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Subspace-induced Dirac point and nondissipative wave dynamics in a non-Hermitian optical lattice
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We propose a mechanism to achieve real energy spectra via Hermitian subspace in non-Hermitian systems. As
an illustrative example, we investigate a system composed of two identical Su-Schrieffer-Heeger (SSH) chains
connected by a lossy site in each unit cell. Although the system as a whole is non-Hermitian, it is able to support
Dirac points that coexist with exceptional points, exactly exhibiting real eigenenergies. The real spectra and
coexistence of different singularities are inherited from two virtual decoupled subsystems after a transformation
that comprises a Hermitian SSH chain and a non-Hermitian Lieb lattice. Furthermore, we show the two
subsystems both experience topological phase transition by tuning coupling strength, allowing the exploration
of Hermitian and non-Hermitian topological edge modes at the same time. In aid of Hermitian subspace, the
waves could evolve without dissipation depending on initial injection, which contributes to coherent splitters
with locked phase and intensity in two SSH layers. The proposed model can be realized in evanescently coupled
optical waveguide arrays and further extended to other tight-binding systems.
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I. INTRODUCTION

Closed and lossless physical systems are subjected to Her-
mitian Hamiltonians, which guarantee realness of eigenvalue
and conservation of energy. On the other hand, open systems
that underlie material gain or loss or interact and exchange
energy with their surrounding environment are described by
non-Hermitian Hamiltonians, which commonly host com-
plex eigenenergies with imaginary parts corresponding to
growth or decay [1–10]. Their research interest is spearheaded
by parity-time (PT ) symmetry, one of the most important
advances in non-Hermitian physics, leading to real energy
spectra in PT -symmetric phases [11–14]. This surprising
discovery develops our widespread impression that only Her-
mitian operators could exhibit real eigenvalues. However, PT
symmetry is not the only constraint for real spectra. Recent
studies revealed a broader class of symmetry referred to as
pseudo-Hermiticity which stands for a more general con-
dition that ensures real eigenenergies even in the presence
of non-Hermiticity [15–17]. The reality of the spectra is of
great significance since it guarantees the stability of physi-
cal systems despite their non-Hermitian nature. Seeking new
approaches to achieve real spectra in non-Hermitian systems
remains an important issue to explore.

In particular, two kinds of spectral singularities, namely,
Dirac points (DPs) in Hermitian systems and exceptional
points (EPs) in non-Hermitian systems, have attracted tremen-
dous attention since they give rise to counterintuitive physics
and stimulate a lot of applications. At DPs, two energy
bands linearly intersect with each other in the Brillouin zone
[18–21], leading to massless Dirac particles [19,22–29]. DPs
behave as phase transition points of topological matters and

*keshaolin@wit.edu.cn

play an important role in determining the emergence of topo-
logically protected boundary states [30,31]. On the other hand,
at EPs, eigenvalues and eigenvectors simultaneously coalesce,
forming a defective eigenspace, which is in contrast to Hermi-
tian systems with orthogonal eigenstates even at DPs [32–35].
The EPs can be differentiated by their orders, referred to
as second-order EPs with two energy levels coalescing, and
high-order ones with three or more levels coalescing [36–38].
A lot of remarkable phenomena are revealed at EPs or in
their vicinity [9,39–44], such as chiral mode switching [45]
and enhanced sensing [46]. The two kinds of singularities
have a unique dispersion relation near them and thus provide
versatile ways of controlling the propagation of wave packets.
For example, the linear dispersion near DPs can be utilized for
self-splitting without diffraction [22,25]. The flat band near
EPs is useful for collimated propagation [47]. Importantly,
previous works have shown that DPs and EPs are connected.
By incorporating dissipation into a Hermitian system prepared
with DPs, a single DP splits into a pair of EPs or is deformed
into an exceptional ring [48–51].

In this work, we propose the concept of subspace, an
alternative way to introduce real spectra in non-Hermitian
systems, which further enables the appearance of DPs and
EPs at the same time and the exploration of Hermitian and
non-Hermitian topological edge modes in a single system.
We design a suitable system, whose subspaces are decou-
pled into a Hermitian Su-Schrieffer-Heeger (SSH) model and
a non-Hermitian Lieb lattice [32,52–54]. By adjusting the
dissipation, two second-order EPs (EP2) coalesce into a third-
order one (EP3) without affecting DPs present in the system.
Moreover, we analyze the symmetry of the whole system and
its subspaces and further explore the topological edge modes
in this system. The bulk-edge correspondence is well figured
out based on Majorana’s stellar representation (MSR) [55,56].
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FIG. 1. Schematic of the non-Hermitian tight-binding model and band structures. (a) The proposed lattice composed of two identical SSH
(blue) chains is connected by a lossy site (red) per unit cell. (b,c) are the real and imaginary parts of band structures in the entire system
with t = s = 1, r1 = r2 = √

2/2, and γ = 2. (d,g) are the two subspaces, corresponding to a virtual Hermitian SSH lattice and a virtual
non-Hermitian Lieb lattice, respectively. (e,f) are the real and imaginary parts of band structures in a SSH chain with t = s = 1. (h,i) show
Re(E ) and Im(E ) in the Lieb lattice with t = s = 1, R = 1, and γ = 2.

