanding of the location of the
modes in the complex plane given by kn, we discuss here an
approximate solution to the secular equation. For |z| � l , we
can approximate the left-hand side of Eq. (1) as [26]

J ′(z)

J (z)
≈ − tan

(
z − l + 1

2
π

)
. (4)

It is therefore useful to introduce the following two phase
functions:

�(k) = atan

(
−J ′(nrkR)

J (nrkR)

)
(5)

and

�(k) = atan

(
− 1

β

H ′(kR)

H (kR)

)
. (6)

Substituting them into Eq. (1) yields

�(kn) = �(kn) + nπ, (7)

where n is an arbitrary integer. For real k, it can be seen that
�(k) is a real monotonous function (on a selected Riemann
sheet), and according to Eq. (4) becomes linear at large k. At
the same time, �(k) is complex even for real k, and its real part
varies between π/2 and 0 monotonously (nonmonotonously)
with k for TE (TM) polarization. The functions �(k) − nπ ,
and Re �(k) for TE and TM polarizations, are plotted in Fig. 6
in Appendix A, which allows a graphical solution of Eq. (7),
namely, the intersections of the curves for �(k) − nπ and
Re �(k) determine the approximate positions of the modes
in spectra. More rigorously, separating the real and the imag-
inary parts of the wave number, kn = k′

n + ik′′
n , the mode

positions in the spectra, k′
n, are given by

�(k′
n) − nπ ≈ Re �(k′

n), (8)

whereas k′′
n , determining the mode line widths, by

k′′
n ≈ 1

nrR
Im �(k′

n), (9)

in accordance with the asymptotic behavior Eq. (4).
The approximation Eq. (9) for the mode linewidth is il-

lustrated in Fig. 1 by dashed lines, demonstrating a good
agreement for WG and FP modes. While it is less accurate
than Eq. (3) for most FP modes, it provides a suited ap-
proximation for the WG modes, where the latter fails. The
accuracy provided by this approximation improves as the
refractive index nr of the sphere increases, as seen in Fig. 7
in Appendix A. Compared to Eq. (1.1) of Ref. [27], here
Eq. (8) is not an explicit expression for the mode position,
and the approximation Eq. (9) is less accurate than Eq. (1.3) of
Ref. [27], but the graphical solution (Fig. 6) provides intuition
into the emergence of the modes and the difference between
the TE and TM polarizations.

Using the above phase analysis, one can also obtain an
analytic approximation for the RS wave numbers in the large
frequency limit, nrkR � l . Using the fact that tan �(k) →
−i/β at k → ∞ and the asymptotic behavior of �(k) given
by Eq. (4), one can evaluate

kTE
n ≈ 1

2nrR

[
(2n + l + 1)π − i ln

nr + 1

nr − 1

]
,

kTM
n ≈ 1

2nrR

[
(2n + l + 2)π − i ln

nr + 1

nr − 1

]
, (10)

where the integer n can be used to number the RSs. For a full
derivation of Eq. (10), see Appendix A.

The RS wave numbers given by the approximation Eq. (10)
are identical to those of a homogeneous slab at normal inci-
dence [17]. The latter are in turn consistent with Eq. (3) used
for the normal incidence reflection, which gives Im (kR) =
ln[(nr − 1)/(nr + 1)]/(2nr ), as in Eq. (10). At nonnormal
incidence, the TE and TM FP modes of a slab asymptoti-
cally converge to each other in pairs, as shown in Fig. 8 in
Appendix B. The planar system gives rise to both even and
odd modes (using the parity of the electric or magnetic field),
with odd TE modes converging to even TM modes at large
frequencies, and vice versa. In the sphere, however, there are
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no even modes, as required by the finiteness of the EM field
at the origin (as in any other point in space). Considering
only the even modes of the slab spectra, we obtain the FP
modes of the sphere, which alternate between TE and TM
RSs with increasing Re(k). This is consistent with the analytic
approximation Eq. (10) and visible in the spectrum of the
sphere presented in Fig. 1.

III. GRADED INDEX SPHERES

In this section, we study, using the RSE, the RSs in
spherically symmetric nonmagnetic systems with graded
permittivity profiles. A particularly interesting situation is
reached by removing discontinuities of the permittivity. Here
we study cases where the discontinuity is removed either only
in the permittivity (linear case) or both in the permittivity and
its derivative (quadratic case), and compare both cases with
each other and with the constant permittivity profile studied
in Sec. II. We note that removing discontinuities of the refrac-
tive index yields broadband antireflecting coatings in planar
dielectric layers [28]. For the WG modes, we introduce a
radial Schrödinger-like wave equation containing an effective
potential, compare potentials and mode properties in all three
cases, and provide an analytical approximation based on the
Morse potential.

A. Calculating the resonances

1. Resonant-state expansion

Here we briefly discuss the methodology based on the
RSE [19–21] which is used for the numerical calculations.
The RSE is well suited for calculating the RSs of a graded
index sphere. The difference in the permittivity between the
target system (a graded index sphere) and the basis system
(a constant index sphere) is treated as a perturbation, and the
RSs of the constant index sphere serve as a basis for the RSE.
The EM fields of the RSs of the target system are expanded
into the basis RSs, and the expansion coefficients and the RS
wave numbers of the target system are found by solving a
linear eigenvalue problem, see Eq. (C1) in Appendix C. This
eigenvalue problem of the RSE contains as input the RS wave
numbers of the basis system and the matrix elements of the
perturbation. For spherically symmetric systems TE and TM
polarizations, or RSs with different l and magnetic quantum
number m, do not mix and can be treated separately in RSE.
However, the matrix elements used in the RSE for the TE
and TM RSs are different, see Ref. [21] and Appendix C
for details. In particular, for TM polarization, one needs to
include in the basis additional functions which are required for
completeness and physically describe the part of the EM field
in a graded index sphere which is not divergence free. More
rigorously, these functions are required to properly describe
a longitudinal part of the dyadic GF related to its static pole
in the ML expansion. Without these additional functions, the
mode wave numbers calculated by the RSE carry a systematic
error [20].

The RSE eigenvalue problem (see Appendix C) leads to
an infinite matrix. For computational evaluation, this matrix is
truncated to a finite size N × N , where N is the number of RSs
of the basis system used in the calculation. The specific RSs

used are the basis RSs having complex wave numbers with an
absolute value below kmax.

Previously, the static pole of the GF in the ML expansion
has been treated within the RSE by introducing a complete set
of static modes [20]. However, even though the treatment of
static modes is numerically less complex, a slow convergence
versus the basis size N observed in Ref. [20] remained an
issue. To develop quickly converging versions of the RSE,
the full ML representation of the dyadic GF of a spherically
symmetric system has been studied in Ref. [21], focusing, in
particular, on the static pole of the GF containing a δ-like sin-
gularity. A quick convergence of the RSE has been achieved
and demonstrated in Ref. [21] by an explicit isolation of the
singularity that has allowed to avoid its direct expansion into
static modes. Two ML forms of the GF have been introduced
in Ref. [21], called there ML3 and ML4, which led to slightly
different versions of the RSE, both quickly convergent to the
exact solution.

The quick convergence of the RSE based on ML4, with
static mode elimination and suited only for a basis system
in a form of a homogeneous sphere, was demonstrated in
Ref. [21] on examples of both size and material (strength)
perturbations of a sphere. However, the version of the RSE
based on ML3, which is using explicitly a static mode set
and an arbitrary spherically symmetric basis system, has not
been studied so far numerically. Such a study is given in Ap-
pendix C, including a comparison with ML4, demonstrating
a similar level of convergence. We show there, in particular,
that the RSE based on ML3 and ML4 both have a quick 1/N3

convergence to the exact solution, where N is the basis size of
the RSE. Furthermore, taking three different static mode sets
introduced earlier in Refs. [20,21], we show in Appendix C
that the results of the RSE based on ML3 are similar for all
the different static mode sets previously suggested.

