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Nonlinear interaction effects in a three-mode cavity optomechanical system
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We investigate the resonant enhancement of nonlinear interactions in a three-mode cavity optomechanical
system with two mechanical oscillators. Using the Keldysh Green’s function technique, we find that nonlinear
effects on the cavity density of states can be greatly enhanced by the resonant interaction of two phononic
polaritons, due to their small effective dissipation. In the large detuning limit and taking into account an upper
bound on the achievable dressed coupling, the optimal point for probing the nonlinear effect is obtained, showing
that such a three-mode system can exhibit significant nonlinear features also for relatively small values of g/κ .
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I. INTRODUCTION

Optomechanical systems [1] have witnessed remarkable
progress in controlling the quantum state of coupled photonic
and mechanical modes. Notable highlights are the demon-
stration of mechanical ground-state cooling [2–4], generation
of strongly squeezed light [5,6] and squeezed mechanical
states [7,8], coherent transduction [9], and entanglement of
remote mechanical oscillators [10,11]. All these applications
are based on a linearized interaction which is dominant un-
der strong optical drive. Continuous technical progress has
allowed the dressed coupling G to enter and even surpass the
strong-coupling regime [12–15].

On the other hand, nonlinear interactions are necessary for
the generation of nonclassical states and a variety of interest-
ing effects have been predicted [16–25]. For these nonlinear
signatures the relevant energy scale is the single-photon op-
tomechanical coupling g which unfortunately remains much
smaller than both the mechanical frequency ωm and cav-
ity damping κ in most setups with solid-state mechanical
oscillators. Several proposals for effectively enhancing the
single-photon coupling strength consider modifying the type
of drive, e.g., by introducing a squeezed optical input or a
mechanical parametric drive [24,26,27]. Other schemes rely
on multimode setups: Systems with two cavity modes [28,29]
or multimembrane arrays [30–33] are promising to inves-
tigate strong quantum nonlinearities. Recently, it was also
proposed that a large enhancement of nonlinear effects could
be achieved in optomechanical chains [25]. An attractive fea-
ture of the latter scheme is that it is essentially equivalent to
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existing setups, developed for efficient nonreciprocity [34,35].
On the other hand, we will show here that the basic mech-
anism at work in Ref. [25] can be realized by a minimal
three-mode setup.

In an optomechanical system, nonlinear effects on the op-
tical density of states (DOS) can be strongly enhanced by
a resonance between two polaritons (i.e., the coupled eigen-
modes of the linearized system) [21–23]. A main advantage
of involving multiple mechanical modes is that two polaritons
(instead of one) can be phononic, i.e., have weak hybridization
to the optical cavities. In this scenario, the optomechanical
nonlinearity results in an indirect phonon-phonon interaction,
mediated by the optical modes. Although the effective nonlin-
ear coupling is necessarily smaller than g, the reduction can be
more than compensated by the improved coherence of both
polaritons, whose lifetime is only limited by the small me-
chanical damping γ � κ . As a result, the optical signatures of
nonlinearity can be larger than in a two-mode optomechanical
cavity [25].

The above discussion suggests that a single cavity inter-
acting with two mechanical oscillators (see Fig. 1) is the most
basic setup where this physics takes place. Indeed, we find that
in such a three-mode system the typical figure of merit (g/κ )2

of nonlinear effects can be enhanced by a large factor which
quite naturally depends on the ratio κ/γ . The enhancement
can be optimized with respect to the two mechanical frequen-
cies and doing so we find that it is proportional to (G/ωm)2.
This conclusion is interesting in view of the recent success in
achieving the ultrastrong-coupling regime [15].

The outline of our paper is as follows. In Sec. II we in-
troduce the system and its description in terms of polaritons.
Nonlinear effects are studied numerically in Sec. III, while
a physical understanding of the results, together with an ap-
proximate analytical treatment in terms of phononlike modes,
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FIG. 1. Schematic illustration of the three-mode optomechanical
systems. Here ωc is the cavity frequency and κ is the cavity damping
rate; ωmi are the mechanical frequencies and γi are the mechanical
damping rates; ωl is the frequency of the laser drive, represented by
the red arrow.

is provided in Sec. IV. We summarize in Sec. V and give some
technical details in Appendices A–E.

II. MODEL

As shown in Fig. 1, we consider a driven optomechanical
cavity with two mechanical oscillators. The system can be
described by the Hamiltonian [1,36,37]

H = ωca†a +
∑
i=1,2

[ωmib
†
i bi + gia

†a(bi + b†
i )]

+ (αe−iωl t a† + H.c.) + Hdiss, (1)

where a is the annihilation operator for cavity mode, ωc is the
cavity frequency, bi (i = 1, 2) are the annihilation operators
of the mechanical modes, ωmi are the mechanical frequencies
(we take ωm2 � ωm1), gi is the single-photon optomechan-
ical coupling, and α is proportional to the amplitude of a
classical drive at frequency ωl . The dissipative Hamiltonian
Hdiss describes independent Markovian baths, with optical
and mechanical damping rates κ and γ1,2, respectively, and
is given in Appendix A. The Markovian approximation is
usually adequate for optomechanical systems [1,36], except
in special circumstances (e.g., relatively strong coupling to
nonequilibrium [38] or non-Ohmic [39] reservoirs).

After transforming the cavity mode to a frame rotating
at the laser frequency ωl and performing a displacement
transformation a = ā + d (where ā is the classical cavity am-
plitude induced by the laser drive), the Hamiltonian of the
system takes the form

H0 = − �d†d +
∑
i=1,2

[ωmib
†
i bi + Gi(d + d†)(bi + b†

i )]

+ g1d†d (b1 + b†
1) + g2d†d (b2 + b†

2), (2)

where � = ωl − ωc is the detuning and G1,2 = g1,2ā are the
dressed couplings which, for definiteness, we take as real. The
average number of photons in the cavity is N = ā2. Through-
out this work we focus on a red-detuned laser (i.e., � < 0),
which allows us to avoid optomechanical instabilities in a

large range of parameters. By neglecting the effect of small
damping coefficients κ and γ1,2, the linearized problem yields
the stability condition

4G2
1ωm2 + 4G2

2ωm1 � |�|ωm1ωm2. (3)

A. Polariton eigenmodes

Due to the smallness of the nonlinear interaction, we first
diagonalize the linear part of the Hamiltonian. The first line of
Eq. (2) can be expressed as

Hl =
3∑

i=1

p2
i

2
+ 1

2

∑
i, j

xiMi, jx j, (4)

where xi and pi are defined by bi = (ωmixi + ipi )/
√

2ωmi for
i = 1, 2 and d = (|�|x3 + ip3)/

√
2|�| for i = 3. The dynam-

ical matrix is given by

M =
⎛
⎝ ω2

m1 0 2G1
√|�|ωm1

0 ω2
m2 2G2

√|�|ωm2

2G1
√|�|ωm1 2G2

√|�|ωm2 �2

⎞
⎠

(5)

and is diagonalized through an (orthogonal) matrix U . Explic-
itly, (U T MU )i, j = ω2

i δi, j , where we conventionally order the
eigenmode frequencies as

ω3 � ω2 � ω1. (6)

The corresponding Bogoliubov transformation reads

(b1 b2 d )T = V (c1 c2 c3 c†
1 c†

2 c†
3)T ≡ VCT , (7)

where T indicates the transpose and ci are polariton modes,
given by linear combinations of cavity and mechanical modes.
We can express the Bogoliubov transformation in terms of U
by writing V = (V+ V−) in block-matrix form, with

V± =
⎛
⎝U11 f±( ωm1

ω1
) U12 f±( ωm1

ω2
) U13 f±( ωm1

ω3
)

U21 f±( ωm2
ω1

) U22 f±( ωm2
ω2

) U23 f±( ωm2
ω3

)
U31 f±( |�|

ω1
) U32 f±( |�|

ω2
) U33 f±( |�|

ω3
)

⎞
⎠, (8)

where f±(x) = (
√

x ± √
1/x)/2. Clearly, all matrix elements

of V are real.
Unfortunately, analytic expressions of U and V are not

available in general. The limit of degenerate mechanical fre-
quencies (ωm1 = ωm2) is particularly simple but, as discussed
in Appendix B, does not offer any advantage over a basic op-
tomechanical cavity. Instead, it will be interesting to consider
a perturbative diagonalization of the general case ωm2 > ωm1

under the condition of large detuning |�| � ωmi, Gi. The
explicit treatment is presented in Appendix C, leading to ap-
proximate expressions for the linear transformation U .

