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Stabilization of light bullets in nonlinear metamaterial waveguides
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In this paper we carry out a theoretical investigation on the propagation of spatiotemporal solitons (light
bullets) in the nonlinear metamaterial waveguides. Our theoretical study is based on the formulation of
Lagrangian variational analysis with a suitable ansatz, followed by a split-step Fourier method in confirming the
previous outcomes numerically. A particular emphasis is given to obtain the conditions on the system parameters
for stable dynamics in negative as well as positive index regimes of metamaterial waveguides. Similar to the
conventional medium, the three-dimensional (3D) light bullets are highly unstable in metamaterials with the
Kerr-type nonlinearity alone. However, in the negative index regime of metamaterials, the stable propagation
of light bullets may occur in the normal dispersion regime balancing with defocusing cubic nonlinearity and
focusing quintic nonlinearity. As in the conventional case, the stable dynamics is also observed in the case of
anomalous dispersion with focusing cubic nonlinearity and defocusing quintic nonlinearity in the positive index
regime. To test the solitonic nature of the 3D light bullets in the metamaterials, we also numerically investigate
the collision dynamics of two light bullets. The study shows that the spatiotemporal soliton propagates without
any change, except perhaps some phase shift after a collision with another spatiotemporal soliton in competing
cubic and quintic nonlinear metamaterials. The improper balancing between the linear and nonlinear effects
results to form the bullet molecules in a distorted form with a large amount of energy after interaction, and in the
long run, oscillations of the light bullets grow and the bullets become filaments. We observed the same collision
dynamics in both the negative and positive refractive index regimes of the metamaterial.
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I. INTRODUCTION

Man-made materials with the negative real part of refrac-
tive index can display electromagnetic properties that are
impossible to realize with positive index materials existing
in nature. In the late 1960s, Veselago theoretically analyzed
the light wave propagation in such an artificial material [1].
This material, which consists of designed inclusions and has
simultaneous negative values of electric permittivity and mag-
netic permeability, is commonly known as a negative index
material (NIM). In addition to the negative refraction, the
NIM exhibits unusual characteristics such as reversed Doppler
shift, reversed Goos-Hänchen shift, reversed Cerenkov radi-
ation, and the reversal of Fermat’s principle [2,3]. A design
was proposed to control the electric and magnetic responses
by tuning the geometrical parameters of the thin wire lattice
and split-ring resonator, which was the first remarkable sug-
gestion to make the NIM practically possible [4–6]. Following
the above idea, Smith et al. realized a NIM experimentally
using the thin wire lattice and split ring resonator as basic
constituents [7]. The metamaterials can also show nonlinear
effects such as harmonic generations [8], which are designed
by inserting nonlinear elements such as diodes [9] to the
split-ring resonators or by embedding an array of meta-atoms
into a nonlinear dielectric medium [10].

In recent times, investigation on the nonlinear pulse prop-
agation in NIMs is being actively pursued. The nonlinear
partial differential equation governing the propagation of
light pulse in the NIM was derived and is found to admit

envelope solitary wave solutions [11]. A generalized nonlinear
Schrödinger equation for dispersive dielectric susceptibility
and permeability was derived to describe the propagation of
electromagnetic pulse in the NIM and it was found that the lin-
ear properties of the medium can be tuned to modify its linear
as well as nonlinear effective properties, which lead to a new
form of dynamical behavior [12]. The role of second-order
nonlinear dispersion in the stable propagation of Gaussian
pulse in the NIM in focusing or defocusing cases with normal
or anomalous regimes has been analyzed [13]. The evolu-
tion equations for the envelopes of beams and spatiotemporal
pulses in nonlinear dispersive NIM have been derived and the
stability of solitary wave solutions has been analyzed using
numerical methods based on fast Fourier-Bessel transforms
[14]. By adopting the methods of quantum statistics and a
kinetic equation for the pulses, the partial coherence in NIMs
has been discussed [15]. The Raman soliton self-frequency
shift in the nonlinear NIMs can be controlled by nonlinear
electric polarization [16]. The existence of gray solitary waves
and the conditions for their formation in NIMs have also been
studied [17]. The propagation of ultrashort electromagnetic
pulse in metamaterials with cubic electric and magnetic non-
linearities have been investigated and it has been predicted
that spatiotemporal electromagnetic solitons may exist in the
negative index regime of the metamaterials with defocusing
nonlinearity and normal group velocity dispersion [18]. The
self-focusing of ultrashort pulses in NIMs can be controlled
by tailoring dispersive magnetic permeability [19]. In contrast
to ordinary positive index materials, in the case of NIM dark
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solitons may exist for the case of normal second-order dis-
persion, anomalous third-order dispersion, self-focusing Kerr
nonlinearity, and non-Kerr nonlinearities [20]. Modulational
instability and the generation of ultrashort pulses in NIMs
were also investigated in Refs. [21–26].