Let us finally note that for perturbations without disconti-
nuities, the above-mentioned optimization of the RSE might
be not needed, as demonstrated in a similar approach based
on eigenpermittivity modes [29]. However, as we are going
to consider a transformation of an optical system from a
homogeneous sphere, having a discontinuity, to a sphere with
a continuous permittivity profile, the perturbation describing
this transformation and used in RSE contains a discontinuity,
both in linear and quadratic cases, and therefore the above
optimization is in fact needed.

In all calculations of the RSs of the graded index spheres
done in this paper, we use the RSE based on ML4, as it has a
fixed number of additional basis functions in TM polarization,
which is three times the number of the TM RSs included in the
basis. We use a basis size of N = 800 (reached at kmaxR ≈
600) in both cases of linear and quadratic profiles, which
provides a relative accuracy better than 10−6, as exemplified
in Figs. 9 and 10.

2. Quantum-mechanical analogy—the effective potential

To intuitively understand the properties of the RSs in
graded-index optical systems, it is useful to consider the
analogy between Maxwell’s and Schrödinger’s wave equa-
tions and to introduce an effective optical potential [30]. In
spherically symmetric systems, all the components of the
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electric and magnetic fields can be expressed in terms of
a radially dependent scalar field [21]. For TE (TM) po-
larization, this is the magnitude of the electric (magnetic)
field, which has only a tangential component E (r) = E (r)/r
(H (r) = −iH(r)/r). For nonmagnetic systems, with the ra-
dial permittivity profile ε(r) and permeability μ(r) = 1, the
scalar field E (r) satisfies the Schrödinger-like equation [21](

d2

dr2
− α2

r2
+ k2ε(r)

)
E (r) = 0, (11)

where α = √
l (l + 1). In fact, assuming a particle mass M =

h̄2/2, Eq. (11) can be interpreted as a quantum-mechanical
analog (QMA). An obvious limitation of this QMA is that
k2, playing the role of the complex eigenvalue for the RSs,
contributes to Eq. (11) not in the same way as the energy
in Schrödinger’s equation. Associating k2 with the particle
energy, and using the fact that ε(r) = 1 (or a constant) out-
side the system, Johnson [30] introduced an energy-dependent
effective potential, which makes the analogy with quantum
mechanics no so straightforward. Here instead, we interpret
Eq. (11) as an equation for the zero-energy state of a particle
in a one-dimensional potential

V TE(r) = −k2ε(r) + α2

r2
, (12)

in which k plays the role of a complex parameter of the poten-
tial. In this QMA, every RS of the optical system, described by
the wave function E (r), has zero quantum-mechanical energy
and a potential Eq. (12) valid for this RS only, given by the
corresponding value of k.

Likewise, for TM polarization, the scalar field H(r) satis-
fies an equation [21](

− 1

ε(r)

dε

dr

d

dr
+ d2

dr2
− α2

r2
+ k2ε(r)

)
H(r) = 0, (13)

again, valid for a nonmagnetic system described by the per-
mittivity ε(r). Compared to Eq. (11), there is an additional
term proportional to the logarithmic derivative of the permit-
tivity, which can be included in the potential, yielding

V TM(r) = V TE(r) + ε′(r)

ε(r)

H′(r)

H(r)
, (14)

where the prime indicates the spatial derivative. The second
term in Eq. (14) is analyzed and discussed in more depth
in Sec. IV A. This helps the understanding of the TE-TM
mode splitting. Here, we only note that this term, in its above
form depending on the wave function, is inconsistent with the
standard definition of the potential. However, introducing a
rescaled wave function H̃(r) = √

ε(r)H(r) brings the effec-
tive potential to the form

Ṽ TM(r) = V TE(r) + 3

4

[
ε′(r)

ε(r)

]2

− 1

2

ε′′(r)

ε(r)
, (15)

which is now independent of the wave function, thus pro-
viding a valid QMA also for TM polarization, as detailed in
Appendix D.

Note that the radial equations (11) and (13) are aligned with
the standard Maxwell boundary conditions requiring that E
and E ′ are continuous in TE polarization, and H and H′/ε are

continuous in TM polarization. Clearly, any discontinuity of
ε results in H′ being also discontinuous in TM polarization,
which is, in particular, the case of a homogeneous dielectric
sphere in vacuum. We note that one can find the eigenmodes
of graded index spheres by solving the radial equations di-
rectly with an appropriate numerical method. However, this
approach does not guarantee that all modes in a region of
interest in the complex plane are found. In this paper, we
therefore use the effective potential picture only for qualitative
discussions and for developing an approximation based on the
Morse potential.

B. Graded index permittivity profiles

1. Constant permittivity

The TE and TM modes of a homogeneous sphere in vac-
uum, used as basis system in the RSE and described by a
constant permittivity

ε(r) = 1 + Aθ (R − r), (16)

where θ (x) is the Heaviside function and A = n2
r − 1, are

shown in Fig. 3(a) for nr = 2 (note they are the same as in
Fig. 1). The fields, E (r) and H(r), and the corresponding
effective potentials, given by Eqs. (12) and (14), are illus-
trated in Fig. 3(b) for the fundamental WG mode for TE
and TM polarizations respectively. Both potentials decrease
with radius due to the centrifugal term α2/r2 and have similar
steplike barriers at the sphere surface (r = R) due to the step
in the permittivity. In the TM potential, there is additionally
a δ function at the sphere surface due to the derivative of the
permittivity, see Eq. (14). The fields are effectively confined
near the sphere surface, on one side by the centrifugal term
increasing toward the center of the sphere and on the other
side by the refractive index step at the sphere surface. The
fields have evanescent tails extending outside of the sphere,
which convert at larger distances into propagating waves once
the potentials become negative, and then grow exponentially
due to the imaginary part of the potentials created by the
complex k.

The optical transmission through the barrier determines the
losses of the WG modes and hence the imaginary part of
their wave numbers. The height of the barrier depends on the
size of the permittivity step and the angular quantum number
l , and the transmission reduces about exponentially with l ,
thus allowing for very low mode losses [31]. Note that in a
purely quantum-mechanical problem, having a real potential,
the eigenenergy of such a state would necessarily have a finite
imaginary part [32]—our potentials are, however, complex
due to the finite imaginary part of the RS wave numbers,
though the latter is small for WG modes. Interestingly, it is
the complex potential which allows the state energy in the
QMA to have zero imaginary part, even though there is a finite
probability for the particle to tunnel through the barrier and to
escape from the system.

2. Linear permittivity

We choose here a linear profile in the form

ε(r) = 1 + Bθ (R − r)(1 − r/R), (17)
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FIG. 3. RSs for l = 20, and constant (a), (b); linear (c), (d); and quadratic (e), (f) permittivity profiles as shown in the insets. Left: RSs in
the complex k plane. Right: Real part of the potential and the field of the first WG mode. The TE and TM fields are normalized to the same
maximum value. The unitless effective potentials V TER2 and V TMR2 are given, respectively, by Eqs. (12) and (14).
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so ε(r) is a continuous function. The parameter B is chosen
such that the volume integral of the permittivity

∫
ε(r)dV

within the sphere of radius R is equal to that of the homoge-
neous sphere with refractive index nr , yielding B = 4(n2

r − 1).
Since the basis system used in the RSE has nr = 2, we take
here B = 12.

The resulting RS wave numbers calculated via the RSE are
shown in Fig. 3(c). Their distribution in the complex k plane
is qualitatively similar to that of the homogeneous sphere. The
L RSs are nearly unaffected. The WG RSs have a smaller TE-
TM splitting and a quicker growth of the imaginary part of
k with the real part. The Brewster peak is less pronounced,
broader, and is shifted toward larger values of the real part of
k. At the sphere boundary, the refractive index is approaching
1, so using Eq. (2) one would expect the Brewster peak to
appear at around kbR ≈ l

√
2, which is indeed observed in the

spectrum, see dotted line in Fig. 3(c).
The FP RS wave numbers show a significantly larger

imaginary part compared the homogeneous case. Also, it is
increasing with the real part, which is qualitatively different
from the homogeneous sphere, where the imaginary part of k
for the FP RSs is converging to a finite value with increasing
the real part of k. This can be understood again considering the
reflection at the sphere surface. For graded index boundaries,
the reflectivity is wavelength dependent. It is proportional to
the index change over one wavelength, thus proportional to
1/Re k for short wavelengths. An example of this can be found
in Ref. [33] for a segment having an exponential permittivity
profile. Using Eq. (3), we therefore expect Im k ∝ ln(Re k),
which is shown as a dashed line in the lower inset of Fig. 3(c),
in good agreement with the high frequency asymptote of TE
and TM wave numbers.