B. Effective two-mode Hamiltonian

Writing the nonlinear interaction in terms of polariton
modes, we obtain, for the Hamiltonian in Eq. (2),

H0 =
3∑

i=1

ωic
†
i ci + (g322c†

2c†
2c3 + g311c†

1c†
1c3 + g321c†

2c†
1c3

+ g211c†
1c†

1c2 + H.c.) + · · · , (9)
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where we only show explicitly terms of type c†
i c†

j ck , having
an appreciable effect when the resonance condition ωk =
ωi + ω j is satisfied. All remaining terms (of type c†

i c†
j c

†
k or

c†
i c†

j c j) cannot conserve the energy of the unperturbed linear
Hamiltonian, and their effect is suppressed by a small factor
of order approximately g2

i jk/ωk (we will work with ω1,2 ∼ ωmi

and ω3 � |�| � ωmi). The system can be tuned to one of the
resonances by controlling external parameters, in particular
the dressed couplings G1,2 and detuning �. In the following,
we will focus on the condition ω2 = 2ω1, leading to the sim-
ple effective model

H0 � ω1c†
1c1 + ω2c†

2c2 + g211(c†
1c†

1c2 + c†
2c1c1), (10)

where the explicit expression of g211 reads

g211 =
∑
i=1,2

gi[(V3,1V3,2 + V3,4V3,5)(Vi,1 + Vi,4)

+ V3,1V3,4(Vi,2 + Vi,5)]. (11)

Formally, the problem has been reduced to a system of two
interacting polaritons, as in an optomechanical cavity with a
single mechanical element [21–23]. However, the regime we
will be interested in is very different from that setup, where the
two polaritons either have an almost pure optical or mechan-
ical character or (at sufficiently large dressed coupling) are
strongly mixed. Here the presence of an additional mechanical
mode allows us to consider both low-energy polaritons with a
predominantly mechanical character.

To enter this interesting regime, we consider the limit of
large detuning |�| � Gi, ωmi, leading to c1,2 � b1,2. Then
Eq. (10) can be understood as an effective nonlinear interac-
tion between mechanical modes, mediated by the presence of
the cavity. This physical picture will be made more precise
through an adiabatic elimination of the optical mode, per-
formed in Sec. IV A and Appendix E. Although the strength of
the effective nonlinear interaction is smaller that the bare op-
tomechanical couplings, the effect of the g211c2c†

1c†
1 nonlinear

process is greatly enhanced due to the long lifetime of the po-
lariton modes [25]. Inducing a stronger hybridization with the
cavity has the beneficial effect of a larger effective interaction
g211, but also degrades the coherence of the mechanical modes
through the induced optical damping. As we will discuss at
length, the competition between these two effects determines
the optimal conditions to observe the nonlinearity. The inter-
action with the optical mode is also important for the optical
detection of these phononlike polaritons, leading to narrow
signatures in the cavity density of states ρd (ω).

C. Coupling to the reservoirs

By assuming sufficiently small damping rates, satisfying
κ, γ1,2 � ωi, |ωi − ω j | (i �= j), the coupling of polaritons to
the dissipative baths can be treated in the same way as in
Refs. [22,23,25]. The Heisenberg-Langevin equations

ċi = −iωici − κi

2
ci − √

κici,in (12)

are obtained (i = 1, 2, 3), where the polariton damping rates
are given by

κi = κ
(
V 2

3,i − V 2
3,i+3

) +
∑
j=1,2

γ j (Vj,i + Vj,i+3)2. (13)

Here we can recognize distinct contributions from the
cavity and phonon baths. The correlation functions
〈c†

i,in(t )ci,in(t ′)〉 = niδ(t − t ′) of the noise operators determine
the occupation numbers of the polariton modes

ni = κ

κi
V 2

3,i+3 +
∑
j=1,2

γ j

κi
(Vj,i + Vj,i+3)2nB(ωi ), (14)

where nB(ωi ) = 1/(eβωi − 1) is the Bose-Einstein distribution
function, evaluated at the frequency of polariton ci and the
(physical) temperature of the two mechanical baths. In the
above expression we assume the optical cavity bath to be
effectively at zero temperature.

For the convenience of the reader, detailed derivations of
these results are presented in Appendices A and D. In partic-
ular, in Appendix A we express the system-bath Hamiltonian
Hdiss in terms of polariton modes. A subtle point, which is
reflected by the form of Eqs. (13) and (14), concerns the
different treatment of the two types of baths. As the me-
chanical modes are coupled to their bath through bj + b†

j ,
an interference between regular (Vj,i) and anomalous (Vj,i+3)
matrix elements of the Bogoliubov transformation appears.
Such an interference is absent for the cavity reservoir because,
due to the presence of the laser drive, the rotating-wave ap-
proximation has to be performed in a slightly different way
[22,23]. We also note that the difference disappears when the
anomalous terms are negligible (Vj,i+3 � 0).

In Appendix D we derive the full Heisenberg-Langevin
equations leading to Eqs. (13) and (14). There we also include
the dissipative coupling between polariton modes and show
explicitly that Eq. (12) is justified when κ, γ1,2 � ωi, |ωi −
ω j |. In the following, we will generally assume ωi, |ωi −
ω j | ∼ ωmi for the phononlike polaritons, with ωmi � κ � γi

and ω3 � |�| � ωmi; thus the conditions leading to Eq. (12)
are well satisfied.

III. RESONANT ENHANCEMENT OF NONLINEAR
EFFECTS

We now examine the effects of the nonlinear interaction on
the cavity DOS ρd (ω),

ρd (ω) = − 1

π
ImGR[d, d†; ω], (15)

where GR[d, d†; ω] = −i
∫ ∞

0 dt eiωt 〈[d (t ), d†(0)]〉 is the re-
tarded Green’s function. As shown in Fig. 2, the DOS is
characterized by peaks occurring at the polariton frequencies
ωi. Without nonlinear interaction, the peaks have a Lorentzian
line shape which, under a suitable resonant condition, gets
progressively modified by larger values of g1,2. As we focus
here on the ω2 = 2ω1 resonance, the largest changes in DOS
occur at the ω1,2 peaks. Instead, the third polariton is not
involved in the resonant process and the ω3 peak remains
basically unaffected.