It is well known that optical solitons in a medium with
Kerr optical nonlinearity are unstable in two and three di-
mensions due to the phenomenon of optical beam collapse
[27]. However, several investigations were carried out to
make intrinsic wave collapse-free light bullets. The stabi-
lization of spatiotemporal light bullets can be achieved in
the presence of quadratic nonlinearity [28], nonlocal non-
linear response [29], negative fourth-order dispersion [30],
higher-order nonlinear media [31,32], cylindrical Bessel lat-
tice [33], semi-infinite array of weakly coupled nonlinear
optical waveguides [34], filamentation of femtosecond pulses
[35], harmonic and parity-time-symmetric potentials [36], and
so on. Among the possible ways to stabilize the light bullets,
we opt for the higher-order nonlinear media as there are quite
a few materials which naturally support higher-order non-
linear dielectric susceptibilities, including CdSxSe1−x-doped
glasses [37], AlGaAs semiconductors [38], and chalcogenide
glass [39–42], which can even support up to septimal non-
linearity when the pulse is injected with a moderate peak
power. Motivated by these facts, in the present investigation,
we carry out a theoretical study on the stable dynamics of light
bullets in metamaterial waveguides with competing cubic and
quintic nonlinearities. As pointed out above, metamaterials
are engineered materials and their electromagnetic properties
can be tuned at will. Enjoying the engineering freedom to
alter electromagnetic properties, here we will arrive at special
conditions to achieve the stable propagation of light bullets
in metamaterials. We consider a nonlinear Schrödinger-type
equation with higher-order nonlinearities as the propagation
model and investigations are carried out by adopting the
Lagrangian variational method and numerical analysis. We
find that the stability of light bullets in the negative index
regime of metamaterials with the normal dispersion regime
can be enhanced by the combined action of defocusing cubic
nonlinearity and positive quintic nonlinearity. On the other
hand, the influence of focusing cubic nonlinearity and neg-
ative quintic nonlinearity make the light bullets propagate
stable in the positive index regime. We also show that the
three-dimensional (3D) light bullet propagates without any
change after a collision with another light bullet in competing
cubic and quintic nonlinear metamaterial waveguides.

The rest of the paper is organized as follows. In Sec. II the
theoretical model of the problem is presented and the stability
criterion for the propagation of 3D light bullets is obtained
by adopting the Lagrangian variational method. Numerical
investigations on the propagation of spatiotemporal solitons
and their collision dynamics in metamaterial waveguides are
carried out in detail in Sec. III. Conclusions are made in
Sec. IV.

II. THEORETICAL MODEL
AND VARIATIONAL FORMULATION

The governing model that describes the propagation of
electromagnetic waves in negative index materials is given by

the following nonlinear Schrödinger equation [18,24]:

∂ξ

∂z
= − i

sgn(β2)

2

∂2ξ

∂t2
+ i

sgn(n)

