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Cavity-QED simulation of a quantum metamaterial with tunable disorder
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We explore experimentally a quantum metamaterial based on a superconducting chip with 25 frequency-
tunable transmon qubits coupled to a common coplanar resonator. The collective bright and dark modes are
probed via the microwave response, i.e., by measuring the transmission amplitude of an external microwave
signal. All qubits have individual control and readout lines. Their frequency tunability allows the number N
of resonantly coupled qubits to change and a disorder in their excitation frequencies to be introduced with
preassigned distributions. While increasing N , we demonstrate the expected N1/2 scaling law for the energy gap
(Rabi splitting) between bright modes around the cavity frequency. By introducing a controllable disorder and
averaging the transmission amplitude over a large number of realizations, we demonstrate a decay of mesoscopic
fluctuations which mimics an approach towards the thermodynamic limit. The collective bright states survive in
the presence of disorder when the strength of individual qubit coupling to the cavity dominates over the disorder
strength.
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I. INTRODUCTION

Recently, superconducting qubits have shown remarkable
progress in realizations of scalable quantum computing de-
vices [1] as well as in fundamental studies of circuit quantum
electrodynamics (QED) [2]. Quantum circuits based on su-
perconducting qubits allow for testing fermion models [3],
geometric phases [4], weak localization [5], topologically or-
dered states [6–8], and beyond. Various phenomena related
to photonic transport and photon-photon interaction can be
observed even for a circuit with a single qubit. They appear
when microwave photons are transmitted through a qubit
circuit which plays the role of a nonlinear oscillator. Exam-
ples include photon blockades [9,10], transfer of thermalized
photons and measurement of their bunching [11], probing
of transmitted photons statistics [12–14], and multiphoton
transitions [15].

Multiqubit circuits find their applications in quantum
metamaterials [16], which are examples of artificial quan-
tum matter with tunable properties. The dynamics of such
metamaterials is governed by quantum-optical models, such
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as Dicke [17–19] or Bose-Hubbard [20–22] models, which
capture the physics of coupled photonic modes and qubit
degrees of freedom.

The major technical challenge for fabrication of multiqubit
metamaterials is in making the energy-level separations hε j

of many nonidentical qubits as similar as possible. This is
required for observing, e.g., a coherent response of the meta-
material and collective bright modes of the system. It has
been argued [16,23,24] but not yet proved that, for nontunable
qubits, this problem can be overcome by engineering large
enough qubit coupling strength g to the cavity, similar to the
way of overcoming the effects of inhomogeneous broadening
in lasers made of natural atoms. Coherent response of a meta-
material can be expected if the spread in ε j becomes smaller
than g. The individual qubit frequencies ε j can be individually
controlled by applying local fields to qubits, which obviously
becomes more and more technically difficult when increasing
the number of qubits in a metamaterial.

Multiqubit metamaterials represent a mesoscopic limit of
naturally occurring ensembles consisting of nominally iden-
tical atoms or spins. Here, however, the fluctuations are
different for each atom and lead to the resonance line broaden-
ing in the presence of fluctuating local fields and interactions
between atoms. The homogeneously broadened emission

2469-9926/2022/105(3)/033519(11) 033519-1 ©2022 American Physical Society

https://orcid.org/0000-0002-1076-4341
https://orcid.org/0000-0002-4864-824X
https://orcid.org/0000-0001-6845-5624
https://orcid.org/0000-0003-3443-5347
https://orcid.org/0000-0002-8931-5142
https://orcid.org/0000-0003-1846-632X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.033519&domain=pdf&date_stamp=2022-03-23
https://doi.org/10.1103/PhysRevA.105.033519


GRIGORIY S. MAZHORIN et al. PHYSICAL REVIEW A 105, 033519 (2022)

(lifetime-limited) line has a Lorentzian profile, while the in-
homogeneously broadened emission will have a Gaussian
profile. While fluctuations in the thermodynamic limit corre-
sponding to a very large number of emitters are well under-
stood and studied in solid-state and molecular spectroscopy,
the mesoscopic limit of a countable (not too large) number
of emitters is very difficult to explore with natural atoms or
spins. Qubit metamaterials may be suitable to fill this knowl-
edge gap. One of the prominent examples is a spin ensemble
coupled to a cavity and described by the Tavis-Cummings
model [25]. Here, qubits with individual frequency control can
be used to introduce a tunable static or dynamic disorder.

In this work we report on an experimental realization of
a multiqubit platform that allows one to simulate disorder
effects in quantum metamaterials. We have designed and
fabricated a superconducting chip based on an array of 25
transmon [26] qubits coupled to a common coplanar res-
onator. The excitation frequency of every qubit is individually
tunable in the GHz range. Hence arbitrary disorder realiza-
tions can be easily implemented and studied in this setting.