Various observable quantities can be related to ρd (ω)
and GR[d, d†; ω]. In particular, in optomechanically induced
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FIG. 2. Cavity DOS in the linear (blue solid curve) and nonlinear
regimes (red dashed and green dot-dashed curves) for (a) ωm2/ωm1 =
1.1 and (b) ωm2/ωm1 = 1.96, with κ = 0.02ωm1, γ1,2 = 10−4κ , T =
0, and G1 = G2 = 0.3ωm1, leading to resonant detunings (a) |�| =
1.159ωm1 and (b) |�| = 4.867ωm1. These curves are calculated by
Eqs. (16), (18), and the perturbative self-energies (19) and (20). The
black symbols represent numerical results from a quantum master
equation for the ω1,2 polaritons, evaluated with QUTIP [40]. The insets
shows the DOS in a larger range of ω.

transparency (OMIT) [41,42], the reflection coefficient of
a weak probe with frequency ωp is given by r(ωp) = 1 −
iκcpGR[d, d†; ωp] [22,25], where κcp parametrizes the cou-
pling of the probe field to the input cavity mirror. For
sufficiently small κcp, the reflectivity is directly related to the
cavity DOS as |r(ωp)|2 � 1 − 2πκcpρd (ωp).

To evaluate ρd (ω), it is useful to express Eq. (15) in terms
of polariton modes

ρd (ω) = − 1

π

6∑
i, j=1

V3,iV3, jImGR[Ci,C†
j ; ω], (16)

where Ci = ci and Ci+3 = c†
i (with i = 1, 2, 3) [see Eq. (7)].

As discussed in Appendix D, the anomalous and off-diagonal
(i �= j) components of the polariton Green’s functions are
small and we will neglect them. Furthermore, if one is
interested in frequencies close to a polariton peak, the other

polaritons only induce a small and unstructured off-resonant
background. For example, considering the unperturbed limit,
the diagonal Green’s functions are given by GR

0 [ci, c†
i ; ω] =

1/(ω − ωi + iκi/2). We immediately see that the contribution
of an off-resonant polariton j is suppressed by a small factor
approximately equal to κiκ j/(ωi − ω j )2. A similar suppres-
sion occurs for off-diagonal and anomalous contributions [see
Eqs. (D9) and (D10)]. These considerations allow us to iden-
tify the dominant contributions to the DOS:

ρd (ω) � −V 2
3,i

π
ImGR[ci, c†

i ; ω] for ω � ωi. (17)

The nonlinear interactions can be included by following
the treatment developed in Ref. [22] for the two-mode sys-
tem and extended to multimode optomechanical chains in
Ref. [25]. Within this approach, the retarded Green’s functions
are computed with the Keldysh diagrammatic technique by
including the nonlinear interaction Hnl through a dominant
second-order correction to the self-energy. This approach is
justified by the smallness of the nonlinear interaction. Close
to the resonant condition ω2 = 2ω1 the nonlinear problem is
effectively simplified to a two-mode system and we have

GR[ci, c†
i ; ω] = 1

ω − ωi + i κi
2 − �R

i (ω)
, (18)

with the retarded polariton self-energies

�R
1 (ω) = 4g2

211
n1 − n2

ω + ω1 − ω2 + i(κ1 + κ2)/2
, (19)

�R
2 (ω) = 4g2

211
n1 + 1/2

ω − 2ω1 + iκ1
, (20)

and �R
3 (ω) � 0. The other diagonal Green’s functions can be

obtained from GR[c†
i , ci; ω] = (GR[ci, c†

i ; −ω])∗ and, as dis-
cussed, we neglect off-diagonal and anomalous contributions
to Eq. (16).

For representative sets of parameters, the results from this
perturbation theory are plotted in Fig. 2. We also show direct
numerical simulations of ρd (ω) based on Eq. (10), which take
into account g211 nonperturbatively. The two approaches are in
excellent agreement, except when g211 ∼ κ1,2 and the system
coupling is beyond the perturbative regime. In practice, it is
challenging to realize such large values of the bare couplings
g1,2 and in the following we will rely on Eqs. (19) and (20).

Finally, we stress the extremely narrow linewidth of the
polariton peaks in Fig. 2, which is directly related to the
phononlike character of the ω1,2 polaritons. As a consequence,
the integrated strength of the optical signal is small. Despite
this difficulty, Fig. 2 displays relatively large peak values
for ρd (ω1,2), of order 1/κ , which is promising for the opti-
cal detection of the peaks and their suppression induced by
nonlinearity.

A. Resonant curves and approach to instability

To map out the effect of nonlinear interactions as a function
of drive strength and detuning, we plot in Fig. 3 the quantity

I = max
ω

∣∣ρd (ω) − ρ0
d (ω)

∣∣, (21)
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FIG. 3. Dependence of I on the dressed coupling G2 and detun-
ing |�|, at two fixed values of ωm2/ωm1: (a) 1.1 and (b) 1.96. The
boundaries of the colored regions are given by the stability condi-
tion (3). The dashed curves show the resonant condition ω2 = 2ω1,
obtained from the exact spectrum of Eq. (5). We see that a signif-
icant enhancement of nonlinear effects occurs along the resonant
curves. In each panel, we have marked explicitly the (�, G2) value
corresponding to Fig. 2. The other parameters (taking ωm1 = 1) are
κ = 0.02, γ1,2 = 2 × 10−6, T = 0, and g1 = g2 = 2 × 10−4 (imply-
ing G1 = G2).

where ρ0
d (ω) is the DOS without nonlinearity. As expected,

we observe a large enhancement of I along well-defined
curves inside the stability regions, which simply correspond
to the condition ω2 = 2ω1. The resonant curves found from
the spectrum of Eq. (5) are plotted as dashed lines and match
well the enhancement of I. An increase of I is also obtained
close to the upper boundary of the stable region. Its physical
origin is quite different and we will briefly discuss it before
returning to the resonant condition for the rest of the article.

When approaching the instability condition, there is a soft-
ening of the lowest polariton, ω1 → 0, which is accompanied
by anomalous quantum heating, n1 � 1. This increase in n1

leads to a corresponding enhancement of the self-energies
(19) and (20). We note, however, that in this regime we
are away from resonance and �R

1,2(ω) give simple frequency
shifts of the polariton lines. For example, in Eq. (20) we
can approximate �R

2 (ω) � 4g2
211n1/(ω2 − 2ω1), since ω2 −

2ω1 � κ1,2. At variance with Fig. 2, the shifts are not accom-
panied by a significant modification in line shape.

While this behavior should be qualitatively correct, our
theory is not accurate in predicting the line shifts. When
approaching the instability there is no reason to privilege the
c†2

1 c2 term (e.g., the c†3
1 process could give a large contri-

bution). Even before the second-order perturbative treatment

0 10 20 30 40
0

0.05

0.1

0.15

0.2

FIG. 4. Dependence of Ceff,2 on |�| along the resonant curves,
at different values of the ratio ωm2/ωm1 (as indicated for each solid
curve). The dashed lines correspond to the condition G1,2 � Gmax,
with Gmax/ωm1 = 0.5, 0.4, 0.3 (top to bottom). For each solid curve,
the blue star marks the maximum value of |�|/ωm1 allowed by
G1,2 � 0.5ωm1. The other parameters are the same as in Fig. 3.

breaks down, one should take into account all possible non-
linear terms beyond Eq. (10). In the following we will avoid
these difficulties and restrict ourselves to the physically in-
teresting regime around the resonant curves. In particular, we
will assume ω2 − 2ω1, g211 � κ1,2, when Eqs. (19) and (20)
are justified.