To understand the behavior of the WG RSs, we consider
the QMA, with potentials shown in Fig. 3(d). The shape of
the potentials suggests that they can be approximated with
the anharmonic Morse potential [34], for which analytical
solutions are known, as detailed in Appendix E. A fit of the
Morse potential, matching the zeroth to third derivatives of the
potential at its minimum, is shown in Fig. 3(d) for the first WG
mode in TE polarization. Using the analytical solutions, we
find for the linear permittivity Eq. (17) the following compact
expression for the TE WG modes:

kTE
n ≈ αB

2R(1 + B)
3
2

(
3 +

√
3

2n + 1

α
− 4

(
2n + 1

3α

)2) 3
2

,

(18)

with the level number n = 0, 1, . . . . In this expression, n has
the physical meaning of the number of nodes of the field
inside the resonator. The accuracy of this expression relies
on a high potential barrier, providing a small tunneling (and
thus small imaginary part of k) which is typical for WG
modes. Therefore, the approximation Eq. (18) has a higher
accuracy for the lowest WG modes at higher l and lower n.
For l = 80, Eq. (18) gives kn values with a relative error to
the RSE values of only 10−5 for the first WG mode (n = 0),
increasing to 10−2 for the 12th WG modes (n = 11), as
illustrated by Table I in Appendix E. Furthermore,

Eq. (18) creates, for n 	 α, equidistant levels of spacing
9B/(2R

√
(1 + B)3), resembling a harmonic oscillator.

The Morse approximation of the TM potential Eq. (15) for
linear permittivity, and of both TE and TM potentials for other
spatial dependencies of the permittivity, result in nonlinear
simultaneous equations for k2

n as detailed in Appendix E.
Solving these numerically is still a lower cost compared to
using the RSE or solving the radial Eqs. (11) and (13) directly.
The Morse approximation also provides analytical wave func-
tions, which can be used for applying perturbation approaches
like the one presented in Sec. IV A later.

3. Quadratic permittivity

In addition to the continuity of the permittivity, we can
also require that its first derivative is continuous, which can
be achieved by using a quadratic profile

ε(r) = 1 + Cθ (R − r)(1 − r/R)2, (19)

where we again choose to conserve
∫

ε(r)dV relative to the
basis system, yielding C = 10(n2

r − 1), so C = 30 for nr = 2.
The resulting RS wave numbers are shown in Fig. 3(e). The
RSs change further along the same trends as seen when going
from constant to linear profile. Notably, the Brewster peak is
shifted further to higher wave numbers compared to constant
and linear case. The contrast with the surrounding is lower
compared to the linear profile, creating an increased uncer-
tainty in the position of the plane of reflection. It can also
be seen from the permittivity profile that the effective radius
of the sphere is reduced compared to the constant and linear
cases, which results in a larger kb, in accordance with Eq. (2).

The imaginary part of the FP RSs is increased compared
to the linear case as the reflection is further reduced at the
surface due to the smooth permittivity. There are still high
quality WG modes, with a decreased splitting between TE and
TM RSs. Looking at the potential Fig. 3(f), we find the well
further inside the sphere with a wide barrier extended toward
the outside, which provides good containment for the RSs.
Higher-order TM WG modes along with the corresponding
TM effective potentials are shown in Fig. 11 of Appendix D.

IV. TE-TM SPLITTING

We found in the previous section that for the linear and
quadratic permittivity, the splitting between TE and TM RSs is
reduced compared to the constant permittivity, and this effect
is further investigated in this section. The degeneracy of TE
and TM modes might be of particular interest for chirality
sensing, as that can convert second-order perturbation effects
due to a chiral material in the surrounding into the first order,
similar to the effect of Faraday rotation by a circular magnetic
field [35,36]. To understand the cause of the reduced splitting,
we first develop in Sec. IV A a perturbative approach. Then,
we revisit the optical systems discussed in Sec. III B and
quantify the splitting, followed by considering in Sec. IV C a
new system featuring a wide effective potential well to reduce
the splitting of the fundamental WG mode.
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A. Perturbation treatment

The RSs form, together with static modes or their equiva-
lents, a complete set inside the system and therefore provide
a suitable basis for expanding any vector field within the
system. This is the core principle of the RSE. In fact, an
expansion into known basis modes is used in this paper to
find the modes of the graded index profiles. In this subsection,
we apply the same principle, however, in a simpler situation,
namely, we solve the scalar wave equation (13) with the TM
potential by expanding its solution into the complete set of
eigenstates of the corresponding wave equation (11) for TE
polarization. In the simplest case, we reduce our basis to
a single TE mode and thus solve Eq. (13) in the so-called
diagonal approximation which can further be reduced to and
interpreted as a first-order perturbation theory result.

The scalar wave equation (11) for the TE RSs can be
written as

L̂(kn, r)En(r) = 0, (20)

where

L̂(k, r) = d2

dr2
− α2

r2
+ k2ε(r). (21)

The corresponding scalar Green’s function satisfies

L̂(k, r)Gk (r, r′) = kδ(r − r′) (22)

and can be expanded as

Gk (r, r′) =
∑

n

En(r)En(r′)
k − kn

= k
∑

n

En(r)En(r′)
kn(k − kn)

, (23)

where En is normalized according to Eq. (C3), the same way as
in Ref. [21]. Accordingly, Eq. (13) for TM polarization takes
the form

L̂(k, r)H(r) = �L̂(r)H(r), (24)

where

�L̂(r) = ε′(r)

ε(r)

d

dr
, (25)

and can be further written as a Lippmann-Schwinger equation,
in terms of the Green’s function of the operator L̂(k, r):

H(r) = 1

k

∫ R

0
Gk (r, r′)�L̂(r′)H(r′)dr′. (26)

Now, using the completeness of the basis states En(r),

H(r) =
∑

n

cnEn(r), (27)

and the Green’s function expansion Eq. (23), we convert
Eq. (26) into the following matrix equation:

kn(k − kn)cn =
∑

n′
�nn′cn′ , (28)

where

�nn′ =
∫ R

0
En(r)

ε′

ε
E ′

n′ (r)dr (29)

and the primes in ε and E mean derivatives with respect to r.
Finally, using a single state only (n′ = n), this reduces to the

diagonal approximation,

k ≈ kn + �nn

kn
, (30)

which is clearly equivalent to the first-order result in terms
of the perturbation matrix �nn′ . We call the above method re-
expansion, as the basis functions En(r) used in the expansion
Eq. (27) are in turn expanded into the RSs of the homogeneous
sphere.

A less rigorous and perhaps simpler approach is to treat
the extra term in the TM potential, added to the TE equation,
in a single mode approximation, in a manner it is usually
applied to closed systems. Assuming H(r) ≈ E (r) and taking
the difference between Eqs. (11) and (13), we find[

−ε′(r)

ε(r)

d

dr
+ (k2

TM − k2
TE)ε(r)

]
E (r) ≈ 0, (31)

where kTE (kTM) is the TE (TM) RS wave number. Multiplying
Eq. (31) with E (r) and integrating over the system volume
yields

k2
TM − k2

TE ≈
∫ R

0 E (r) ε′(r)
ε(r) E ′(r)dr∫ R

0 E (r)ε(r)E (r)dr
≡ 2�. (32)

The first-order correction to the wave number, determining the
TE-TM splitting, is then given by

kTM ≈ kTE + �

kTE
. (33)

For high-quality WG modes, the field E (r) is small at the sur-
face, so the integral in the denominator of Eq. (32) is getting
close to the exact normalization, 2

∫ R
0 ε(r)E2(r)dr ≈ 1, and

the two results, Eqs. (30) and (33), become identical.