2
∇2

⊥ξ

+ iγ |ξ |2 ξ + iϑ |ξ |4 ξ, (1)

where ξ (x, y, z, t ) represents the normalized complex ampli-
tude of the propagating modes. sgn(β2) = ±1 corresponds
to normal and anomalous group velocity dispersions, respec-
tively, and sgn(n) = ±1 corresponds to positive and negative
index of refractions, respectively. ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 is the trans-
verse Laplace operator. The terms z and t stand for the
direction of propagation of the beam and the time in a co-
moving frame of reference, respectively. Also, γ and ϑ stand
for cubic and quintic nonlinear coefficients, respectively. Now,
we will utilize the Lagrangian variational method [43,44]
involving a trial function to study the dynamics of the light
bullets in the metamaterial waveguides. The basic idea of
the method is to make use of the Lagrangian density to
identify an effective Lagrangian for the system under the
consideration. The associated Lagrangian for the propagation
model of negative index materials as given in Eq. (1) is
expressed by [45]
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2
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3
|ξ |6. (2)

We consider the Gaussian ansatz of the following form [46]:

ξ (z, x, y, t ) = �(z)eiθ (z)e− (x2+y2+t2 )
2a(z)2 eiα(z)(x2+y2+t2 ), (3)

where �(z) is the amplitude and a(z) is the width. It is worth
noting that we here studied the spatiotemporal solitons (light
bullets) with a spherically symmetric structure and hence we
kept the width equal in the space and time domains. Though
one can also study the light bullets with elliptical structure
by keeping different widths in the space and time [47,48],
the light bullets with equal width are the typical candidates
indicating solitonic nature and predominantly explored in ex-
perimental settings as well. Here, α(z) is the parameter to
account for the chirp. The reduced Lagrangian of the system
can be calculated using the following equation:

〈£〉 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ldxdydt . (4)

Consequently, the effective Lagrangian becomes

〈£〉 = π3/2�(z)2

{
a(z)

4
[2sgn(n) − sgn(β2)] + a(z)5α(z)2

× [2sgn(n) − sgn(β2)] − γ

4
√

2
a(z)3�(z)2− ϑ

9
√

3
a(z)3

×�(z)4 + a(z)3

[
3

2

∂α(z)

∂z
a(z)2 + ∂θ (z)

∂z

]}
. (5)

Now, we vary Eq. (5) with respect to different beam param-
eters �(z), θ (z), a(z), and α(z), which yield the following
evolution equations:
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(i) combining the variations of θ (z) and α(z):

α(z) = 3

2

1

[2sgn(n) − sgn(β2)]a(z)

∂a(z)

∂z
; (6)

(ii) variation of θ (z):

P = π3/2a(z)3�(z)2; (7)

(iii) combining the variations of a(z) and �(z):

∂2a(z)

∂z2
= 1

9a(z)3
[5 − 4sgn(n)sgn(β2)]

− γ�(z)2

6
√

2a(z)
[2sgn(n) − sgn(β2)]

− ϑ�(z)4

27
√

3a(z)
[8sgn(n) − 4sgn(β2)]. (8)

Equation (7) shows that π3/2a(z)3�(z)2 is a conserved
quantity throughout the propagation of the beam as the cor-
responding conjugate momenta is conserved in Eq. (5). Using
Eq. (7), Eq. (8) can be rewritten as

∂2a(z)

∂z2
= 1

9a(z)3
[5 − 4sgn(n)sgn(β2)]

− γ P

6
√

2π3/2a(z)4
[2sgn(n) − sgn(β2)]

− ϑP2

27
√

3π3a(z)7
[8sgn(n) − 4sgn(β2)]. (9)

Integrating Eq. (9) once, one can obtain the potential-well
description as follows:

1

2

(
∂a(z)

∂z

)2

+ V (a) = 0, (10)

where the potential V (a) is given by

V (a) =
(

1

a(z)2
− 1

)[
5 − 4sgn(n)sgn(β2)

18

]

− γ P

18
√

2π3/2

(
1

a(z)3
− 1

)
[2sgn(n) − sgn(β2)]

− 2ϑP2

81
√

3π3

(
1

a(z)6
− 1

)
[2sgn(n) − sgn(β2)]. (11)