B. Numerical optimization of nonlinear effects

At resonance, we now proceed to discuss the optimal
regime to observe the effects of nonlinear interactions. The
suppression of ρd (ω) is conveniently characterized through
effective cooperativities [22]

Ceff,1 = 16g2
211(n1 − n2)

κ1(κ1 + κ2)
, Ceff,2 = 4g2

211(1 + 2n1)

κ1κ2
, (22)

which, by using Eqs. (16)–(20) and the resonant condition
ω2 = 2ω1, immediately give

ρd (ωi ) � ρ0
d (ωi )

1 + Ceff,i
. (23)

As we will discuss at the end of Sec. IV, the two cooperatives
Ceff,1 and Ceff,2 are similar at the optimal point (see in particu-
lar Fig. 7). Therefore, for definiteness, we will specialize our
discussion to Ceff,2.

Examples of numerically evaluated Ceff,2 along the res-
onant lines are shown in Fig. 4 (solid curves). At a given
mechanical frequency ratio ωm2/ωm1, the dependence of Ceff,2

is nonmonotonic. The optimal detuning is determined by
a competition between the beneficial decrease in polariton
dampings κ1,2, which eventually saturate to the bare mechan-
ical dissipation rates γ1,2, and the decrease in the effective
nonlinear coupling g211 induced by larger values of |�| (a
more detailed discussion is provided later on). Another in-
teresting observation is that smaller values of ωm2/ωm1 lead
to larger values of Ceff,2. However, this increase in effective
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FIG. 5. Maximum value of Ceff,2 (i.e., optimized over �) as a
function of ωm2/ωm1 and g1/g2, with the restriction max[G1, G2] �
Gmax, for (a) Gmax = 0.5ωm1 and (b) Gmax = 0.1ωm1. The dots mark
the optimal values C̃eff,2. We used the following parameters (in units
of ωm1): κ = 0.02, max[g1, g2] = 2 × 10−4, and γ1,2 = 2 × 10−6.

cooperativity might be impractical, as it is more demanding
on the maximum values of dressed couplings G1,2.

For example, one can compare the two resonant curves
shown in Fig. 3. Clearly, the curve with a smaller value of
ωm2/ωm1 [Fig. 3(a)] also requires a larger G2 at any given �.
A setup achieving G � 0.4ωm was only recently demonstrated
[15]; thus it is probably more meaningful to perform a com-
parison assuming equal values of the dressed coupling. This
was done in Fig. 2, where G1,2 is the same in the two panels.
Here the conclusion is reversed: The nonlinear modification
of the spectral line is more evident in Fig. 3(b), with a larger
value of ωm2/ωm1.

To take these restrictions into account, we consider in
Fig. 4 the effect of an upper cutoff G1,2 � Gmax. For a few val-
ues of Gmax, the upper bound is shown by the dashed curves.
As can be seen, a system with a smaller value of ωm2/ωm1

suffers a strong reduction of the maximum allowed value of
|�|. Therefore, one has to strike a compromise between the
generally advantageous effect of reducing ωm2/ωm1 and the
more restrictive range of |�|. The optimal choice of ωm2/ωm1

is slightly below 2. For example, we see that the purple curve
with ωm2/ωm1 = 1.97 hits the upper dashed boundary close
to its maximum and thus represents the optimal choice when
Gmax = 0.5ωm1.

We also show in Fig. 5 a density plot of the maximum
Ceff,2 (i.e., after optimizing over �) as a function of g1/g2

and ωm2/ωm1 for two different choices of Gmax. The largest
value is marked by a white dot and satisfies g1 = g2. Instead,
the optimal value of ωm2/ωm1 is always slightly below 2 but
depends on Gmax.

IV. RESONANCE BETWEEN DRESSED
MECHANICAL MODES

In the preceding section we found that the condition ωm2 �
2ωm1 is particularly interesting, as it allows us to maximize the

effect of the nonlinear interaction (see Fig. 5). In this regime
the two mechanical modes are already close to the resonant
condition, so a small hybridization to the cavity is sufficient
to realize ω2 = 2ω1. Furthermore, as illustrated in Fig. 4, the
ideal working point is reached by applying a strong drive (giv-
ing large values of G1,2) at large detuning. This regime of large
detuning can be discussed in terms of an effective Hamiltonian
for the mechanical modes, obtained after adiabatic elimination
of the cavity. This approach is physically more transparent and
allows us to obtain approximate expressions for the effective
polariton parameters, as well as the maximum of Ceff,2.

A. Adiabatic elimination

The leading adiabatic contribution to the cavity mode d (t )
can be easily derived from the equation of motion

d � −G1(b1 + b†
1) + G2(b2 + b†

2)

|�| + · · · , (24)

where we have omitted corrections induced by the small
dampings and nonlinear interaction, as well as fast-oscillating
contributions. A more refined expression, which will become
necessary later on, is derived in Appendix E. Eliminating d
from Eq. (2) leads to the effective Hamiltonian

H0 �
∑
i=1,2

ωmib
†
i bi − [G1(b1 + b†

1) + G2(b2 + b†
2)]2

|�|

+ g1

G1�2
[G1(b1 + b†

1) + G2(b2 + b†
2)]3. (25)

Furthermore, as we work close to the ωm2 = 2ωm1 condition,
the above expression simplifies to

H0 �
∑
i=1,2

ω̄mib
†
i bi + 3g1

G1G2

�2

(
b†

2b2
1 + b2b†2

1

)
, (26)

where the shifted mechanical frequencies are given by ω̄mi �
ωmi − 2G2

i /|�|. Imposing ω̄m2 = 2ω̄m1 gives the desired
detuning

|�| � 2G2
1 − G2

2

ωm1 − ωm2/2
. (27)

We can also directly read off from Eq. (26) the strength of the
effective nonlinear interaction

g211 � 3g1
G1G2

�2
. (28)

Although, strictly speaking, the derivation of g211 should take
into account also the correction to Eq. (24) linear in g1,2, we
show in Appendix E that the final result is unchanged. Equa-
tions (27) and (28) are also fully consistent with our previous
treatment of polariton modes. When |�| � ωm1, ωm2 � G1,2

we can diagonalize Eq. (5) perturbatively and obtain sim-
plified expressions for the transformation matrix V (defining
the Bogoliubov transformation). This approach is discussed
in Appendix C. Substituting the approximate V in Eqs. (13),
(14), and (11), we recover the same expressions derived within
the adiabatic approximation.

To treat the coupling of the mechanical modes to the optical
bath, it is necessary to go beyond Eq. (24). The detailed
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derivation is given in Appendix E, which leads to the effective
dampings (i = 1, 2)

κi � 4G2
i ωmi

|�|3 κ + γi. (29)

Clearly, the total decay rate includes an optical contribution
due to the small mixing to the optical cavity (the first term),
besides the regular mechanical damping. With the same ap-
proach and assuming zero-temperature reservoirs, we also
obtain the occupation numbers

ni �
(

γi�
2

κG2
i

+ 4
ωmi

|�|
)−1

. (30)

The finite values of ni are due to the quantum heating associ-
ated with the nonequilibrium conditions, i.e., the presence of
the optical drive.