B. Constant, linear and quadratic profiles

The exact splitting of TE and TM RSs is quantified in
Fig. 4, showing the distance from each TE RS to its nearest
TM RS, both in the complex plane [Fig. 4(a)] and for the real
part only [Fig. 4(b)]. Considering first the constant permittiv-
ity (black circles), we find that the TE-TM splitting of WG
modes is smaller than that of FP modes, and the real part of
the splitting changes its sign at the Brewster peak, due to the
additional TM mode as discussed in Sec. II A. At this peak,
there is a maximum of the absolute difference, due to the much
larger imaginary part of the TM mode.

Moving to the linear profile (blue diamonds), the splitting
decreases by a factor of about 5 for the WG modes, but only by
about 30% for FP modes. Consistent with the weaker Brewster
peak in the spectrum [see Fig. 3(c)], the splitting also does
not show a pronounced peak. Finally, for the quadratic profile
(red squares), the splitting is further reduced by a factor of
about 2 for the WG modes and by about 10% for the FP
modes. Due to the larger imaginary part [see Fig. 3(e)], also
the absolute difference shows a Brewster peak. For all three
cases, the smallest absolute distance between RSs is found for
the WG modes near the critical wave number kc = l/R of the
total internal reflection.

A similar behavior is observable for higher l , as shown in
Appendix F. In this case, it is also easier to see that the graded
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FIG. 4. Absolute value (a) and the real part (b) of the splitting
between a TE (kTE) and the nearest TM (kTM) RS, for the considered
permittivity profiles and l = 20. The vertical lines are the positions
of the Brewster peak (kb) in each TM spectra. The single-mode (SM)
values are based on the re-expansion Eq. (30).

permittivity profile reduces the dispersion of the WG modes,
creating an approximately equidistant spectrum as shown in
Appendix G. This has been also discussed in literature [15]
and is consistent with results from the Morse potential approx-
imation given by Eq. (18).

The RS splitting can be understood more mathematically
by looking at the additional term of the TM potential in
Eq. (14), which is the product of the logarithmic derivatives
of the permittivity and the field. An obvious way to reduce
the influence of this term is to spatially separate the maxima
of the logarithmic derivative of the permittivity and the field
amplitude. For the constant permittivity, the derivative creates
a δ function at the boundary which overlaps much with the
field thus creating a rather large splitting. Moving to the linear
profile, the field maximum is shifted to smaller radii but the
derivative of the permittivity is constant everywhere within
the sphere. Still its influence is more spatially distributed com-
pared to the δ function, and this reduces the splitting. Finally,
for the quadratic profile, the maxima of both functions are
spatially separated, and this reduces the splitting even further.

We also evaluated the TE-TM mode splitting using the
diagonal approximation Eq. (30) for the linear (blue dots) and
quadratic (red dots) profiles and compare it with the accurate
RSE result in Fig. 4. The obtained values from the single
mode approximation are in qualitative but not quantitative
agreement with the RSE result, and for the WG modes about
a factor of 2 smaller. So, interestingly, while the TE-TM
splitting is small, suggesting that a single mode approxima-

tion would be suitable, the TE and TM field distributions are
actually significantly different. This is due to a rather large
perturbation of the potential (see Fig. 3), showing both posi-
tive and negative regions, and thus mixing with other modes
while having a small single-mode perturbation integral.

A qualitative discussion of the TE-TM splitting of the
fundamental WG mode is provided in Appendix F, in terms
of the radial and polar confinement of light in an effective
waveguide with an asymmetric cross section.

C. Reduction of splitting in a wide potential well

We expect the TE-TM degeneracy may be reduced for a
wider potential well, as this can decrease the overlap of the
RS field with the gradients of the permittivity, thus reducing
the perturbation of the potential treated in Sec. IV A. To create
such a well in the effective potential V TE, given by Eq. (12),
the centrifugal radial term α2/r2 has to be compensated by
a permittivity with the same functional dependence, ε(r) ∝
1/r2. In this case the refractive index n(r) scales as 1/r, so
the circular round-trip phase, 2πkrn(r), which is equal to 2π l
in the ray picture, is independent of r. In other words, this
graded index creates equal optical ray path lengths at all radii.

Since a permittivity diverging towards the sphere center is
not realistic, we introduce a cutoff radius r0 	 R at which the
permittivity saturates, using the expression

εw(r) = εw
R2 + r2

0

r2 + r2
0

. (34)

Here εw is the permittivity at the sphere surface r = R. To
create a smooth potential with no discontinuities up to the first
derivative across the sphere surface, we further introduce a
transition region of width r0 by defining the permittivity as

ε(r) =
⎧⎨⎩

1 r > R,

εw(r) r < R − r0,

1 + [εw(r) − 1] sin2
(
π r−R

2r0

)
otherwise.

(35)

The resulting permittivity profile and RSs for εw = 2 and
r0 = 0.1R are shown in Fig. 5(a), calculated by the RSE
with N = 1600 (kmaxR ≈ 1200). The number of basis modes
was increased to retain the accuracy at the higher perturba-
tion strength used. The Brewster peak is blended in with the
rest of the TM RSs, which have a monotonously increasing
imaginary part; however, we can still identify the peak in the
difference of the imaginary part compared to the TE RSs.
The potential for the first WG mode [Fig. 5(b)] shows a wide
and flat well, as designed. The splitting between TE and TM
RSs [see black in Fig. 5(c)] has reduced overall compared to
the other profiles considered, and now the smallest absolute
distance is observed for the first WG mode, being about twice
smaller than for the quadratic profile (see Fig. 4). Increasing
r0 reduces the well width leading to larger splitting [see red
in Figs. 5(c) and 5(d)]. When using a sharp boundary at the
edge, i.e., without the sin2 term in Eq. (35), the splitting of the
first mode is not significantly changed, as it has a small field
at the boundary. Higher order modes instead acquire a larger
splitting, and furthermore a sharper Brewster’s peak is found
[see blue in Figs. 5(c) and 5(d)].

We also calculated the splitting using the perturbation
method introduced in Sec. IV A. While the degeneracy in k is
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FIG. 5. RSs in a graded index profile Eq. (35) creating a wide
potential well. (a) As Fig. 3 left column. (b) As Fig. 3 right column.
(c), (d) As Fig. 4 but using Eq. (28) with N = 100 basis modes,
in comparison with the full RSE. As the imaginary part of kn is
monotonously increasing from WG to FP modes, the Brewster peak
value kb is chosen at the mode that has the largest difference of Im k
between the closest TE and TM modes.

decreased, the TE and TM fields are still spatially separated,
so instead of using a single mode we evaluate the full matrix
equation Eq. (28) for N = 100 RSs. In Fig. 5, we can see
that this leads to a much better agreement with the results
compared to the single mode approximation used for the linear
and quadratic case before. For increasing k the error in the
results increases. This is due to a combination of factors,
including the truncation of the matrix, the slow convergence
of the expansion Eq. (23) as discussed in Ref. [21], and the
error in the unperturbed fields En.

V. SUMMARY

We have studied, for different static-mode sets, an opti-
mized version of the RSE and demonstrated the same quick
(1/N3, where N is the basis size of the RSE) convergence to
the exact solution for different static-mode sets. We have also
compared it with a similar version of the RSE, studied earlier
in Ref. [21], in which static modes are eliminated from the ba-
sis, and demonstrated the same convergence for both versions.
We then applied the RSE to spheres with graded permittivity
profiles and showed that the RSE is a reliable and simple
method to determine all the RSs up to a maximum wave
number controlled by the basis choice. Looking at the full
spectrum provided by the RSE, instead of just distinct RSs,
allows us to identify physical phenomena reliably and rapidly,
as shown by the results presented. We have further discussed
the results using the ray picture with surface reflections, the
phase analysis based on the secular equation, and the concept
of an effective potential, treating the radial wave equation as a
quantum-mechanical analog. Importantly, we provide a MAT-
LAB program to calculate modes of a spherically symmetric
system with a polynomial permittivity profile [37]. Once the
basis modes are calculated across the whole system volume,
applying the perturbation and finding the new modes takes
only a few seconds on a modern computer, therefore the RSE
is particularly suited to explore large parameter spaces. From
the eigenmodes of graded index spheres one can calculate
their scattering cross section [38]. The results shown here are
thus relevant for applications such as atmospheric aerosol de-
tection by light detection and ranging [39], the modeling of the
human head in medical imaging [40,41], and the propagation
of EM waves around earth [42].