It is clear from Eq. (11) that the stability of the electro-
magnetic wave propagating in the metamaterial waveguides
depends on the sign of refraction, nature of dispersion, and
nonlinearity. If there is an adequate balance between the sys-
tem parameters, then the spatiotemporal solitons propagate
without suffering any distortion. In the metamaterials with
Kerr-type nonlinearity, the equilibrium point at the potential
energy curve exists with a particular input power called crit-
ical power (see the Appendix for details). Hence the light
bullets may exist when the input power satisfies the following

FIG. 1. Potential function [V (a)] versus width [a(z)] as a func-
tion of cubic nonlinearity (γ ) in the negative index materials. Other
parameters are sgn(β2) = 1, P = 1, and ϑ = 0.

condition:

Pc1 = 2
√

2π3/2a(z)

3γ
[2sgn(n) − sgn(β2)]. (12)

Let us assume the initial width a(0) = 1. In the case of neg-
ative (positive) index regime of the metamaterial with normal
(anomalous) dispersion and defocusing (focusing) cubic non-
linearity the light bullets may exist when the input power
P = Pc1 = 2

√
2π3/2

|γ | , but will be unstable as the extremum is
a maximum. The electromagnetic wave diverges when P <

Pc1 = 2
√

2π3/2

|γ | and undergoes a collapse for P > Pc1 = 2
√

2π3/2

|γ | .
From the above relation, it is found that the critical power
Pc1 is inversely proportional to the strength of the cubic
nonlinearity. The critical power and the equilibrium point
at the potential energy curve are highly influenced by the
value of cubic nonlinear coefficient. The dependence of the
potential function on the cubic nonlinearity in the negative
index materials with input power P = 1, sgn(β2) = 1 and
ϑ = 0 is depicted in Fig. 1. In this investigation, we choose
all the parameters in normalized units as the governing model
given by Eq. (1) is a normalized equation. Here we intend
to understand the parametric region which supports the stable
dynamics of light bullets by comparing the system variables
with each other. One can see similar works with normalized
units in the literature such as the optical bistability and gap
soliton formation in the optical metamaterial coupler [50],
breather formation of the spatiotemporal vortex light bullets
[51], spatial ring formation in the nonlinear metamaterials
[18], dynamics of higher-order solitary waves in the quadratic
media [52], and so on. It is quite clear from Fig. 1 that
even though the input power P = 1 and the cubic nonlinear
coefficient, |γ | = 2

√
2π3/2 = 15.74 (Pc1 = P = 1) the equi-

librium point is not a stable one. Small deviations from the
equilibrium point will make the light bullets to be unstable and
may lead to collapse or divergence. Now in the presence of
quintic nonlinearity in addition to the cubic nonlinearity, the
minimum critical power required by the system to support the
formation of spatiotemporal solitons is given by the condition

Pc2 = −
9
√

3
2 a(z)3γπ3/2

16ϑ
±

√
1458γ 2π3a(z)6 − 2304π3

√
3ϑa(z)4[sgn(β2) − 2sgn(n)]

32
√

3ϑ
. (13)
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(a)

(b)

(c)

FIG. 2. Potential function [V (a)] versus width [a(z)] for different
values of cubic and quintic nonlinear coefficients in the negative
index materials with (a) ϑ = −15, (b) ϑ = 15, and (c) γ = −20.
Other parameters are sgn(β2) = 1, sgn(n) = −1, and P = 1.

When P < Pc2 the potential energy curve will not show any
stable equilibrium point, but the energy minima and hence
the stable bullets with negative energy can be observed if
P � Pc2. It is clear from Eq. (A3) that the critical power Pc2

is a function of the cubic and quintic nonlinear coefficients.
Proper tuning of these nonlinear coefficients is necessary to
observe the stable dynamics of the light bullets.