Our interest in disordered quantum metamaterials is
twofold. On one hand, disorder in the frequency of emitters
coupled to a cavity is an important technical issue in de-
vices that rely on coherent operation. In the weak-coupling
limit, these effects result in inhomogeneous broadening.
Simulators based on superconducting qubits are no exception
to this issue. Digital simulation approaches based on Trotteri-
zation [27] circumvent the issue by using well-calibrated gates
to approximate the evolution of a system under a continuous-
time Hamiltonian. However, the tradeoff is that even relatively
simple simulations require a large number of Trotterization
steps, and the increase in the amount of these steps results in
a rapidly decaying simulation fidelity. For analog simulators,
the disorder in the qubit frequencies stems from the varying
critical currents of the Josephson junctions. Correcting for this
frequency using superconducting quantum interference de-
vices (SQUIDs) moves the qubits away from their flux sweet
spots, which significantly degrades their coherence proper-
ties [28]. Thus, for analog simulation, disorder and control
infidelity is the major source of errors in the simulation. For
digital simulations, various randomization-based techniques
have been developed to enhance the signal [29]. Here we use
randomization to investigate emergent dark states in a system
of transmon qubits coupled to a common microwave cavity.

On the other hand, our interest in disordered quantum
metamaterials is motivated by theoretical studies [30–32]
where an intriguing interplay between a coherent collective
coupling and disorder was discussed. As shown in these
studies, the structure of eigenstates has a strong impact on
photon transmission. Photon transport measurements allow
one to distinguish between localized or semilocalized regimes
which exhibit either exponential or power-law decays of trans-
mission amplitude with N , respectively. In the semilocalized
case, wave functions of dark states are neither localized
nor extended [32]. We also mention a recent analysis of
transmon-based quantum computing networks [33], which are
systems with built-in differences in physical qubit parameters.
As shown in [33], physics of disordered spin ensembles, in
particular, many-body localization, becomes crucial for an
operation of those systems.

II. THEORETICAL BACKGROUND

We address the low-excitation regime, where the rotating-
wave approximation is valid and the Dicke model for N qubits
is reduced to the Tavis-Cummings model. For particular qubit
frequencies ε j , qubit-cavity couplings g j , and the cavity mode
with the frequency νc, the Tavis-Cummings model reads as

Ĥ = νcâ†â +
N∑

j=1

ε j σ̂
+
j σ̂−

j +
N∑

j=1

g j (σ̂
+
j â + â†σ̂−

j ). (1)

Here â† and â are the photon creation and annihilation
operators, and σ̂+

j and σ̂−
j are raising and lowering Pauli

operators acting upon the jth two-level system. In the low-
energy limit, this Hamiltonian can be represented as a
N + 1-dimensional matrix Hi, j = 〈ψi|Ĥ |ψ j〉 after the pro-
jection of Ĥ on a single excitation basis, {|ψi〉}N+1

i=1 =
{â†|g.s.〉; σ̂+

1 |g.s.〉; . . . ; σ̂+
N |g.s.〉}.

An analysis of the disordered Tavis-Cummings model is
complicated because the bright polariton modes are not de-
coupled from dark states anymore [18], and the relevant
Hilbert space is enlarged. This results in such phenomena
in inhomogeneously broadened systems as a competition
between superradiance and dephasing [34], and cavity pro-
tection effect [35].

The respective Green function matrix that takes into ac-
count a dissipation to an environment is G(ω) = (ωI+ iD−
H )−1. Here, I = δi, j is the identity matrix in the basis
{|ψi〉}N+1

i=1 , and the matrix D = diag[κ, 	1, . . . , 	N ] is deter-
mined by the loss rate in the resonator, κ , and the relaxation
from the excited to the ground state in qubits, 	i. It can
be written through the Green functions of decoupled res-
onator and qubits, Gph(ω) = (ω + iκ − νc)−1 and Gq, j (ω) =
(ω + i	 j − ε j )−1, respectively, asG(ω) = [G−1

ph (ω) −gT

−g G−1
q (ω)]

−1
.

Here the N-dimensional matrix Gq(ω) = δi, jGq, j (ω) and the
vector g = (g1; g2; . . . ; gN )T with all coupling constants
is introduced. A photonic propagator Gph(ω) ≡ [G(ω)]1,1 is
found after an expansion of G by the nondiagonal part and
resummation of the first diagonal element. The result is

Gph(ω) = 1

G−1
ph (ω) − gT Gq(ω)g

. (2)

The self-energy term gT Gq(ω)g =
N∑

j=1

g2
j

ω+i	 j−ε j
takes into ac-

count the diagonal disorder in ε j and nondiagonal disorder in
g j . This Green function approach is in agreement with earlier
work [36] where a solution for a susceptibility has been found
from the master equation for a density matrix.

By resolving the equation G−1
ph (ω) = 0 with respect to ω

in the absence of the disorder, ε j = ε, one finds that the
frequencies of bright collective modes are ν± = 1

2 (νc + ε ±√
(νc − ε)2 + 4|g|2). If gi = g and the resonant condition

holds, ε j = νc, then one finds a well-known scaling of the
energy gap with N in the Tavis-Cummings model, ν+ − ν− =
2g

√
N . The initial task in this work is thus to demonstrate

this scaling law ∝ N1/2. It becomes possible by means of
subsequent increase of qubit number tuned into the resonance
with the photon mode.
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The main aim of this work is to study an ensemble of
qubits with tunable diagonal disorder. We set our goals to
demonstrate the effect of self-averaging in transmission am-
plitudes of disordered ensemble and to observe mesoscopic
fluctuations which decrease with N . As long as the diagonal
disorder is fully controllable, we set the resonant condition
between the resonator mode and all qubits on the average
as νc = 〈ε j〉. The probability density to find the jth qubit in
a frequency range [ε; ε + dε] is simulated by a flat function
p(ε) = 1



θ (
/2 − |ε − νc|), which is symmetric near ε = νc

and has a controllable spread 
. The nondiagonal disorder
effects are less interesting. In our regime of low excitation
numbers it results in a renormalization of the effective cou-
pling. This can be seen from the self-energy term where gi

appear in numerators. Oppositely, ε j appear in denominators
and the averaging by this variable becomes more nontrivial.