For a homogeneous sphere, we have provided a detailed
analysis of the spectrum of the RSs in the complex wave-
number plane, consisting of leaky, FP, and WG modes. This
analysis includes development of a number of approxima-
tions. For TM polarization, we have explained the peak in
the RS linewidth and an additional mode with respect to
TE polarization in terms of the Brewster phenomena. Using
the ray picture further, we have evaluated the RS linewidth
from Fresnel’s coefficients of reflection, which provides a
good agreement with the exact solution for FP modes. We
have shown that the wave number kc = l/R evaluated at the
critical angle of the total internal reflection plays the role
of a boundary in the spectrum separating the WG from FP
modes. Using the phase analysis of the secular equation, we
developed an analytic approximation for the WG and FP mode
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line widths, an asymptotic formula for the FP wave numbers at
large frequencies, and have shed light on the mode separation
and TE-TM splitting.

We then investigated graded index spheres with linear or
quadratic permittivity profiles eliminating the discontinuity
at the sphere surface. We found that the imaginary part of
FP modes is increasing logarithmically with their wave num-
ber, with a larger slope for quadratic profiles. We used the
concept of an effective potential for the radial EM wave
equation and suggested an interpretation of this quantum-
mechanical analogy by associating all the physical solutions
with zero-energy states, emphasizing that the effective poten-
tials are complex. This provides a clear picture explaining the
existence and properties of WG modes. We further approxi-
mated the obtained effective potentials around their minimum
with the analytically solvable Morse potential, which for TE
polarization yields a simple explicit algebraic expression of
high accuracy for the WG mode wave numbers. For large
angular quantum numbers l , this solution predicts a nearly
equidistant spectrum of WG modes, similar to that of a har-
monic oscillator.

We studied the TE-TM splitting and demonstrated its se-
quential reduction for WG modes when going from constant
to linear and then to quadratic permittivity profile. We have
shown that the splitting is further reduced in a wide flat poten-
tial well designed via the radial permittivity. To understand the
TE-TM splitting, we developed a re-expansion method, which
perturbatively treats the difference between the effective po-
tentials of TE and TM polarizations. The results are in good
agreement with the exact solution. We have also provided
a diagonal approximation, which turns out to be insufficient
for the investigated cases despite the small splitting—a con-
sequence of the underlying strong perturbation. Using this
understanding, we designed a graded index profile providing
a wide effective potential well leading to a reduced TE-TM
splitting, which in turn enhances the sensitivity of optical
systems to chiral materials.

Information on the data created during this research,
including how to access it, is available from the Cardiff Uni-
versity data archive [43].
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APPENDIX A: PHASE ANALYSIS FOR A SPHERE

The RS wave numbers of a homogeneous sphere in vacuum
are determined by the secular equation (1). Its approximate
solution Eqs. (8) and (9) developed in Sec. II B is illustrated
in Fig. 6. The green solid lines show �(Re k) − nπ , for all
values of n, while blue and red solid lines show the real part of
�(Re k) for TE and TM polarizations, respectively. According
to Eq. (8), they should cross the green lines at the real part of
the RS wave numbers, Re kn, whereas the imaginary part Im

− Φ

Φ)
−

Ψ − π

FIG. 6. Phase functions �(Re k) (green lines), Re(�(Re k))
(solid lines) and Im (�(Re k))/nr (dashed lines) for TE and TM
RSs, alongside the exact RS wave numbers (blue and red dots)
in the complex wave-number plane, for a homogeneous sphere of
nr = 2 and l = 20. The vertical dotted line shows the Brewster wave
number kb.

kn is approximately given by Im(�(Re kn))/nr (blue and red
dashed lines), according to Eq. (9). Generally, there can be
seen a good agreement with the exact values shown by blue
and red dots, representing the RS wave numbers in the com-
plex k-plane. At large kR, Re �(k) approaches the asymptote
at 0 (π/2) for TE (TM) polarization, which determines the
mode separation, in accordance with Eq. (10). For a twice
larger refractive index of the sphere (nr = 4), and l reduced
to 10 in order to create a similar number of WG modes,
an improved agreement between this approximation and the
exact solution is found, as shown in Fig. 7.

0 10 20 30
10
-10

10
-8

10
-6

10
-4

10
-2

10
-1

5

-
Im
(k
R)

Re(kR)

l=10
nr=4

FP

WG

L

TM

TE

approx. ray

approx. phase

FIG. 7. As Fig. 1 but for nr = 4 and l = 10.
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To derive the large-k approximation given by Eq. (10), we
first note that for z � l ,

H ′(z)

H (z)
≈ i. (A1)

Introducing z̃ = nrz − (l + 1)π/2, where z = kR, and also
using the approximation Eq. (4), the secular equation (1) takes
the form

tan(z̃) ≈ − i

β
, (A2)

which can be also written as

e2iz̃ ≈ 1 + 1/β

1 − 1/β
. (A3)

This equation has explicit analytical solutions

z̃TE
n ≈ πn − i

2
ln

nr + 1

nr − 1
,

z̃TM
n ≈ π

(
n + 1

2

)
− i

2
ln

nr + 1

nr − 1
, (A4)

equivalent to Eq. (10). The TE result was also given in
Ref. [44]. Note that apart from the −(l + 1)π/2 term in z̃,
these are the same as the modes of a homogeneous slab at
normal incidence [17]. The TE (TM) modes correspond to
the odd (even) modes of the slab, as discussed in more depth
in Appendix B below. From here, we find, in particular, that
the wave-number difference between neighboring modes in
a given polarization is π/nrR, consistent with the graphical
solution in Fig. 6. We can also see that the difference between
neighboring TE and TM FP RSs is

�z̃ = nr (kTM − kTE)R = π

2
, (A5)

as also suggested by Fig. 6.
In principle, a similar result can be derived for WG modes

in the case when nr � 1. The latter condition allows the argu-
ment of the Bessel functions (nrkR) to be large (compared to
l), leading to the approximation Eq. (4), while simultaneously
keeping the argument of the Hankel function small (compared
to l). In this case, H ′(z)/H (z) ≈ −l/z, which in the WG limit
gives a modified equation compared to Eq. (A2):

tan(z̃) ≈ l

βz
. (A6)

Therefore, it is possible to observe in a very high permittivity
material nearly equidistant WG modes even in a homogeneous
sphere. This is consistent with Ref. [45], where the reso-
nances positions and mode separations were described based
on geometrical optics, and also with approximate results from
Ref. [46] for the mode spacing when l � 1.

APPENDIX B: EIGENMODES
OF A HOMOGENEOUS SLAB

By approximating the surface of the sphere with a flat
boundary, we compare the modes of a sphere with those of
a homogeneous slab, in which EM waves propagate at a non-
normal incidence to the boundary. We also compare here the

20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

TE (e)

TE (o)

TM (e)

TM (o)

TE approx.

TM approx.

-I
m
(ω
a)

Re(ωa)

FIG. 8. Eigenmodes of a homogeneous slab with ε = 4, μ = 1,
and p = 20, along with approximate solutions for the imaginary part
obtained from Eq. (B2). (e) and (o) label the even and odd modes,
respectively. Here ω is the wave number in vacuum.

modes of the slab with an approximation similar to Eq. (3),
which is provided by the ray picture.

The secular equation determining the TE modes of a homo-
geneous slab of thickness 2a, permittivity ε, and permeability
μ is given by [47]

e2iqna = (−1)n qn + μkn

qn − μkn
, (B1)

where q =
√

εμω2 − p2 and k =
√

ω2 − p2 are the normal
components of wave vector inside the slab and in vacuum,
respectively, ω is the length of the wave vector in vacuum,
and p is its in-plane component, which is conserved. Note
that p was also introduced to discuss the Brewster peak, see
Fig. 2. The factor (−1)n gives the mode parity and can be
used to label the modes. The corresponding equation for TM
modes is provided by just swapping ε and μ in Eq. (B1).
We note the similarity between Eqs. (B1) and (A3)—these
equations become identical for normal incidence, when p = 0
and thus q = nrk with nr = √

εμ.
One can find an approximate imaginary part of the mode

wave numbers in the same way as described in Sec. II A. The
angle of incidence inside the slab is given by θ = atan(p/q),
and the optical path length is L = 2anr/ cos θ where a is the
slab half width. The imaginary part of the RS wave numbers
is then given by

Im k = ln |rP|
2anr

cos θ, (B2)

where again rP is the polarization dependent Fresnel coeffi-
cient taken at real wave numbers—compare Eqs. (B2) and (3).