Figure 2 depicts the relation between the potential function
and width for different possible combinations of cubic and
quintic nonlinearities in the negative index regime of meta-
materials. Figure 2(a) shows the case where the dispersion is
normal, with defocusing cubic and quintic nonlinearities. In
this case, the propagation of the light bullet is unstable. Even

though, there exist some equilibrium points, which are indeed
unstable and minor fluctuations from these points may lead
to the collapse or divergence of the light bullets. The stability
of the spatiotemporal solitons is enhanced with the presence
of competing cubic and quintic nonlinearities as depicted in
Fig. 2(b). The minimum potential energy in the figure corre-
sponds to a stable spatiotemporal bullet with negative energy.
In the case of the negative index regime, the potential well
with energy minima and hence stable bullets with negative
energy can be observed when quintic nonlinearity is of fo-
cusing type, whereas it is observed with defocusing quintic
nonlinearity in the positive index regime of the metamaterials.
Hence, in the negative index regime of the metamaterials,
stable propagation of light bullets can occur in the normal dis-
persion regime balancing with defocusing cubic nonlinearity
and focusing quintic nonlinearity whereas it is observed in the
anomalous dispersion regime with focusing cubic nonlinear-
ity and defocusing quintic nonlinearity in the positive index
regime. The potential energy curve as a function of quintic
nonlinearity for the case of γ = −20 is depicted in Fig. 2(c).
It is clear from the figure that the depth of the potential well
decreases as the value of quintic nonlinearity increases. At a
distinct value of input power, for a particular value of quintic
nonlinearity, the potential well completely vanishes and the
light bullets lose their stability nature. This is attributed to the
fact that, when the value of the quintic nonlinearity increases,
the value of the critical power (Pc) at which the light bullet
exists increases. The Lagrangian variational method followed
in this investigation is an approximation and it cannot predict
the exact dynamics of light bullets in a medium. To study
the exact evolution of the 3D bullets, we carry out a detailed
numerical analysis in the following section.

III. NUMERICAL ANALYSIS

In this section, we will uncover the interesting dynamics
associated with light bullets in the negative index materials.
It is well known that to form the light bullets in optical
media there should be a delicate balance among the nonlin-
earity, diffraction, and dispersion. Hence the materials with
appropriate values of system parameters such as dispersion,
diffraction, and nonlinearity are required to realize them
experimentally. The parameters related to the conventional
positive index materials are one of the great challenges to
realize stable propagation of light bullets [53,54]. As the meta-
material is engineered, it can get better off the limitations of
the conventional materials. We study the parametric regions
in which one can realize the stable propagation of the light
bullets in the metamaterial waveguides.

We solve the governing equation (1) by the well-known
split-step Fourier method implemented in the SCILAB pro-
gramming language. The simulations were performed on a
256 × 256 × 256 mesh grid with the initial condition (3)
considered in the Lagrangian approach without the chirp-
ing effect. Also, other parameters are assigned as follows:
�t = �x = �y = 0.07, �z = 0.01, and � = 1 throughout
the study.

As a result of optical beam collapse, the optical solitons in
a medium with Kerr-type optical nonlinearity are unstable in
two and three dimensions. Figure 3 depicts isosurface plots
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FIG. 3. Isosurface plots depicting the evolution of 3D light bullets corresponding to the collapse in the negative index regime of
metamaterial for P = 1 with cubic nonlinearity alone. Other parameters are sgn(β2) = 1, γ = −20, and ϑ = 0. An animation illustrating
the above dynamics can be found in the file SM1.gif in Supplemental Material [65].

showing the propagation dynamics of a light bullet in the
cubic nonlinear negative index metamaterial. The complete
dynamics is given in the file SM1.gif, to be found in Sup-
plemental Material [65]. Figure 3(a) represents the input light
bullet at z = 0. As discussed in our analytical calculations,
when the light bullet propagates in the cubic nonlinear meta-
material, it becomes unstable and cannot maintain its original
shape. At z = 0.15, the light bullet starts to exhibit breathing
oscillations as shown in Fig. 3(c). When it further propa-
gates, the breathing oscillations grow and the bullet shape
is distorted due to splitting [Fig. 3(e)] and ultimately it col-
lapses into a chaotic state at a still larger propagation distance
[Fig. 3(f)]. This preponderance to collapse is due to the inabil-
ity of the Kerr nonlinearity to balance the inherent dispersive
or diffractive effects present in the metamaterial waveguides.
This ramification is as per the known Derrick’s theorem,
which states that the stationary localized solutions to certain
nonlinear wave equations in higher dimensions are unstable
[55]. The propagation of light bullets in the Kerr nonlinear
metamaterial is unstable due to the insufficient balance be-
tween the nonlinearity and dispersive or diffractive effects.
To achieve a proper balance and ensure the stable propaga-
tion of the light bullets, we consider the influence of quintic
nonlinearity. Figure 4 depicts the evolution of light bullets in
the negative index regime of the metamaterial with cubic and
quintic nonlinearities. The complete dynamics is given in the
file SM2.gif, to be found in Supplemental Material [65]. Here
we consider the case of competing nonlinearities where the
cubic nonlinearity is of the defocusing type and the quintic
nonlinearity is of the focusing type. As compared to the cubic
nonlinearity only case, the light bullet now shows more stabil-
ity and propagates a larger distance without any splitting and
distortion in the shape. This clearly indicates that the com-
peting cubic and quintic nonlinearities present in the system