To explore the mesoscopic effects in the qubit metama-
terial, we collect data for the transmission coefficient S21 of
the microwave probe signal sent at the cavity bare frequency
ω = νc. As follows from in-out theory where a matching of
reflected and transmitted waves is preformed, the transmission
coefficient is related to the Green function (2) as follows:
S21 = √

γinγoutGph(νc). Here γin and γout are radiation rates
from the resonator into in- and out-waveguides.

Let us analyze 〈S21〉 where the averaging is based on a
large number of diagonal disorder realizations with the prob-
ability density p(ε). We consider first the limit of large N
where, similarly to the thermodynamic limit, fluctuations are
suppressed and self-averaging can be applied. Namely, the
sum from (2) is replaced by the integral with p(ε), which is
the density of states analog. One finds gT Gq(ω)g = πg2N/
,
and, consequently, the transmission coefficient is

〈S21〉 = √
γinγout

−i

κ + πg2N/

. (3)

The detailed derivation is presented in Appendix A. Meso-
scopic fluctuations 
S21 ≡ S21 − 〈S21〉, which are considered
as a random value corresponding to a particular disorder re-
alization, appear at finite N . They are found as follows in the
leading order by the finite N :

〈|
S21|2〉 = γinγout
πNg4

2	
(κ + πg2N/
)4
. (4)

One sees that the average decays as 〈S21〉 ∝ N−1 while fluc-
tuations as ∝ N−3 at large N limit. In our experiment we use
the results (3) and (4) to fit the measured data.

III. QUANTUM CIRCUIT AND MEASUREMENT SETUP

Here we present first our experimental setting, which
involves 25 superconducting transmon qubits. A particular
qubit, measurement scheme, and equivalent circuit are shown
in Figs. 1(a)–1(d), respectively. Qubits are capacitively cou-
pled to a common cavity realized as a λ/2 coplanar waveguide
resonator [panel (a), brown color]. The cavity is terminated
with the input transmission line (cyan color). A transmon
qubit [panel (b)], at one of its ends, involves a short segment
running close to the common cavity conductor (brown color).
This results in a strong capacitive qubit-cavity coupling. At
the other end the transmon is connected to an individual flux

(d)

transmonind. resonator

input output

(b)(b)((b)

(a)

(c) common cavity

Chip
1
2

0

VNA
1

2

DC 1

25
3.5 K 1K 20mK

20dB 10dB 20dB

LNF ref
tr

flux lines

FIG. 1. Superconducting circuit and scheme of measurement.
(a) False-colored optical photograph of the quantum metamaterial
implemented as a chip with 25 superconducting qubits (transmons).
(b) Enlarged fragment of the setup showing a single qubit, its individ-
ual readout resonator, flux bias line, and a fragment of the common
cavity. (c) Equivalent electric circuit of the device. (d) Setting of the
microwave measurement.

bias line (blue color) that allows one to tune the excitation
frequency of a particular qubit. There are 25 individual control
lines in total; they are implemented as asymmetric SQUIDs
connected to a multichannel dc source. Fabrication steps of
the device are described in Appendix B. Each of the qubits is
capacitively coupled to an individual readout resonator [panel
(b), green color]. These resonators have different lengths and
frequencies and operate in a dispersive regime. This allows us
to address each of the qubits individually through this feed line
using frequency multiplexing, perform two-tone spectroscopy
of qubits, and perform calibration of the frequency controls
(Appendix C).

The common cavity is connected to its own microwave
feedline in a butt-port geometry. Readout resonators are
notch-port coupled to a common cavity and are connected
to the output line [magenta color in the circuit shown in
panel (d)].

We perform measurements of the reflection and transmis-
sion amplitudes, S11 and S21, with the use of a microwave cir-
culator and a switch. In S11 measurements, the incident signal
is sent to the common cavity and reflected back. In S21 mea-
surements, the incident signal excites qubit modes and leaves
the chip through the individual resonators coupled to qubits.

The measurement scheme is shown in Fig. 1(c). The mi-
crowave drive tone, sent from the vector network analyzer
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FIG. 2. Spectrum of collective bright (Rabi) modes. (a)–(d) Re-
flection amplitude |S21| measured for different numbers of tunable
qubits (N = 4, 7, 16, 21). Black dashed curves are ν± energies of
Rabi satellites predicted by the Tavis-Cummings model. Yellow
dashed lines stand for the bare cavity mode frequency νc. Orange
dotted lines are bare frequencies of tunable qubits. (e) N1/2 scaling
of Rabi splittings gRabi for N = 3, . . . , 23 qubits tuned into the reso-
nance with the cavity. Inset: the data in logarithmic coordinates fitted
by gRabi = gNα (solid line).