B. Optimal point

By making use of the above expressions, we optimize the
visibility of nonlinear effects by maximizing Ceff,2. By substi-
tuting Eqs. (28)–(30) into Eq. (22) we obtain

Ceff,2 �
72κg2G6

2|�|3(1 + γ1�
2

2κG2
2
+ 2 ωm1

|�|
)

(
4G2

2ωm1κ + γ1|�|3)2(
8G2

2ωm1κ + γ2|�|3) , (31)

where we used that, as in Fig. 5, the optimal point occurs
for g1 = g2 ≡ g (implying G1 = G2) and ωm2 � 2ωm1. Note
that Ceff,2 characterizes the system at resonance; thus G2 and
� are related by Eq. (27). For G1 = G2, this relation simply
reads |�| = G2

2/δωm, where δωm = ωm1 − ωm2/2. Setting the
dressed coupling at the largest achievable value G2 = Gmax,
we finally get

Ceff,2 � 72κg2G6
max/δω

3
m(

4ωm1κ + γ G4
max

δω3
m

)2(
8ωm1κ + γ G4

max
δω3

m

) . (32)

Here, for simplicity, we assume equal mechanical damping
γ1,2 = γ (extension to unequal damping is straightforward).
We also set 1 + γ1�

2/2κG2
1 + 2ωm1/|�| � 1 in the numera-

tor of Eq. (31).
Equation (32) approximates the maximum Ceff,2 at given

mechanical frequencies. A comparison to the numerical re-
sults is shown in Fig. 6(a), where good agreement is found.
As noted previously and also apparent in Fig. 6(a), there is an
optimal value of the ratio ωm2/ωm1 giving the largest nonlinear
effect. We obtain such an optimal point from Eq. (32) as

δωm � c0

(γ

κ

)1/3(Gmax

ωm1

)4/3 ωm1

2
, (33)

where c0 = (
√

5 + 1)1/3 � 1.5. Since usually γ � κ ,
Eq. (33) represents a small deviation from ωm2 = 2ωm1. The
inset of Fig. 6(a) shows that a larger dressed optomechanical
coupling Gmax causes the optimal ratio ωm2/ωm1 to move
farther away from ωm2 = 2ωm1, besides allowing for more
prominent nonlinear effects, which is in agreement with
Eq. (33). Finally, by using the optimal δωm we obtain

C̃eff,2 � (c1R + c2R2/3 + · · · )
( g

κ

)2
, (34)
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FIG. 6. (a) Dependence of Ceff,2 on ωm2/ωm1, obtained after op-
timizing � with g1/g2 = 1 and G1,2 � Gmax. The main panel is for
Gmax/ωm1 = 0.3 and presents a comparison of the numerical curve
(solid) to the approximate treatment (dashed), described by Eqs. (31)
and (27). The curves in the inset are obtained numerically and illus-
trate the effect of changing Gmax/ωm1. In particular, the Gmax/ωm1 =
0.1 and 0.5 curves are line cuts of Fig. 5. (b) Dependence of the fully
optimized cooperativity C̃eff,2 on Gmax/ωm1. The dashed curve is the
approximate equation (34). In both panels we used (in units of ωm1)
κ = 0.02, γ1,2 = 2 × 10−6, and g1,2 = 2 × 10−4.

where the numerical prefactors are c1 = 9(5
√

5 − 11)/4 ≈
0.41 and c2 = 9(7 − 3

√
5)/ 3

√
16(

√
5 − 1) ≈ 0.97. Here we

have defined the important parameter

R =
(Gmax

ωm1

)2 κ

γ
, (35)

which we assumed large, R � 1, to obtain an enhancement of
Ceff,2 with respect to the typical figure of merit (g/κ )2 [22].
Entering the favorable regime of large R is facilitated by the
typically large value of κ/γ . Since in Eq. (34) the prefactor
is expressed through powers of R, the fully optimized coop-
erativity C̃eff,2 exhibits a monotonic dependence on Gmax. In
Fig. 6(b) we show that the increase of C̃eff,2 is well described
by the approximate equation (34).

C. Application to electromechanical setups

Motivated by the increase with Gi, we now estimate the
achievable values of C̃eff,2, taking as reference the recent
electromechanical setup of Ref. [15]. Here, using a three-
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TABLE I. Parameters from two specific setups.

Parameter Ref. [15] Ref. [13]

ωc/2π 6.506 GHz 7.47 GHz
κ/2π 1.2 MHz 170 kHz
ωm/2π 9.696 MHz 10.69 MHz
γ /2π 31 ± 1 Hz 30 Hz
g/2π 167 ± 2 Hz 230 Hz
Gmax/2π 3.83 MHz 0.5 MHz

dimensional superconducting cavity, ultrastrong parametric
couplings of order Gmax ∼ 0.4ωm are achieved. From Eq. (34)
and with the parameters listed in Table I (second column),
we obtain C̃eff,2 � 0.5 × 10−4 in the three-mode system. Al-
though this figure of merit is small, a useful reference is the
value of C̃eff for a two-mode setup [21–23]. The optimal point
is at � � −2ωm, leading to

Ceff � 45

8

g2

κ2
(36)

(two modes). The physical regime here is different, as one
of the two interacting polaritons is a weakly perturbed cavity
mode. The nonlinear interaction with the phononlike polariton
can be detected as a narrow dip on top of the broad optical
peak. For this scenario, one would get Ceff � 10−7. The larger
value of the three-mode system is due to the enhancement fac-
tor, of order R � 6 × 103, which allows us to take advantage
of the ultrastrong-coupling regime.

It is also instructive to consider parameters from an elec-
tromechanical setup with lumped elements (third column of
Table I) and a much smaller Gmax ∼ 0.05ωm. Here we only
have R � 12 and we estimate that the three-mode system
could achieve C̃eff,2 � 2 × 10−5. This value is only slightly
smaller than the first setup (with ultrastrong parametric cou-
plings), as it takes advantage of a larger ratio g/κ . In the first
example, the value of C̃eff,2 suffers from the relatively large
damping of the microwave cavity κ . Improving that parameter
to the approximately 100 kHz range would result in a much
larger value of (g/κ )2, thus approaching C̃eff,2 � 10−3.

Finally, we note that the working point of Ref. [15] is
at � = −ωm, when the dressed optomechanical coupling is
limited by the optomechanical instability to Gmax < 0.5ωm.
However, here we consider larger values of |�|. The onset of
the instability would be much less restrictive on the achievable
values of Gmax, with potential benefits on the enhancement of
nonlinear effects.

D. Estimation of relevant scales

Based on the effective parameters of the polariton modes,
given in Sec. IV A, we estimate the position of interesting
working points and derive in a simpler manner some general
parameter dependences. We start by considering the maxi-
mum of Ceff,2 as a function of detuning, illustrated in Fig. 4.
This optimal point has a simple physical origin, as it occurs
when the induced optical damping [the first term of Eq. (29)]
becomes smaller than the mechanical damping γ . At larger
detunings the polariton damping rates become approximately
constant, i.e., κi ∼ γ , and Ceff,2 suffers from the decrease of

interaction strength g211 between phononlike polaritons. More
precisely, we estimate this condition from Eq. (29) as

G2
1ωm1

|�|3 κ ∼ γ , (37)

and using that at resonance |�| � G2
1/δωm we obtain the

optimal detuning

|�∗| ∼
√

κ

γ
ωm1δωm. (38)

Below |�∗|, the growth of Ceff,2 with |�| is due to the
improved coherence properties of the i = 1, 2 polaritons. In
particular, when |�| � |�∗| we can neglect the mechanical
dampings in the expressions of κi. Setting γ1,2 = 0 in Eq. (31)
and also neglecting 2ωm1/|�| in the numerator (since |�| �
ωm1), we indeed obtain a monotonically increasing function

Ceff,2 � 9

16

( g

κ

)2
( |�|

ωm1

)3

. (39)

The cubic dependence of Ceff,2 can be traced as follows.
The product κ1κ2 of damping rates contributes to an en-
hancement factor approximately equal to (|�|/ωm1)4 to the
effective cooperativity (22). The increase of n1 is approxi-
mately |�|/4ωm1 and can also be attributed to the smaller
polariton damping [see the small κi denominator in Eq. (14)].
On the other hand, as expected, the effective interaction g211

is always suppressed by a larger detuning [see Eq. (28)]. The
final result is the cubic enhancement factor (|�|/ωm1)3.