provide stronger stability to the 3D light bullets. We note that
we already obtained the same result through the variational
analysis. In the negative index regime of metamaterials, stable
propagation of light bullets occurs in the normal dispersion
regime balancing with the defocusing cubic nonlinearity and
the focusing quintic nonlinearity whereas it is observed that
in the anomalous dispersion regime with the focusing cubic
nonlinearity and the defocusing quintic nonlinearity in the
positive index regime of metamaterials.

It is well known that the one-dimensional (1D) soli-
tons execute truly elastic collision and such solitons pass
through each other without any deformation after the col-
lision. Generally, the encounter between solitons is elastic,
which indicates that the amplitude, shape, and kinetic energy
of both solitons are retained the same after the interaction,
except for the phase shift [56]. In some special cases, such as a
bright two-soliton solution of the integrable coupled nonlinear
Schrödinger equation [57] and integrable N-coupled nonlinear
Schrödinger equations [58] the shape-changing collision of
solitons are also reported. The shape-changing as a result
of intensity redistribution among the interacting solitons has
potential application to signal amplification and switching
[59]. The Manakov equation can admit nondegenerate fun-
damental solitons which undergo collisions with and without
energy redistribution [60]. The collision between the two 3D
vortex light bullets is quasi-elastic at large velocities [51,61]
and at medium velocities, the bullets may be destroyed after
the encounter [62]. However, the collision between them is
inelastic at small velocities and results in the formation of a
breather after encounter [51]. The collision between two light
bullets with small velocities can lead to the formation of a
bullet molecule [63]. Also, a study on the collision between
two quantum balls reports that they can form a quantum-ball
breather after collision [64].
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FIG. 4. Isosurface plots indicating the evolution of stable 3D light bullets in the negative index regime of metamaterial for P = 1 with
competing cubic and quintic nonlinearities. Other parameters are sgn(β2) = 1, γ = −20, and ϑ = 15. An animation illustrating the above
dynamics can be found in the file SM2.gif in Supplemental Material [65].

To test the solitonic dynamics of the 3D light bullets in
the negative index metamaterials, we numerically investi-
gate the collision between two light bullets. We consider the
metamaterial waveguide, which exhibits normal dispersion
and defocusing cubic and focusing quintic nonlinearities

with γ = −20 and ϑ = 15. Figure 5 depicts the collision
dynamics of two 3D light bullets in the negative index
metamaterial. The complete dynamics is given in the file
SM3.gif, to be found in Supplemental Material [65]. The
bullets are initially separated by a distance of about 1.32

FIG. 5. Isosurface plots showing the quasi-elastic collision dynamics of two light bullets in the negative index metamaterial with P = 1,
γ = −20, and ϑ = 15. An animation illustrating the above dynamics can be found in the file SM3.gif in Supplemental Material [65].
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FIG. 6. Isosurface plots portraying the inelastic collision dynamics of two light bullets in negative index metamaterial with
P = 1, γ = −30, and ϑ = 10. An animation illustrating the above dynamics can be found in the file SM4.gif in Supplemental Material
[65].

units as shown in Fig. 6 and they are set in motion. Af-
ter the interaction, they form a bullet molecule as depicted
in Fig. 5(b), then they partially oscillate due to splitting
at certain propagation distances as depicted in Figs. 5(c)
and 5(d). On further propagation, the light bullets regain their
initial characteristics. From Fig. 5, it is easy to identify that
the light bullet propagates without any change after a collision
with another light bullet, except perhaps for some phase shift.
We believe that this quasi-elastic collision with no visible
deformation of the 3D light bullets, in the defocusing cubic
and focusing quintic nonlinear metamaterial waveguides is a
remarkable result.