(VNA), is attenuated by 50 dB before entering the chip. After
passing through the chip, the signal is amplified and measured
by the VNA, yielding the complex transmission amplitude
S21. Due to long attenuation and amplification chains, S21

is not calibrated. Thus the data are presented relative to an
arbitrary level hereafter.

The spectroscopy data for S21, where frequencies of res-
onant qubits, ε = ε j , and probe signal fp vary, are shown in
Figs. 2(a)–2(d). Here we present results for N = 4, 7, 16, and
21 resonant qubits. These measurements are performed using
the specific calibration procedure (Appendix C). Bright anti-
crossings marked by black dashed curves are the energies of
Rabi collective modes ν±. Yellow dashed and red dotted lines
are bare frequencies of the cavity and resonant qubits. The
increase of the gap with N indicates a bright-state coherence
between the qubit array and photon mode.

IV. VACUUM RABI SPLITTING

The first important result of this work is the demonstration
of N1/2 scaling in the Rabi splitting, gRabi, as a function of N ,
which is the number of qubits tuned into the resonance with
the cavity. In Fig. 2(d) the dependence of gRabi(N ), where N
changes from 3 to 23, is demonstrated. The theoretical depen-
dence gRabi = g

√
N (solid curve) shows good agreement with

the experimental data (dots). In the inset these data are shown
in logarithmic coordinates. The points are approximated by
gRabi = gNα with two fitting parameters, g and α. The ex-
ponent is found as α = 0.528 ± 0.013 and the qubit-cavity
coupling as g = 42 ± 3 MHz. We note that previously, to our
knowledge, the N1/2 scaling in the Rabi splitting between two
bright states has been observed with ensembles of up to six
tunable qubits [37]. Here, in spite of rising complexity of the
measurement setup, we were able to bring into the collective
bright states an ensemble of almost 4 times larger number of
tunable qubits. It should be mentioned that N1/2 scaling is
robust against errors in the resonance condition, νc = ε. The
error results in a small (∼1/N) relative deviation of gRabi from
the power law. The estimation follows from the expressions
for frequencies of bright modes ν±.

V. TRANSMISSION IN A DISORDERED METAMATERIAL

The most relevant result of this work is measurements of
S21 in a mesoscopic metamaterial with large but finite num-
ber of qubits N and tunable disorder in their fundamental
transition frequencies. Here, fluctuations are induced by the
diagonal disorder in ε j . The disorder results in coupling of
the pure dark states (with energies close to νc) to the cavity
mode. The partial brightening shifts randomly the amplitude
and phase of S21.

Before we analyze fluctuations, we present transmission
spectra in the disordered metamaterial. They are shown in
Fig. 3. In these measurements we used up to 17 qubits which
are chosen such that their individual resonators have frequen-
cies not very close to νc = 5.755 GHz, while the rest of the
qubits were detuned down to 5 GHz and play no role. As a
result, we suppress a coupling to individual resonators in the
spectral range of 5.65–5.95 GHz. The disorder is introduced
artificially by applying random frequency shifts to all qubits
with frequency spreads of 
 = 20, 30, 50, 60, 70, 80, and
120 MHz. Transmission data for each probe frequency were
averaged over 40 s to reduce the noise level. There are peaks
at various frequencies in spectra for different disorder realiza-
tions. According to the above, we are rather certain that we
detected dark states manifested by these peaks and not fre-
quency shifts of individual resonators due to their coupling to
the common cavity. Additional measurements that proof that
we detected dark states were also carried out (Appendix D).

Panels (a)–(g) in Fig. 3 correspond to a particular spread
of qubit frequencies 
. There are three curves in each panel,
corresponding to three particular realizations of disordered
{ε j}N

j=1 (black lines indicate qubit frequencies in each curve).
Frequencies {ε j}N

j=1 are chosen such that they have a partic-
ular spread, i.e., 〈ε2

j 〉 − 〈ε j〉2 = 
2. The orange dashed line
corresponds to the resonator frequency νc. The large side
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FIG. 3. Microwave spectroscopy of disordered metamaterial
with 17 qubits. The data for transmission coefficient |S21| is pre-
sented. Average qubit frequency is tuned into the resonance with
the cavity, 〈ε〉 = νc. Panels (a)–(g) correspond to different spreads

 in qubit frequencies. Different realizations of random frequency
offsets are shown in different colors and location [green (lower),
blue (upper), and red (middle)]. Black solid lines denote bare
qubit frequencies. Orange dashed lines show the common resonator
frequency.

peaks on the green curves are due to individual qubit readout
resonators.