A rough estimate of the maximum Ceff,2 is obtained by
evaluating Eq. (39) at � = �∗:

Ceff,2 �
( g

κ

)2
(

κ

γ

δωm

ωm1

)3/2

. (40)

Since δωm/ωm1 = 1 − ωm2/2ωm1 we see that, in principle,
it is advantageous to move away from the condition ωm2 =
2ωm1. However, as discussed, we should take into account
practical limitations on the achievable G1,2. With G1,2 �
Gmax, the maximum allowed value of |�| is given by Eq. (27),
where the factor 1 − ωm2

2ωm1
appears in the denominator (i.e., the

allowed range shrinks by reducing ωm2/ωm1). An approximate
criterion to estimate the optimal ωm2/ωm1 is to impose that
the range of allowed values of � extends roughly up to the
maximum in Ceff,2. Equating Eqs. (27) and (38) yields

δωm ∼
(γ

κ

)1/3(Gmax

ωm1

)4/3

ωm1 (41)

and substituting this estimate in Eq. (40), we obtain

C̃eff,2 ∼
( g

κ

)2 κ

γ

(Gmax

ωm1

)2

. (42)

Equations (41) and (42) are in agreement with the more
precise expressions (33) and (34), respectively. Through this
discussion, we see that the optimal values arise from a compe-
tition between the reduction in the effective optical damping at
large |�| and the presence of a residual mechanical damping,
together with practical restrictions in achieving sufficiently
large dressed optomechanical couplings.
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FIG. 7. (a) Comparison of the cavity DOS in the linear (red
solid curve) and nonlinear regimes, using g1,2 = 0.01κ (green dot-
ted curve) and g1,2 = 0.1κ (blue dot-dashed curve). We also used
|�| = 13.22ωm1, G2 = 0.3ωm1, ωm2/ωm1 = 1.9858, κ = 0.02ωm1,
and γ1,2 = 10−4κ . In the inset we show a comparison of Ceff,1

(bottom curve) and Ceff,2 (top curve). The two curves are already
optimized over �, with g1,2 = 0.01κ . The other parameters are the
same as in the main plot. (b) Dependence of ρd (ω1) as a function of
� for several values of g1 = g2. We used g1 = 0, 0.02κ, 0.05κ, 0.1κ

(from top to bottom). The other parameters are the same as in (a). The
sharp dip corresponds to the resonant condition and becomes more
pronounced at larger values of g1,2. The inset shows the g1 = 0.1κ

curve in a larger range of �.

E. Line shape and lower polariton

We conclude this section by discussing the qualitative
change of line shape induced by nonlinear effects. Since
here the damping rates of the two polaritons are comparable
[see, for example, below Eq. (37), where we have obtained
κ2 � 2κ1], the spectral line shape is not modified qualita-
tively at small g. This behavior is illustrated by the g = 0.01κ

curves of Fig. 7(a) and is distinct from what happens in a
two-mode system, where a sharp dip can be induced at the
higher polariton peak for very small values of g [21–23].

Therefore, similar to the four-mode optomechanical ring [25],
the nonlinear effects could be more easily demonstrated by
tuning external parameters like � and Gi across the resonant
condition ω2 = 2ω1. As shown in Fig. 7(b), changing � will
induce a sharp feature in the dependence of the density of
states (or a related observable, e.g., the OMIT signal [23,25]).

Instead, if the optomechanical coupling can be made larger,
we enter a regime where two distinct resonances appear, as
illustrated in Fig. 7 by assuming g1,2 = 0.1κ . The splittings of
the ω1 and ω2 polariton peaks are given by

δ1 � 4g211
√

n1 − n2, δ2 � 4g211

√
n1 + 1

2 , (43)

respectively, and they are resolved when δ1,2 � κ1,2.
Figure 7(a) also shows that the nonlinear effects at the

upper (ω2) and lower (ω1) polaritons are comparable. This
fact can be checked from our previous analytical expressions:
In the regime of negligible γ1,2 we have κ2/κ1 � n1/n2 � 2,
leading to Ceff,1 � 2

3Ceff,2 [based on Eq. (22)]. On the other
hand, around the maximum of the effective cooperativity we
can estimate κ2/κ1 � n1/n2 � 3

2 , leading to Ceff,1 � 2
5Ceff,2.

V. CONCLUSION

In this paper we have investigated nonlinear interaction
effects in a three-mode cavity optomechanical system with
one cavity mode and two mechanical modes. To take full
advantage of the two mechanical modes, we concentrated on a
regime where a resonant interaction of phononlike polaritons
takes place. Due to the very small polariton dissipation rates,
nonlinear effects on the cavity density of states and related
observables could be greatly enhanced. In the large detuning
limit and considering an upper bound on the largest achievable
dressed coupling, we obtained the optimal value of nonlinear
effects. Our analytic expressions indicate that the typical fig-
ure of merit is enhanced by a parameter which can be large,
being proportional to the ratio κ/γ .

Although with small single-photon optomechanical cou-
plings g1,2 the nonlinear effects only induce a slight modi-
fication of the spectral line shape, it would still be possible
to observe sharp features by tuning system parameters across
the resonant condition. On the other hand, if a regime of
sufficiently large g1,2 can be reached, the splittings of the
ω1 and ω2 polariton peaks are clearly established. Further-
more, the present setup can realize a mechanical analog
of parametric oscillation and second harmonic generation,
if either one of the phononlike polaritons is driven by an
external laser, and might facilitate the observation of non-
classical photon correlations induced by the optomechanical
interaction [16,17,24,28].
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APPENDIX A: POLARITON-BATH INTERACTION

We start from the system-bath Hamiltonian Hdiss, given in
terms of the bare cavity and mechanical modes

Hdiss =
∑

j

ωc, j f †
c, j fc, j +

∑
α=1,2

∑
j

ωα, j f †
α, j fα, j

− i
∑

j

√
κ

2πρc
( fc, j − f †

c, j )(a + a†)

− i
∑

α=1,2

∑
j

√
γα

2πρα

( fα, j − f †
α, j )(bα + b†

α ), (A1)

where fα, j are the annihilation operators for the mechanical
(α = 1, 2) and cavity (α = c) bath modes, with corresponding
frequencies ωα, j (α = 1, 2, c). As in the main text, κ is the
damping rate of photons inside the cavity and γ1,2 are the two
mechanical damping rates. Furthermore, ρc is the cavity-bath
density of states and ρ1,2 are the mechanical density of states.
Because we consider Markovian baths, we take κ , ρc, γα , and
ρα to be frequency independent.

We derive the appropriate polariton-bath Hamiltonian anal-
ogously to the two-mode system [22,23], by first transforming
all optical modes (both cavity and bath modes) to a frame
rotating at ωl and applying suitable displacement transforma-
tions. The final form of the Hamiltonian is similar to Eq. (A1),
except for the replacements ωc, j f †

c, j fc, j → �c, jg
†
c, jgc, j , where

�c, j = ωc, j − ωl is shifted by the drive frequency. Fur-
thermore, ( fc, j − f †

c, j )(a + a†) → (gc, jd† − g†
c, jd ). We have

neglected the counterrotating terms in the interaction with the
optical bath, as they are proportional to e±2iωl t . Finally, we
express d and b1,2 in terms of polariton operators

Hdiss =
∑

j

�c, jg
†
c, jgc, j +

∑
α=1,2

∑
j

ωα, j f †
α, j fα, j

− i
∑

k=1,2,3

∑
j

√
κ

2πρc
[gc, j (V3,kc†

k + V3,k+3ck ) − H.c.]