We show in Fig. 8 the TE and TM modes of a slab with
permittivity ε = 4, permeability μ = 1, and in-plane wave
number p = 20/a, so the system parameters are matching
those used for the sphere in Sec. II A. In the TM spectrum,
there is a peak again, which is aligned with the position of
the Brewster angle. Overall, for these parameters, the approx-
imation works better for the slab than for the sphere, as the
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boundary is strictly flat. The observed small deviation of the
modes from the approximation at the Brewster peak stems
from the neglecting the imaginary part of the wave number
in rP, which can be significant around the peak. We can see
that for both polarizations, there are even and odd modes
alternating with increasing Re(ωa). We can also see that at
high frequencies, both TE and TM FP modes converge to the
same asymptote, which is the same behavior as for the sphere.
As in the spherical case, the TE and TM modes of the same
parity appear in alternating order. In fact, even TE modes align
with the odd TM modes, and vice versa. However, in case of
a sphere even modes do not exist. Finally, instead of the WG
modes of a sphere, in case of a slab there are waveguide modes
with purely real eigenfrequencies, formed as a consequence of
total internal reflection at the planar boundary, and instead of
the L modes of a sphere, there are antiwaveguide modes in
a slab [48]. Both waveguide and antiwaveguide modes have
ω < p and are not shown in Fig. 8.

APPENDIX C: RESONANT-STATE EXPANSION
FOR SPHERICALLY SYMMETRIC SYSTEMS

According to Ref. [21], the matrix equation of the RSE for
nondispersive systems has the following general form:

(k − kn)an = −k
∑

n′
Ṽnn′an′ , (C1)

where an are the expansion coefficients of a perturbed RS into
the basis RSs labeled by index n. For spherically symmetric
systems, all n refer to the same spherical quantum numbers
l and m, but the matrix elements Ṽnn′ of the perturbation are
quite different in TE and TM polarizations.

For a radially dependent permittivity perturbation �ε(r) of
a nonmagnetic system, the matrix elements in TE polarization
are given by

Ṽ TE
nn′ =

∫ R

0
En(r)�ε(r)En′ (r)dr, (C2)

where En(r) is the electric field of the basis RS n, satisfying
Eq. (11), in which k = kn is the RS wave number and ε(r)
is the permittivity profile of the basis system, and the bound-
ary condition is that there are only outgoing waves from the
system. The fields En(r) are normalized according to [17,21]

2
∫ R

0
εE2

n dr + 1

kn
[(EnrE ′

n)′ − 2r(E ′
n)2]r=R = 1. (C3)

For TM polarization, the matrix elements have a more
complex form:

Ṽ TM
nn′ = Vnn′ −

∑
j j′

Vn jWj j′Vj′n′ , (C4)

where Wj j′ is the inverse of matrix δ j j′ + Vj j′ , index n labels
the basis TM RSs, and index j labels additional functions
required for completeness. They are used in the expansion of
the perturbed EM vector fields and the dyadic GF, and are
responsible for the static pole representation of the latter [21].
It is convenient to introduce a combined index ν which labels
together the RSs (n) and the additional basis functions ( j). It
is also useful to separate each basis electric vector field into

the radial E r
ν (r) and tangent E t

ν (r) components. The matrix
elements contributing to Eq. (C4) then take the form [21]

Vνν ′ =
∫ R

0

[
E t

ν�ε(r)E t
ν ′ + E r

ν

ε(r)�ε(r)

ε(r) + �ε(r)
E r

ν ′

]
dr (C5)

with E t
ν (r) and E r

ν (r) defined below.
For the basis TM RSs, the fields are given by(

E t
n(r)

E r
n (r)

)
= − 1

knε(r)

( d
dr
α
r

)
Hn(r) ≡

(
Kn(r)
Nn(r)

)
, (C6)

where Hn(r) is the magnetic field of the basis TM RS n,
satisfying Eq. (13), in which k = kn is the RS wave number
and ε(r) is the permittivity profile of the basis system, with
outgoing waves boundary condition. The fields Hn(r) are
normalized according to [17,21]

2
∫ R

0
H2

ndr + 1

kn

[(
Hn

r

ε(r)
H′

n

)′
− 2r

ε(r)
(H′

n)2

]
r=R+

= 1

(C7)

with R+ = R + 0+, where 0+ is a positive infinitesimal.
All other basis states can be expressed in terms of functions

Kn(r) and Nn(r) introduced in Eq. (C6) and static modes
ψλ(r) introduced in Ref. [20] and also discussed in Ref. [21].
Let us note at this point that the two slightly different versions
of the efficient (i.e., quickly convergent) RSE developed in
Ref. [21] are based on two different Mittag-Leffler representa-
tions of the full dyadic GF of a spherically symmetric system,
called in [21] ML3 and ML4. Essentially, they differ in the
basis functions describing the static pole of the GF. Also, ML4
is introduced for a homogeneous sphere only, while ML3 is
valid for any spherically symmetric basis system.

In the ML3 version of the RSE, all the additional basis
states can be divided into three groups. In the first two groups,
indices jI and jII take the same values as the TM RS index n,
and the fields are given by(E t

jI

E r
jI

)
=

(
iKn

iNn

)
and

(E t
jII

E r
jII

)
=

(Kn

0

)
. (C8)

In the third group, (E t
jIII

E r
jIII

)
=

(
αψλ

0

)
, (C9)

and the index jIII coincides with λ labeling static modes
defined in terms of the radial part of their potential function
ψλ(r). Static modes are the solutions of a generalized Sturm-
Liouville problem [20,21] and are normalized according to

λ2
∫ R

0
ε(r)ψ2

λ (r)r2dr = 1. (C10)

For a basis system in the form of a nonmagnetic homoge-
neous sphere in vacuum, described by the permittivity profile
given by

ε(r) = (ε − 1)θ (R − r) + 1, (C11)

the static mode potentials take the explicit form

ψλ(r) = Aλ jl (λr) (C12)
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within the sphere (r � R), where jl (x) is the spherical Bessel
function of order l , λ is the mode eigenvalue (here also
used to label the modes), and Aλ is a normalization constant
determined according to Eq. (C10). The eigenvalues λ are
found from the boundary condition of the Sturm-Liouville
problem [20], which leaves a large range of possible sets.
Following Ref. [21], we consider here three sets of static
modes for the ML3 version of the RSE: (i) the volume-
charge set (VC), with the eigenvalues generated by the secular
equation

λεR j′l (λR) + (l + 1) jl (λR) = 0, (C13)

(ii) the volume-surface-charge set (VSC), with a simpler sec-
ular equation

jl (λR) = 0, (C14)

and (iii) a modified-volume-surface-charge set (MVSC), de-
termined by the following secular equation:

λR j′l (λR) + (εl + 1) jl (λR) = 0. (C15)

Note that apart from the modes generated by the secular
equations, both VSC and MVSC sets include one additional
mode, that corresponds to λ = 0. Also note that the VSC and
VC sets were used in Ref. [20] for a slowly convergent version
of the RSE.