VI. MESOSCOPIC FLUCTUATIONS

Let us address the average values of |〈S21〉| and 〈|
S21|2〉
in the presence of disorder. Hereafter, the probe signal is tuned
to the cavity mode frequency, fp = νc = 〈ε〉; hence, Eqs. (3)
and (4) are applicable. The measurement results for |〈S21〉|
and 〈|
S21|2〉 are shown in Figs. 4(a) and 4(b), respectively.
All points are obtained from averaging over 1000 disorder
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FIG. 4. Results for transmission coefficient and its fluctuations
averaged by different disorder realizations. Different colors and
markers stand for different spreads (see bottom of the figure). (a) Av-
eraged transmission amplitude |〈S21〉|. (b) Averaged mesoscopic
fluctuations 〈|
S21|2〉. Black lines are fitting theoretical curves given
by Eq. (3) in (a) and by Eq. (4) in (b).

realizations. Different colors correspond to different values
of 
. Here we present the data for |〈S21〉| and 〈|
S21|2〉 as
a function of N/
 for all spreads and N . The experimental
data is fitted by the formulas |〈S21〉| = | a

(κ+πg2N/
)γ + c1|
and 〈|
S21|2〉 = b(N/
)β

(κ+πg2N/
)δ + c2, where the exponents are
found as γ = 1.001 ± 0.005, β = 1.01 ± 0.02, and δ = 4 ±
0.008. Their values show good agreement with theoretical
predictions. Parameters c1 and c2 are phenomenological cor-
rections that take into account shunting of the circuit probe
signal due to interference between the cavity and background
transmission (Fano resonance), and thermal noise, which we
could not avoid in our measurements. The values of β, γ ,
and δ are obtained by least-squares fitting of the measure-
ments. We account for the finite values of c1 and c2 using
the data-processing procedure described in Appendix E. After
subtraction of the background scattering (c1 and c2 parame-
ters) we obtain good agreement between the processed data
and predicted analytical dependence (black line in Fig. 4).

Equations (3) and (4) provide a characteristic number of
resonant qubits N0 ∼ 


2π	
, above which a crossover from

mesoscopic behavior to that of a thermodynamic limit oc-
curs. The estimation follows from the matching condition
〈|
S21|2〉 ∼ 〈S21〉2, where we assume κ is smaller than g2 N



.

(For our setup, κ ≈ 30 MHz and 	 ≈ 1 MHz.) For instance,
the measurements with minimal spread 
 = 20 MHz provide
the estimated value of N0 ∼ 3–4. The data in Fig. 4 with such
N and 
 have a ratio N



> 1

2π	
, where 1

2π	
≈ 0.16 MHz−1,

corresponding to values of N that approach the thermody-
namic limit formulated above.

VII. CONCLUSION

We have studied experimentally an array of 25 tunable
transmon qubits coupled to a common resonator. The tun-
ability of qubits allowed us to simulate a diagonal disorder
with preassigned distributions. First we have probed the col-
lective modes of the qubit array by measuring the transmission
amplitude of an external microwave signal. By tuning qubits
one by one to the resonator frequency, we have observed
the N1/2-scaling law for the Rabi splitting as predicted by
the Tavis-Cummings model. Our most interesting result is
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measurements of the microwave transmission through the
qubit metamaterial in the presence of synthesised disorder
in qubit frequencies. We observed mesoscopic fluctuations
emerging due to dark states which are very sensitive to dis-
order in qubit frequencies and their number in the ensemble.
We observed a decay of the average value and fluctuations of
transmission amplitude with increasing qubit number N and
decreasing amplitude of the disorder. Thus, in the presence of
disorder, adding more and more qubits promotes the collective
bright state. The power-law decay in the transmission can evi-
dence the semilocalized nature of disordered dark states [32],
which can be a subject of further investigations. Our technique
thus provides an on-chip quantum simulator of a crossover
between the mesoscopic regime and the thermodynamic limit
of the Tavis-Cummings model.
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APPENDIX A: AVERAGING OF THE TRANSMISSION
COEFFICIENT S21

1. Definitions and assumptions

In this part we study fluctuations of the transmission coeffi-
cient S21(ω) acquired by the probe signal at frequency ω. The
transmission coefficient is a complex-valued function related
to the photon-mode Green function Gph(ω) as

S21(ω) = √
γinγoutGph(ω). (A1)

Here, loss rates γin and γout determine radiation from the
resonator into the in and out waveguides, respectively. Our
goal is to calculate fluctuations of S21(ω) averaged by different
disorder realizations in qubit excitation frequencies.

Our calculations are based on following assumptions:
(1) The probe signal is small such the average photon

number in the resonator is much smaller than 1. This as-
sumption allows us to reduce the Hilbert space to that of a
single excitation (either one photon or one qubit is excited).
Also, this allows us to use the Tavis-Cummings model in a
rotating-wave approximation.

(2) In analytical calculations we assume that the probe
frequency ω is tuned into a resonance with bare frequency
of the resonator mode, i.e., ω = νc. This allows us to find
compact expressions.

(3) We assume the resonant condition between the res-
onator mode and all qubits on average as νc = 〈ε j〉.

(4) We assume that disorder distribution functions are
identical for all of the qubits. We suppose that their disper-

sions 
 j =
√

〈ε2
j 〉 − 〈ε j〉2 are identical, i.e., 
 j = 
.

(5) The disorder parameter 
 is supposed to be known.
Also, we know the resonator loss rate, κ , the qubit loss rates

	 j = 	, and identical coupling constants gj = g between the
jth qubit and the resonator.