We also report an inelastic collision between two light
bullets in the nonlinear negative index material waveguides.
Figure 6 depicts inelastic collision of one light bullet with
another in the negative index metamaterial waveguide when
γ = −30 and ϑ = 10. The complete dynamics is given in the
file SM4.gif, to be found in Supplemental Material [65]. In
this case, the bullets are initially separated by a distance of 2.5
units as shown in Fig. 6(a) and they are set in motion. During
the propagation, they collide and form bullet molecules with
severe oscillations as shown in Fig. 6(c). As a result of the im-
proper balancing between the linear and nonlinear parameters
in the chosen range of parameters, the bullet molecules are
in an excited state with a large amount of energy and, during
further propagation, the oscillations of the light bullets grow
and the bullets become filaments due to splitting into multiple
pieces.

IV. CONCLUSION

In conclusion, we carried out a theoretical study on the
dynamical behavior of the 3D light bullets in nonlinear meta-
material waveguides. Here we brought out some unusual
electromagnetic propagation properties that are not observed
in the conventional media. It is found that in the negative
index regime of the metamaterials stable propagation of light
bullets can occur in the normal dispersion regime due to bal-
ancing between defocusing cubic nonlinearity and focusing
quintic nonlinearity, whereas it is observed in the case of
anomalous dispersion with focusing cubic nonlinearity and
defocusing quintic nonlinearity in the positive index regime.
We also found that the light bullet propagates without any
change, except perhaps some phase shift after a collision with
another light bullet in competing cubic and quintic nonlinear
metamaterials. The improper balancing between the linear
and nonlinear effects may lead to the formation of the bullet
molecules in an excited state with a large amount of energy
after the collision and during further propagation, the light
bullets oscillations grow and the bullets become filaments.
We would like to remark that invoking the role of Kerr non-
linearity has already been achieved in metamaterials in 2008
[49] and so we hope that our theoretical study will aid in the
experimental realization of stable dynamics of light bullets in
metamaterials when the materials would be embedded with
semiconductor glasses like chalcogenide materials driven by
the state-of the art technological advancements.
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APPENDIX

In this Appendix we provide the general mathematical
expressions of Pc1 (the critical power at which the equilib-

rium point at the potential energy curve exists in a cubic
nonlinear medium) and Pc2 (the critical power required to
support the formation of spatiotemporal soliton by a cubic
and quintic nonlinear medium). If an equilibrium point at the
potential energy curve [Eq. (11)] exists, then dV (a)

da = 0. In the
case of cubic nonlinearity alone the above condition for the
equilibrium points indicates

γ P

3
√

2π
3
2 a(z)4

(
sgn(n) − sgn(β2)

2

)
+ 4

9a(z)3
sgn(n)sgn(β2)

− 4sgn(n)2

9a(z)3
− sgn(β2)2

9a(z)3
= 0. (A1)

Consequently, the optical power to observe the equilibrium
point in a cubic medium is given by

Pc1 = 2
√

2π3/2a(z)

3γ
[2sgn(n) − sgn(β2)]. (A2)

Following the same procedure one can obtain the corresponding optical power in the cubic and quintic nonlinear medium, which
is given by

Pc2 = −
9
√

3
2 a(z)3γπ3/2

16ϑ
±

√
1458γ 2π3a(z)6 − 2304π3

√
3ϑa(z)4[sgn(β2) − 2sgn(n)]

32
√

3ϑ
. (A3)

For the stable equilibrium point d2V (a)
da2 > 0, for the unstable equilibrium point d2V (a)

da2 < 0. The stability of the equilibrium point
depends on the nature of the medium and on the nonlinear parameters.
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