In the ML4 version of the RSE, developed in Ref. [21]
for the basis system in a form of a homogeneous sphere in
vacuum, all basis states responsible for the static pole of the
GF can be divided into four groups. The first two groups are
the same as in ML3 and are given by Eq. (C8). The third
and fourth groups of basis functions provide an alternative
to the static mode sets described above. The third group is
given by (E t

jIII (r)

E r
jIII (r)

)
=

(Nn(r)

0

)
, (C16)

where index jIII again takes the same values as the TM RS
index n, in the same way as in the first two groups, and the
fourth group consists of the single element(E t

jIV (r)

E r
jIV (r)

)
=

(
M0(r)

0

)
, (C17)

where

M0(r) =
√

l (l + 1)

εR

ε − 1

εl + l + 1

( r

R

)l
, (C18)

which can also be found as

M0(r) = (ε − 1)

√
l

ε
lim

kn→0
Kn(r)

= (ε − 1)

√
l + 1

ε
lim

kn→0
Nn(r) (C19)

by treating both Kn(r) and Nn(r) as analytic functions of kn

and taking the limit kn → 0.
To test the convergence of the RSE based on ML3 for the

different static mode sets, we apply the RSE to a size pertur-
bation of a homogeneous sphere. We choose as unperturbed
system a homogeneous sphere in vacuum, having radius R,

ε Δε     ε

FIG. 9. RSE applied for size perturbation. TM RSs of a dielectric
sphere with permittivity ε = 4 and permeability μ = 1, for angular
momentum number l = 20. Top: Wave numbers in the complex
k plane. Basis RSs for size R, target RSs for size 0.8R. Bottom:
Relative error of the RSs calculated by the RSE with elimination
of static modes (ML4) and with efficient inclusion of static modes
(ML3) for various static mode sets and basis sizes N as given. Inset:
Unperturbed and perturbed permittivity profiles.

permittivity ε = 4, and permeability μ = 1. We focus here on
the TM RSs with angular momentum l = 20, also noting that
in spherically symmetric systems, all states are degenerate in
m. The target system is a sphere of the same material and
radius 0.8R, so the perturbation is given by �ε = 1 − ε in
the outer 0.2R thick shell of the basis sphere. Figure 9 shows
the resulting perturbed and unperturbed eigenvalues k, and
their error, for various basis sizes N , which include RSs with
|kn|R � 0.77N and static modes with |kλ|R � 3.31N . For a
homogeneous sphere, in the absence of dispersion the RS
wave numbers kn and the sphere radius are inversely pro-
portional, which can be seen as a scaling of the target RSs
compared to the basis RSs in the complex plane.

The relative error for ML3 scales as 1/N3 (the same as
in ML4), independent of which static mode set is used. In
the original version of the RSE [20], with a slow (1/N)
convergence for static mode inclusion, there was a more
significant difference between the VC and VSC sets, as
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ε Δε     εε Δε     ε

FIG. 10. As Fig. 9, but for a homogeneous perturbation. Basis
system ε = 4, target system ε + �ε = 9.

they were used for the expansion of the complete residue
of the static pole of the GF, including the δ function term.
We find that ML4 provides smaller errors for the leaky
branch. This can be understood by noting that ML4 uses
instead of static modes basis functions proportional to the
RSs, including L RSs, and thus can be expected to be bet-
ter suited for expanding the L RSs of the target system.
A slow initial convergence of L RSs is testament to their
unusual spatial shape, not well described by the basis RSs,
but the 1/N3 convergence is eventually recovered above
N = 400.

The results for strength perturbation, that is, changing
the permittivity of the sphere homogeneously, are shown in
Fig. 10, displaying a similar behavior. Here, using the same
basis sizes as in Fig. 9, we apply the RSE for a homogeneous
increase of the permittivity of the sphere by �ε = 5, giving a
target sphere permittivity ε + �ε = 9. The higher refractive
index leads to a denser array of RSs, increased number of
WG modes, and smaller imaginary part for the FP modes.
We can see that the error converges with the basis size N as
1/N3 for ML3, independent of the static mode set used. For
the WG modes, the ML3 representation has some advantage
over ML4, having up to five times smaller errors. The static
modes thus seem better suited to describe these WG modes,
likely because they are bound to the sphere, similar to the WG
modes.

FIG. 11. Real part of the unitless effective potential Ṽ TMR2 and
the normalized field H̃ for the first four TM WG RSs, for the
quadratic permittivity profile, and l = 20 as in Fig. 3. WG RS 1 kR =
14.4 − 6.74 × 10−9i, WG RS 2 kR = 15.4 − 3.51 × 10−7i, WG RS
3 kR = 16.3 − 8.47 × 10−6i, WG RS 4 kR = 17.2 − 1.22 × 10−4i.

We thus conclude that for all three static mode sets, ML3
has a convergence similar to ML4. We used the ML4 version
of the RSE for generating the results of this paper.

APPENDIX D: EFFECTIVE POTENTIAL FOR TM MODES

Here we show that the wave equation (13) for the scalar
magnetic field H(r) in TM polarization can be brought to
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a Schrödinger-like equation with an effective potential in-
dependent of the wave function. Following Ref. [10], we
introduce a substitution H(r) = √

ε(r)H̃(r), from which we
find

dH
dr

= 1

2

ε′
√

ε
H̃ + √

εH̃′ (D1)

d2H
dr2

=
(

−1

4

(ε′)2

ε
3
2

+ 1

2

ε′′
√

ε

)
H̃ + ε′

√
ε
H̃′ + √

εH̃′′, (D2)

where the prime indicates the derivative with respect to r and
where we omit the dependencies on r for brevity. Using these
expressions the wave equation takes the form(

d2

dr2
− α2

r2
+ k2ε − 3

4

(
ε′

ε

)2

+ 1

2

ε′′

ε

)
H̃ = 0, (D3)

in which the first derivative of the wave function present
in Eq. (13) has canceled out, so the corresponding effective
potential Ṽ TM given by Eq. (15) is independent of the wave
function H̃. This comes at the cost of adding a term con-
taining the second derivative of the permittivity to Ṽ TM. We
show Ṽ TM in Fig. 11 for the lowest four WG modes, for
the quadratic permittivity profile described in Sec. III B 3.
Overall, the potential has a shape similar to V TE shown in
Fig. 3(f), apart from the step at the sphere surface due to
the contribution from the second derivative of the permittivity
which has a discontinuity. As in the TE polarization, the
potential is getting deeper with the mode number, and its
minimum is slightly shifting towards the center, as it is clear
from Fig. 11.

APPENDIX E: MORSE POTENTIAL

The Morse potential is a nonparabolic potential with
known analytical solutions for energy levels and correspond-
ing wave functions, often used to describe the binding of
diatomic molecules [49]. We take the Morse potential in the
form

VM(r) = De{1 − exp[−a(r − re)]}2, (E1)

where De is the dissociation energy, re is the position of the
potential minimum, and a is an inverse well width. The poten-
tial is zero at r = re and approaches De asymptotically with
increasing r. The bound energy levels of a quantum particle
with a mass M = h̄2/2 in this potential are En = −a2(λ − n −
1/2)2 + De, where λ = √

De/a and n = 0, 1, . . . with n <

λ − 1/2.
We apply this potential here to find approximate solutions

for WG modes in the QMA, given by Eq. (11) for TE and
Eq. (D3) for TM polarization. To do so, we match the coef-
ficients of the Taylor expansion of the Morse potential VM(r)
and the corresponding QMA potential V (r) at their minimum
re up to third order. Matching the value at the minimum is
achieved by adding the value V (re) to the Morse potential and
its eigenenergies:

En = −a2(λ − n − 1/2)2 + De + V (re). (E2)

The first derivative of both potentials is zero at the minimum
and thus is matched by construction. We then determine De

and a by matching the second and third derivatives, yielding

V ′′(re) = 2a2De and V ′′′(re) = −6a3De, (E3)

where the prime denotes the derivative with respect to r.
As V (r) depends on k, each WG mode has its own Morse
potential parameters.