− i
∑
α,k

∑
j

√
γα

2πρα

[(Vα,k + Vα,k+3) fα, jc
†
k − H.c.],

(A2)

where α = 1, 2 labels the mechanical modes and k = 1, 2, 3
labels the polaritons. In the last line, representing the in-
teraction of polaritons with mechanical reservoirs, we have
performed the rotating-wave approximation, since ωα, j > 0
and the counterrotating terms of type fα, jck cannot conserve
the energy. On the other hand, the counterrotating terms of
type gc, jck should be retained, since �c, j > −ωl (with ωl

much larger than the polariton frequencies).
The different way in which the rotating-wave approxima-

tion is performed on the optical and mechanical bath modes
is due to the presence of the cavity drive. A more detailed
discussion of the treatment can be found in Refs. [22,23,25],
while here we only make two remarks. (i) The presence of
counterrotating terms in the second line of Eq. (A2) leads

to heating of the polaritons even when the cavity bath is at
zero temperature, a phenomenon which can be referred to
as quantum heating. Physically, the polaritons can be excited
through the absorption of photons from the drive. (ii) Since
fα, j is coupled to bα + b†

α [see Eq. (A1)] and the Bogoliubov
transformation has anomalous terms, i.e., bα involves both ck

and c†
k [see Eq. (7)], the coupling coefficient of fα, jc

†
k displays

an interference of fα, jbα and fα, jb†
α contributions. This does

not happen for the optical bath, where the gc, jdα interaction
was neglected from the onset. Again, this difference can be
traced to the presence (absence) of driving on the optical
(mechanical) modes.

An equivalent way to treat the interaction with the bath is
through the Langevin equations. For the mechanical modes,
which are coupled to the bath through the X quadrature,
the most appropriate form of the dissipation terms is ḃα =
− γα

2 (bα + b†
α ) + · · · . Instead, the Langevin equation of the

driven optical mode reads ḋ = − κ
2 d + · · · , in agreement with

previous discussions on the rotating-wave approximation of
Hdiss (after taking into account the drive). This difference,
combined with the anomalous terms of the Bogoliubov trans-
formation, leads to the presence (absence) of interference in
κi when writing the Langevin equations in terms of polariton
modes.

APPENDIX B: EQUAL MECHANICAL FREQUENCIES

When the two mechanical resonators have the same fre-
quency, i.e., ωm1 = ωm2 = ωm, the system becomes equivalent
to a two-mode optomechanical cavity. This is easily seen by
introducing the mechanical dark mode b− [43], together with
the bright mode b+,

b− = G1b2 − G2b1

G̃
, (B1)

b+ = G1b1 + G2b2

G̃
, (B2)

with G̃ =
√

G2
1 + G2

2. Hence, we rewrite the Hamiltonian (2)
as

H0 = − �d†d + ωmb†
+b+ + ωmb†

−b−

+ G̃(d + d†)(b+ + b†
+) + g̃d†d (b+ + b†

+), (B3)

where g̃ = G̃/
√

N . We see that only the bright mode b+ in-
teracts with the cavity and the optomechanical interaction has
the standard form. That is to say, the three-mode cavity system
has been transformed to a standard two-mode optomechanical
setup, with an independent mechanical dark mode.

APPENDIX C: APPROXIMATE FORM OF V

In this Appendix we present the approximate form of V
in the large detuning limit |�| � ωmi, Gi. We first perform a
block diagonalization of M using quasidegenerate perturba-
tion theory

e−SMeS �
⎛
⎝ω2

m1 − B2
11 −B2

12 0
−B2

21 ω2
m2 − B2

22 0
0 0 �2 + B2

11 + B2
22

⎞
⎠,

(C1)
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where the B2
i j are second-order corrections with respect to the

unperturbed matrix M (0)
i, j = �2δ3,iδ3, j :

B2
i j = 4

|�|GiGj
√

ωmiωm j . (C2)

To lowest order, the transformation matrix S is given by

S � 1

|�|

⎛
⎝ 0 0 B11

0 0 B22

−B11 −B22 0

⎞
⎠. (C3)

The eigenvalues of Eq. (C1) are the normal mode frequencies
ωi and are easily obtained as follows:

ω2
1,2 � 1

2

(
ω2

m1 + ω2
m2 − B2

11 − B2
22

∓
√(

ω2
m1 − ω2

m2 − B2
11 + B2

22

)2 + 4B4
12

)
, (C4)

ω2
3 � �2 + B2

11 + B2
22. (C5)

The sign in Eq. (C4) is chosen to satisfy ω2 � ω1.
Diagonalization of Eq. (C1) is through a rotation by

an angle given by tan 2θ = 2B2
12/(ω2

m2 − ω2
m1 + B2

11 − B2
22).

Finally, combining eS and the rotation by θ , we find an ap-
proximate expression for U :

U �

⎛
⎜⎝

cos θ − sin θ B11
|�|

sin θ cos θ B22
|�|

−B11 cos θ+B22 sin θ
|�|

B11 sin θ−B22 cos θ
|�| 1

⎞
⎟⎠. (C6)

Equation (C6) can be inserted in Eq. (8) to get the desired
approximate form of V . For example, to evaluate κi from
Eq. (13) we need the quantities

V 2
3,i − V 2

3,i+3 = U 2
3,i,

(Vj,i + Vj,i+3)2 = U 2
j,i

ωm j

ωi
, (C7)

which are readily obtained from Eq. (C6). If Gi � ωm1, ωm2,
the rotation angle θ is small. Thus, in Eq. (C7) we can approx-
imate U1,1 = U2,2 = 1 and U1,2 = U2,1 = 0, giving κ1,2 as in
Eq. (29). Equations (28) and (30) can be obtained in a similar
way.

APPENDIX D: EQUATIONS OF MOTION IN THE LINEAR
REGIME

We give here the Heisenberg-Langevin equations of the
polariton modes in the linear approximation. The present
analysis, by retaining explicitly off-diagonal damping terms,
extends previous treatments [22,23,25] and allows us to dis-
cuss the off-diagonal Green’s functions.

We consider the quadratic Hamiltonian Hl + Hdiss, where
Hl = ∑

k ωkc†
kck and Hdiss is given in Eq. (A2). Then the

Heisenberg-Langevin equations can be derived in a standard
way and take the form (i = 1, 2, 3)

ċi = −iωici −
3∑

j=1

(κi j

2
c j + κ̄i j

2
c†

j

)
− √

κici,in, (D1)

where

κi j = κ (V3,iV3, j − V3,i+3V3, j+3)

+
∑

k=1,2

γk (Vk,i + Vk,i+3)(Vk, j + Vk, j+3), (D2)

κ̄i j = κ (V3,iV3, j+3 − V3, jV3,i+3). (D3)

The matrix κi j is symmetric and the diagonal elements κii ≡ κi

are in agreement with Eq. (13). Instead, κ̄ii = 0 since κ̄i j is
antisymmetric. The noise operators can be expressed as a sum
of contributions from the three reservoirs

ci,in(t ) =
√

κ

κi
d (i)

in (t ) +
∑

α=1,2

√
γα

κi
b(i)

α,in(t ), (D4)

where the photon bath gives

d (i)
in (t ) = 1√

2πρc

∑
j

(V3,ie
−i�c, j (t−t0 )gc, j

− V3,i+3ei�c, j (t−t0 )g†
c, j ) (D5)

and the mechanical baths give (α = 1, 2)

b(i)
α,in(t ) = Vα,i + Vα,i+3√

2πρα

∑
j

e−iωα, j (t−t0 ) fα, j . (D6)

Here t0 is the initial time (which can be taken in the distant
past). The correlation functions of the noise operators

〈c†
i,in(t )ci,in(t ′)〉 = niδ(t − t ′) (D7)

are related to the occupation numbers ni of the polari-
ton modes. It is straightforward to compute Eq. (D7)
from Eqs. (D4)–(D6). Using the reservoir thermal occu-
pations 〈 f †

α,i fα, j〉 = δi, jnB(ωα, j ) and 〈g†
c,igc, j〉 = 0 (i.e., a

zero-temperature optical bath), the expressions of ni given in
Eq. (14) are found.