(6) The distribution probability p(δε j ) for random qubit
detunings δε j = ε j − 〈ε j〉 is flat:

p(δε j ) = 1



θ (
/2 − |δε j |). (A2)

Here δε j ∈ [−
/2; 
/2] and p(δε j ) is normalized to unity.

2. Calculation of the photon Green function

The Tavis-Cummings model (for a particular realization of
qubit frequencies ε j and different couplings g j) reads as

Ĥ = νcâ†â +
N∑

j=1

ε j σ̂
+
j σ̂−

j +
N∑

j=1

g j (σ̂
+
j â + â†σ̂−

j ). (A3)

Here, â† and â are the photon creation and annihilation op-
erators, and σ̂+

j and σ̂−
j are raising and lowering operators

acting upon jth qubit. This Hamiltonian can be represented
as an N + 1-dimensional matrix Hi, j = 〈ψi|Ĥ |ψ j〉 after the
projection of Ĥ on a single excitation basis, {|ψi〉}N+1

i=1 =
{â†|g.s.〉; σ̂+

1 |g.s.〉; . . . ; σ̂+
N |g.s.〉}:

H =
[
νc gT

g hq

]
. (A4)

Here we introduced the N-dimensional vector g =
(g1; g2; . . . ; gN )T and the diagonal matrix for the qubit
ensemble hq;i, j = δi, jε j . The respective Green function is

G(ω) =
[

G−1
ph (ω) −gT

−g G−1
q (ω)

]−1

. (A5)

It takes into account loss rates, which can be written through
the bare Green functions of the lumped resonator and qubit
modes, Gph and Gq, respectively. They read as follows: The
resonator Green function is

Gph(ω) = 1

ω + iκ − νc
. (A6)

Qubit modes are encoded by the diagonal matrix Gq, and its
elements are Gq;i, j = δi, jGq; j . They read

Gq; j (ω) = 1

ω + i	 − ε j
, j ∈ [1, N]. (A7)

The inverse matrix G−1 (A5) has nonzero elements on the
diagonal and on the upper row and left column determined
by gT and g, while other elements are equal to zero. The
first diagonal element of [G(ω)]1,1 corresponds to the photon
Green function in the hybrid system, written Gph(ω). It is
found after an expansion by the nondiagonal gT and g in (A5)
and following resummation of even-order terms. The result is

Gph(ω) = 1

G−1
ph (ω) − gT Gq(ω)g

. (A8)

It takes into account disorders in qubit frequencies and in
couplings through the product in the denominator:

gT Gq(ω)g =
N∑

j=1

g2
jGq; j (ω). (A9)
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3. Finite-size fluctuations of S21

We consider complex-valued S21 from (A1) at zero detun-
ing (i.e., we probe a response at the bare resonator frequency
νc). It is related to the Green function Gph(ωr ) and reads

S21(ω = νc) = √
γinγout

[
g2

N∑
j=1

δε j

(δε j )2 + 	2

+ i

(
κ + g2	

N∑
j=1

1

(δε j )2 + 	2

)]−1

. (A10)

Let us analyze the disorder effects starting from a formal limit
of infinitely large N . Then the mesoscopic corrections due to
1/N with finite N are to be calculated.

There is a self-averaging in the limit of large enough
N , namely, the sums in (A10) are treated as integrals over
continuous-variable ε ∈ [−


2 ; 

2 ] with p(ε) from (A2). This

gives

N∑
j=1

δε j

(δε j )2 + 	2
= N

∫
p(ε)

εdε

ε2 + 	2
= 0, (A11)

N∑
j=1

1

(δε j )2 + 	2
= N

∫
p(ε)

dε

ε2 + 	2
= πN


	
. (A12)

(Here we assumed 
 
 	 and calculated the integrals in infi-
nite limits.) Thus, after these integrations we find the averaged
〈S21〉:

〈S21〉 = √
γinγout

−i

κ + πg2N/

. (A13)

Now we address the mesoscopic correction to this result due
to random variables given by the first sum, g2 ∑N

j=1
δε j

(δε j )2+	2 ,
in the square brackets of (A10). We expand S21 by the first
order in this random-valued sum:

S21 ≈ −i
√

γinγout

κ + πg2N/


(
1 + ig2

κ + πg2N/


N∑
j=1

δε j

(δε j )2 + 	2

)
.

(A14)

According to Eqs. (A13) and (A14), we find the random
deviation δS21 from the averaged value 〈S21〉 for a particular
realization of values ε j (we still work with the complex-valued
quantity):

δS21 = S21 − 〈S21〉 = eiϕ0
g2√γinγout

(κ + πg2N/
)2

N∑
j=1

δε j

(δε j )2 + 	2
.

(A15)

At this step we find its absolute squared and averaged value:

〈|δS21|2〉 = g4γinγout

(κ + πg2N/
)4

×
N∑

i, j=1

〈
δεiδε j

((δεi)2 + 	2)((δε j )2 + 	2)

〉
. (A16)

(a) (b)

FIG. 5. (a) SEM image of a 25-qubit array. (b) SEM image of a
Josephson junction SQUID with low-impedance crossover.