Now, since the solution corresponding to the WG mode
has zero energy in the QMA, we can find an explicit equa-
tion determining the approximate value of the WG mode wave
number kM. Eliminating De and a from Eqs. (E2) and (E3),
and requiring that En = 0 yields[

V ′′′

3V ′′

(
n + 1

2

)]2

= V +
√

2V ′′
(

n + 1

2

)
, (E4)

which is evaluated at r = re, where re is determined by

V ′(re) = 0 with V ′′(re) > 0, (E5)

to select a minimum. Generally, Eqs. (E4) and (E5) provide
a nonlinear set of equations for k2

M, which can be solved nu-
merically. Notably, for the case of a linear permittivity profile
ε(r) and TE polarization, the second and third derivatives of
the potential are independent of k. They are given by V ′′(r) =
6α2R2/r4 and V ′′′(r) = −24α2R2/r5, so the minimum posi-
tion is determined by r3

e = −2Rα2/(k2ε′). Inserting these into
Eq. (E4) provides the explicit algebraic expression Eq. (18)
for the approximate wave numbers of the WG modes. A fit
of the effective potential V (r) for the first WG mode (n = 0)
in TE polarization with a Morse potential VM(r) is illustrated
in Fig. 3(d), showing an excellent visual agreement between
the two. Table I shows a comparison of the WG mode wave
numbers calculated using the RSE with the approximate ones
using the Morse potential, Eq. (18), revealing a high accuracy
of the approximation with relative errors in the 10−5 − 10−3

range.
Finally, Table II shows the six lowest states in each of the

Morse potentials corresponding to the first five WG modes in
TE polarization. The state describing the WG mode has zero
energy, and is changing from the first (n = 0) to the fifth state

TABLE I. Comparison of TE WG mode wave numbers calcu-
lated by the RSE (real part) and the Morse approximation Eq. (18),
along with the Morse parameters for each fit. The relative error is
calculated with respect to the RSE. Results are shown for the linear
permittivity profile as in Sec. III B 2 and l = 80.

n kRSER kMR Relative error re/R 1/aR DeR2

0 54.11860 54.12054 0.00004 0.71708 0.53781 21266
1 55.26400 55.27396 0.00018 0.70707 0.53030 21872
2 56.40250 56.42867 0.00046 0.69739 0.52304 22484
3 57.53360 57.58464 0.00089 0.68802 0.51602 23100
4 58.65710 58.74180 0.00144 0.67896 0.50922 23721
5 59.77250 59.90012 0.00214 0.67018 0.50263 24347
6 60.87960 61.05955 0.00296 0.66167 0.49625 24977
7 61.97800 62.22004 0.00391 0.65341 0.49006 25612
8 63.06740 63.38155 0.00498 0.64541 0.48405 26251
9 64.14750 64.54401 0.00618 0.63763 0.47822 26895
10 65.21800 65.70736 0.00750 0.63008 0.47256 27544
11 66.27870 66.87152 0.00894 0.62275 0.46706 28196
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TABLE II. Energy levels in the five different Morse potentials
corresponding to the first five WG modes for TE polarization, l = 80,
and a linear permittivity profile as in Sec. III B 2.

WG 1 WG 2 WG 3 WG 4 WG 5
kMR 54.12 55.26 56.40 57.53 58.66

n En(kM)R2

0 0 −551 −1124 −1720 −2338
1 535 0 −558 −1139 −1742
2 1064 543 0 −566 −1154
3 1585 1080 551 0 −573
4 2100 1609 1095 558 0
5 2608 2131 1631 1109 565

(n = 4) in the Morse potential. Importantly, the other states at
nonzero energy are not describing WG modes, different from
what could be implied by the QMA.

APPENDIX F: QUALITATIVE DISCUSSION OF THE
TE-TM SPLITTING AND AN EXAMPLE FOR l = 80

One way to understand qualitatively the splitting of the
fundamental WG (FWG) mode for a given l is to consider the
RSs as light guided around the sphere as in a waveguide with
an asymmetric cross section in radial and polar directions.
TE RSs have only the tangent component of the electric field,
while for TM RSs there is also a radial component. All modes
have polar and radial confinement, both due to the spherical
geometry. The radial confinement is determined by the effec-
tive potential as discussed in detail in Sec. III. As for the polar
confinement, it is described, e.g., for the FWG mode with m =
l by the analytic dependence of the field which is proportional
to sinl (θ ), where θ is the polar angle. We can find the angular
width � of the polar confinement from the half maximum of
the intensity cos2l (�) = 1/2, after substituting θ = � + π/2
into the above angular dependence of the field. This condition
yields � = ±√

ln(2)/l for l � 1. The full width at half
maximum (FWHM) of the field extension in polar direction
wθ is then approximately given by wθ = 2rp

√
ln 2/l , with the

peak radius rp of the RS, which for l = 20 amounts to about
0.37 rp. For the constant permittivity [Fig. 3(b)], we find
rp ≈ 0.9 R, so wθ ≈ 0.33R and the FWHM in radial direction
wr ≈ 0.15R. The RS asymmetry is thus about a factor of 2.2.
For the linear permittivity [Fig. 3(d)], we find rp ≈ 0.71 R, so
wθ ≈ 0.26R and the FWHM in radial direction wr ≈ 0.20R.
The FWG mode asymmetry is thus about a factor of 1.3. For
the quadratic permittivity [Fig. 3(f)], we find rp ≈ 0.54 R, so
wθ ≈ 0.20R and the FWHM in radial direction wr ≈ 0.17R.
The FWG mode asymmetry is thus about a factor of 1.2. We
see from these estimates that the RS asymmetry reduces when
going from the constant to the linear and then further to the
quadratic profile, and so does the TE-TM splitting.

To reduce the FWG mode asymmetry further, we have
designed an index profile demonstrated and discussed in
Sec. IV C. Looking at the FWG mode asymmetry in this case,
we find rp ≈ 0.67 R, so wθ ≈ 0.25R and the FWHM in radial
direction wr ≈ 0.33R. The RS asymmetry is thus about a
factor of 0.75, inverted compared to the other profiles. Still,

(a)

(b)

(c)

FIG. 12. As Fig. 4, but for l = 80.

the splitting has the same sign, showing that the FWG mode
asymmetry is not a reliable predictor of the splitting. We note
that as the field is extended in the radial direction the curvature
of the sphere could be non-negligible, which is not taken into
account in the asymmetry analysis.

In Fig. 12, the difference between the TE and nearest
TM RSs for l = 80 is shown, for the constant, linear, and
quadratic permittivity profiles, using a basis size of N = 800.
The qualitative behavior is similar to l = 20 shown in Fig. 4,
but the RSs are shifted to higher wave numbers, and more
WG RSs are present. For the linear and quadratic profiles the
minimum splitting is reduced by approximately a factor of 4.
This is consistent with the modes being more tightly packed
which can be seen by comparing Fig. 3 and Fig. 12.

APPENDIX G: RS SEPARATION

It is interesting to investigate the RS separation of each
polarization for the different permittivity profiles, as shown
in Fig. 13. Let us consider in the ray picture a nearly normal
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FIG. 13. RS separation for l = 80, for constant (black), linear
(blue), and quadratic (red) permittivity profiles shown in the left in-
set. The right inset shows the corresponding refractive index profiles.
The separation �k is taken between a RS at k and the following RS
of the same polarization. The vertical arrows indicate positions kb of
the Brewster peak mode and the wave number kc at the critical angle
of total internal reflection.

incidence, corresponding to RS wave numbers much larger
than the critical wave number, kc = l/R. In this case, the mode
separation �k can be evaluated from the optical path length
between successive reflections, L = 2

∫ R
0

√
ε(r)dr. L/R takes

the values of 4.0, 5.1, and 6.0, for the employed constant,
linear, and quadratic permittivity profiles, respectively. Us-
ing the resonator condition of constructive interference of
waves, 2L = nλn, where n is a natural number, and the
missing even states discussed in Sec. II B, we find �k =
2π/λn+1 − 2π/λn = 2π/L. Therefore, �k in units of 2π/L
tends toward unity for large k, which can be observed in
Fig. 13.

Overall, for the constant profile, the spacing reduces with
Re k, while for the linear and quadratic profiles, the spacing
is nearly constant, increasing only slightly. There are two
regions of deviation from the monotonous behavior, indicated
by vertical arrows in Fig. 13. First, at the Brewster peak kb,
where the spacings of TM RSs, which otherwise are nearly
identical to the TE RSs, are reduced to accommodate the
additional Brewster RS, as discussed in Sec. II A. Second,
at the wave number for the critical angle of total internal
reflection at the surface, kc = l/R, which is the transition
region between WG and FP modes, where both TE and
TM RSs show a slightly reduced splitting, somewhat more
pronounced for the TM RSs, specifically for the constant
permittivity.
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