In the regime which is most interesting for us, the energy
differences ωi − ω j between different polariton modes are
at least of the same order as the mechanical frequencies.
Taking κ � ωm1, ωm2, the effect of off-diagonal coupling in-
duced by dissipation is suppressed by a small factor � κ/ωmi.
This justifies considering the decoupled Heisenberg-Langevin
equations (12) given in the main text. To show explicitly
this argument, we consider the equation of motion for the
off-diagonal Green’s function GR

0 [ci, c†
j , t] (with i �= j). From

Eq. (D1) we get

d

dt
GR

0 [ci, c†
j , t] = −

(
iωi + κi

2

)
GR

0 [ci, c†
j , t]

−
∑
i′ �=i

(κii′

2
GR

0 [ci′ , c†
j , t]+ κ̄ii′

2
GR

0 [c†
i′ , c†

j , t]
)
.

(D8)

To leading order, we can retain in the second line only the i′ =
j term (i.e., neglect the off-diagonal and anomalous Green’s
functions). After a Fourier transform, we immediately find

GR
0 [ci, c†

j , ω] � − iκi j/2(
ω − ωi + i κi

2

)(
ω − ω j + i κ j

2

) . (D9)
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By evaluating the Green’s function at the polariton frequency
ωi we find

ImGR
0 [ci, c†

j , ωi] � κ−1
i

κi jκ j/2

(ωi − ω j )2
. (D10)

The diagonal Green’s function gives ImGR
0 [ci, c†

i , ωi] =
−2κ−1

i ; thus Eq. (D10) is suppressed by a small factor ap-
proximately equal to (κ/ωmi )2. Nonlinear interactions will
modify both GR

0 [ci, c†
j , ω] and GR

0 [ci, c†
i , ω] by introducing

appropriate self-energies in the denominators. However, their
relative strength will still be controlled by the same small
factor.

APPENDIX E: ADIABATIC ELIMINATION
OF THE CAVITY MODE

In the limit of large detuning, the cavity mode can be
eliminated adiabatically to obtain an effective theory for the
two mechanical modes. Here we refine Eq. (24), which is nec-
essary to derive the effective dissipation rates and occupation
numbers.

To perform the adiabatic elimination, we first consider
the Heisenberg equation of the cavity mode ḋ = i�d −
i
∑

i Gi(bi + b†
i ) − i

∑
i gid (bi + b†

i ). Since the adiabatic con-
tribution to d follows the slow mechanical motion, we
approximate ḋ = 0 to get

d � −
∑

i Gi(bi + b†
i )

|�| + g1

G1

[
∑

i Gi(bi + b†
i )]2

�2
, (E1)

where we expanded the result to first order in gi and used
that G1/g1 = G2/g2. The first term recovers Eq. (24) and the
second term is the leading correction in gi. However, one
can easily see that when substituting Eq. (E1) in the linear
part of the Hamiltonian H0 � −�d†d + ∑

i Gi(d + d†)(bi +
b†

i ) + · · · all the terms proportional to g1 cancel each other.
This is why, in practice, Eq. (24) gives the correct expression
for g211.

To treat the optical reservoir, however, Eq. (E1) is not
sufficiently accurate. Instead of setting ḋ = 0, we perform
a perturbative iteration and compute the leading contribu-
tion to ḋ from the first term of Eq. (E1). We obtain ḋ �
−i

∑
i ωmiGi(bi − b†

i )/�, after using the equation of motion
for the mechanical modes. Finally, substituting ḋ in the equa-
tion of motion of d , we obtain

d �
∑

i Gi(bi + b†
i )

�
−

∑
i ωmiGi(bi − b†

i )

�2
. (E2)

Here we dropped the second term of Eq. (E1), which is justi-
fied when ωmi � gi.

An alternative derivation relies on the Langevin equa-
tion for d , after setting bi = b̃ie−iωit and approximating the
slowly varying operators b̃i as constant. This yields

d �
∑

i

Gi

(
bi

� + ωmi + i κ
2

+ b†
i

� − ωmi + i κ
2

)
+ d̃in, (E3)

where d̃in = −√
κ

∫ t
−∞ dτ din(τ ) exp [(i� − κ

2 )(t − τ )]. In
the limit |�| � ωmi � κ it is justified to neglect the effect
of dissipation and expand Eq. (E3) in powers of ωmi/�, thus
recovering Eq. (E2).

Now we consider the coupling of the optical mode with the
dissipative bath which, consistently with Appendix A, takes
the form

Hdiss,c = −i
√

κ

2πρc

∑
j

[gc, jd
† − g†

c, jd]. (E4)

Using Eq. (E2), we obtain

Hdiss,c = −i
√

κ

2πρc

∑
i=1,2

Gi

�

×
∑

j

[(
1 − ωmi

�

)
(gc, jb

†
i − g†

c, jbi )

+
(

1 + ωmi

�

)
(gc, jbi − g†

c, jb
†
i )

]
, (E5)

which describes the desired interaction between mechanical
modes and the reservoir of the cavity. For a zero-temperature
reservoir, the cooling (heating) processes induced by the sec-
ond (third) line of Eq. (E5) give the transition rates between
Fock states

�
(i)
n→n−1 =

[
γi + κ

G2
i

�2

(
1 − ωmi

�

)2
]

n, (E6)

�
(i)
n→n+1 =κ

G2
i

�2

(
1 + ωmi

�

)2
(n + 1). (E7)

In Eq. (E6) we have included the effect of regular mechanical
damping (at zero temperature). For an interaction of the type
proportional to g†

c, jb
†
i heating by a zero-temperature reservoir

would normally be impossible, due to conservation of energy
(supposing �c, j > 0). However, we recall from the discussion
leading to Eq. (A2) that the gc, j modes are defined in a frame
rotating at the frequency ωl of the driving laser and the fre-
quency �c, j > −ωl can be negative. This fact allows heating
of the mechanical modes by excitation of a negative-frequency
bath mode, which conserves the total energy (in the rotating
frame). In physical terms, we see how this heating process is
ultimately due to the presence of an optical drive, from which
photons can be absorbed to excite the mechanical system.

Finally, we write the rates in Eqs. (E6) and (E7) in terms of
energy dampings κi, which are given by Eq. (29), and average
occupation numbers:

ni =
(

1 − ωmi

|�|
)2(4ωmi

|�| + |�|2γi

κG2
i

)−1

. (E8)

By neglecting ωmi/|�| in the first factor of Eq. (E8), we obtain
Eq. (30). On the other hand, discarding the terms propor-
tional to ωmi/|�| in the damping coefficients κi amounts to
completely neglecting the optical bath, hence the importance
of including the second correction in Eq. (E2). Equivalent
results are obtained by inserting Eq. (E3) in the Langevin
equations of the mechanical modes and extracting from there
the effective parameters.
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