The cross terms with i �= j in the average (A16) cancel out.
Hence,

N∑
i, j=1

〈
δεiδε j

((δεi )2 + 	2)((δε j )2 + 	2)

〉

=
N∑

j=1

〈
δε2

i

((δε j )2 + 	2)2

〉
= N

∫
p(ε)

ε2dε

(ε2 + 	2)2

= πN

2	

. (A17)

[We note that 〈|δS21|2〉 decays faster than 〈S21〉 at large N ,
which means the expansion in (A14) is a controllable approx-
imation.] Finally, we find relative mesoscopic fluctuations of
S21, combining Eqs. (A13), (A16), and (A17), which reads√

〈|δS21|2〉
|〈S21〉| = g2

κ + πg2N/


√
πN

2	

. (A18)

We note that if one assumes that the resonator’s relaxation
is small, κ � g2N/
, we find the following scaling where g
does not appear: √

〈|δS21|2〉
|〈S21〉| =

√
1

N




2π	
. (A19)

However, experimental observation of this scaling requires
large N and small κ , which are not realized in our device.

APPENDIX B: SAMPLE FABRICATION

To fabricate the superconducting chip based on the array
of 25 transmon qubits coupled to a common coplanar res-
onator we use the three-stage process. The process includes
following stages: (I) epitaxial Al base layer deposition using a
two-step SCULL process [38] and Al patterning with laser di-
rect lithography (including transmon capacitor ground plane,
waveguides, resonators, and flux bias lines); (II) double-angle
evaporation of Josephson junctions followed by liftoff; (III)
resist-based low-impedance crossover fabrication. Scanning
electron microscopy (SEM) images of metamaterial and en-
larged fragment of a Josephson junction SQUID are shown in
Fig. 5.

The fabrication process starts with a multistep wet
chemical cleaning of a high-resistivity intrinsic silicon sample
(ρ > 10 000 � cm, 525 μm thick) in a Piranha solution (1 :
4) followed by native oxide removal in HF (1 : 50) for 120 s.
Immediately after a 100-nm-thick epitaxial Al base layer
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FIG. 6. Typical spectra used for calibration and fitting residuals. Response amplitudes (|S21|) are given in arbitrary units. (a) Single-
tone spectroscopy of individual resonator. (b) Adaptive two-tone spectroscopy. (c) Check accuracy of setting qubits into desired frequency.
(d) Single-tone spectroscopy of common cavity. (e) Two-tone spectroscopy tuning voltage of coil connected to another qubit. (f) Distributions
of residuals from two-tone spectra used for calibration or check frequencies. Solid black line was calculated from dispersion and average of
distribution. (a)–(e) Red solid lines were calculated using Tavis-Cummings model, black dots is data used for fitting task.

is deposited with a UHV e-beam evaporation SCULL tech-
nique [38] followed by its direct laser lithography patterning
and dry etching in BCl3/Cl2-based gasses. Then a two-layer
e-beam resist stack (300-nm-thick PMMA e-beam resist
on top of a 500-nm-thick MMA copolymer) is spin coated
followed by 50-kV e-beam exposure. After development
and oxygen plasma treatment, we performed UHV e-beam
shadow evaporation of Al-AlOx-Al Josephson junctions
(62o/0o, 25/45 nm). Low-impedance freestanding crossovers
are fabricated by means of a four-step [39] process: (I)
crossovers pads laser lithography, (II) 300-nm-thick Al film
e-beam deposition, (III) crossover topology laser lithography,
and (IV) BCl3/Cl2-based dry plasma etching. Finally, we
stripped both resist layers in a N-Methyl-2-pyrrolidone
solvent.

APPENDIX C: CALIBRATION

Spectroscopic measurements were performed to determine
device parameters such as Josephson energies of SQUID
junctions, capacitive energies, coupling between qubits and
common cavity, qubits and individual resonators, mutual in-
ductance between coils and qubits, frequencies of resonators,
and flux biases of the SQUIDs. Typical results of these mea-
surements are presented in Figs. 6(a), 6(b), 6(d), and 6(e).

For each flux configuration, the frequency corresponding
to a maximal two-tone response is taken as qubit frequency.
Outlier points are dropped after we extract device parameters
by fitting data with the Tavis-Cummings model (C1) extended
with the individual resonators (ν j). We also consider the de-
pendence of the coupling coefficients to the common cavity

(g j = k j
√

ε j) and to individual readout resonators (gind
j =

kind
j

√
ε j) on qubit frequencies (ε j):

Ĥ =
N∑

j=1

ν j â
†
j â j +

N∑
j=1

ε j σ̂
+
j σ̂−

j + νcâ†â

+
N∑

j=1

kind
j

√
ε j (â

†
j + â j )(σ̂

+
j + σ̂−

j )

+
N∑

j=1

k j
√

ε j (â
† + â)(σ̂+

j + σ̂−
j ) . (C1)

For the dependence of bare transmon frequency on the SQUID
flux we use the following formula:

ε(φ) =
√

8EC ((EJ1 + EJ2)2 cos2 φ

+ (EJ1 − EJ2)2 sin2 φ)
1
4 − EC, (C2)

where EJ1 and EJ2 are Josephson energies of the dc SQUID
junctions, EC is the transmon charging energy, and φ = 2π �

�0
is the dimensionless magnetic flux threaded by the SQUID.
We assume the linear dependence of SQUID fluxes on the dc
voltage is applied to the coils,

φi =
∑

Li jVj + φ0
i , (C3)

where index i corresponds to the qubit number, j to the coil
number, and φ0 is the frozen dimensionless magnetic flux in
the SQUID. The effective eigenmode of a specific transmon
was chosen as the frequency of the mode with the largest par-
ticipation in this transmon. The fitting was performed with a
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FIG. 7. Transmission spectrum for detection of dark states.
Transmission amplitude |S21| is given in arbitrary units. Yellow hor-
izontal dashed line stands for bare cavity mode frequency νc. Black
dashed curves are bare frequencies of tunable qubits. Orange vertical
dashed line corresponds to the measurements presented in Fig. 3,
when the central frequency of the qubit ensemble is equal to the bare
frequency of the common cavity. White dashed lines show the area
of possible qubits frequencies.

least-squares cost function. The standard deviation is 20 MHz.
The distribution of residuals is shown on Fig. 6(f) (black bar).

When setting a transmon to some frequency, we do not
set the bare frequency of the transmon but the eigenfre-
quency of the transmon-individual resonator system. The bare
qubit frequency is calculated using a coupled linear oscillator

model εc = ε+ν
2 ±

√
(ε−ν)2+4kε

2 , where εc corresponds to the
eigenfrequency of the coupled system. After that, fluxes are
calculated from Eq. (C2), and then the linear system of equa-
tions (C3) is solved.

To evaluate frequency control accuracy independently, we
performed a two-tone spectroscopy measurement, setting all
qubits to equal desired frequency and then tuning one of them
in some range, while others remain in their original position.
A typical result of these measurements and the distribution of
residuals are shown in Figs. 6(c) and 6(f), correspondingly.
The standard deviation is also equal to 20 MHz. We consider
this value as the frequency control error.

APPENDIX D: DETECTION OF DARK STATES

We carried out measurements to ensure that dark states are
observable in our experiments. We tuned the central frequency
of the ensemble of qubits with fixed disorder and provide
transmission measurements. The results of these measure-
ments are presented in Fig. 7. White dashed lines show the
bounds for the qubit frequencies in the ensemble. Several con-
tinuous lines are visible inside white bounds that are parallel
to the white lines. This fact reveals that the system response
is changed with the central frequency of the qubit ensemble,
i.e., each line corresponds to a certain dark state. This is an
argument for successful detection of dark states for data pre-
sented in Fig. 3. Also, Fig. 7 shows that individual resonator
frequencies within the range between 5.65 and 5.95 GHz do
not depend on the central frequency of the qubit ensemble, as
pointed out in the main text.

APPENDIX E: PROCESSING OF EXPERIMENTAL DATA

The variance in experimental data can be due to various
reasons, such as, e.g., specific realizations of flat distribu-
tion, calibration of qubit frequencies, interference between
the cavity and background transmission (Fano resonance),
and thermal noise. The influence of some of these factors is
discussed below.

Average transmission amplitudes for different spreads 


are shown in Fig. 8(a). From Eq. (A13) we expect a straight
line dependence for real and imaginary parts of S21 with
increasing number of qubits N for each value of 
. It is seen
from Fig. 8(a) that experimental curves are close to straight
lines but tend to the same nonzero value. As it is mentioned in
the main text, one reason for such behavior is the appearance
of Fano resonance. In our postprocessing we had to introduce
phenomenological corrections to eliminate this parasitic ef-
fect. Corrections are selected the same for all curves. A typical
example of such processing is shown in Fig. 8(b), where you
can see the dependence of the absolute value of the transmis-
sion signal on the number of resonant qubits for the initial
data and for the data after elimination of the Fano resonance
influence.
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FIG. 8. Processing of experimental data. (a) Average of transmission amplitude on complex plane from the number of resonant qubits for
different distribution spreads 
. (b) Dependence of the absolute value of average transmission amplitude on N for initial experimental data
and after elimination of the Fano resonance. (c) The integral (A12) value dependence on the random distribution spread calculated analytically
and numerically to account for calibration errors.
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An additional processing step was made to take into ac-
count the difference between the real distribution and the
random flat distribution due to calibration errors, Fig. 6(f).
These errors prevent us from using a simple analytical cal-
culation of the integral in Eq. (A12). The comparison of
the analytical and numerical solution of this integral for
different spreads 
 is shown in Fig. 8(c). A significant dis-
crepancy is observed at small values of 
. For subsequent
calculations presented in the main text we used a numer-
ical approach in order to determine the effective width of
distribution.

The influence of these errors is shown in Fig. 9, where the
presented inverted averaged transmission coefficient |1/〈S21〉|
for the initial 
 (a) and corrected (b). According to Eq. (A13),
there should be a linear dependence between the inverted
transmission |1/〈S21〉| and the ratio N/
, up to a constant
shift. The raw data is well fitted by different lines for each
width of distribution, while for processed data it is only by
one line.
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FIG. 9. Inverted transmission coefficient |1/〈S21〉| as a function
of the ratio N/
. Different colors and markers stand for different
spreads (see bottom of the figure). (a) The raw data with initial 
.
(b) Processed data with corrected 
. Black line in (b) is the fitting
curve which is given by Eq. (A13).
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