The existence of Hermitian subspace yields nondissipative
wave dynamics, which can be utilized for creating coherent
splitters that have locked phase and amplitudes at correspond-
ing sites. Finally, we provide a feasible experimental design
by exploiting optical coupled waveguides with performing full
wave simulation.

II. COEXSISTENCE OF DIRAC AND EXCEPTIONAL
POINTS

Figure 1(a) schematically shows the proposed tight-bind
-ing model with each unit cell containing five sites labeled
with symbols a−e. The quasi-one-dimensional (1D) lattice
can be regarded as two equivalent SSH chains indirectly
coupled through an additionally lossy chain with on-site dis-
sipation iγ . The intra- and intercell couplings in the upper
and lower chains are identical, which are marked as t and
s, respectively. The couplings between the connected lattice
sites and two SSH chains are signified by r1 and r2. Then, the
Hamiltonian in real space is given by

H =
∑

n

[t (a†
nbn + c†

ndn) + s(b†
nan+1 + d†

n cn+1)

+ r1a†
nen + r2c†

nen + H.c.] +
∑

n

iγ e†
nen. (1)

This model was previously used in a Hermitian case to
manipulate spectra of bound and bulk modes to generate the
bound state in the continuum [57]. The Bloch Hamiltonian in
the momentum space is figured out by using Fourier transfor-
mation, which reads as

H (k) =

⎛
⎜⎜⎜⎜⎝

0 t + se−ik 0 0 r1

t + seik 0 0 0 0
0 0 0 t + se−ik r2

0 0 t + seik 0 0
r1 0 r2 0 iγ

⎞
⎟⎟⎟⎟⎠,

(2)
with k representing the Bloch momentum. The system is non-
Hermitian in the sense that H†(k) �= H (k) with nonvanished
on-site loss iγ , which dramatically hosts real and complex
band structures at the same time. We show one typical case
as the parameters are chosen as t = s = 1, r1 = r2 = √

2/2,
and γ = 2. Figures 1(b) and 1(c) plot the real and imaginary
parts of the band structures, respectively. There are a total of
five energy bands in the system. The two dashed red lines are a
real band in the entire Brillouin zone; they linearly touch each
other at k = ±π , implying the appearance of DPs (gray filled
circles). In addition, the system also supports three complex
energy bands plotted by blue dotted lines. The EPs (green
stars) appear in pairs at kEP ≈ ±0.91 π , which are the branch
points of band structures with two band of Re(E ) and Im(E )
coalescing at the same time. Re(E ) becomes degenerate and
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flat outside two EPs (|k| > |kEP|) and dispersive inside them
(|k| < |kEP|). In contrast, two band of Im(E ) are degenerate
as |k| < |kEP| and separated as |k| > |kEP|. The system also
supports a third band with flat Re(E ) and maximum Im(E )
through the whole Brillouin zone. This flat band also collapses
with another band at k = ±π under the parameters we choose,
giving rise to another pair of EPs which are not discussed in
detail. Therefore, the proposed system simultaneously permits
the emergence of DPs and EPs.

The coexistence of two kinds of degeneracies can be well
explained by block diagonalizing the Hamiltonian H(k) using
transformation HB(k) = U −1H (k)U . Then, we arrive at

HB(k) =

⎛
⎜⎜⎜⎜⎝

0 t + se−ik 0 0 0
t + seik 0 0 0 0

0 0 0 t + se−ik R
0 0 t + seik 0 0
0 0 R 0 iγ

⎞
⎟⎟⎟⎟⎠,

(3)

with the transfer matrix given by

U = 1

R

⎛
⎜⎜⎜⎝

−r2 0 r1 0 0
0 −r2 0 r1 0
r1 0 r2 0 0
0 r1 0 r2 0
0 0 0 0 R

⎞
⎟⎟⎟⎠, (4)

and R = (r1 + r2)1/2. The upper left 2 × 2 and lower right 3 ×
3 matrixes are completely decoupled from each other because
the coupling between them is vanished. Consequently, the
original system can be separated into two virtual subsystems
HSSH and HLieb, corresponding to a Hermitian SSH lattice
(H†

SSH = HSSH) and a non-Hermitian Lieb lattice (H†
Lieb �=

HLieb), which are illustrated in Figs. 1(d) and 1(g), respec-
tively. When r1 = 0, the upper SSH chain is surely decoupled
from the two lower chains. However, they are the two chains
on the basis of real sites |a〉, |b〉, |c〉, |d〉, |e〉, not the two
decoupled subsystems we refer to here. In fact, the trans-
fer matrix U will change the basis of the Hamiltonian. The
basis of the transferred Hamiltonian HB is virtual supersites
|a′〉, |b′〉, |c′〉, |d ′〉, |e′〉. The two kinds of basis are linearly
dependent on each other.

The concept of subspace was previously utilized to im-
plement bound states in the continuum [57], the square root
of topological insulators [58–62], and the coexistence of
extended and Anderson localized states in the presence of
disorders [63]. Here, we show the two subsystems inde-
pendently support DPs and EPs, which are transparent, by
calculating their eigenvalues. The eigenvalues of HSSH are
E±

SSH = ±
√

t2 + s2 + 2tscos(k). The DPs take place at the
Brillouin edge (k = ±π ) as t = s, as shown in Figs. 1(e) and
1(f). The eigenvalues of the virtual Lieb lattice are plotted
in Figs. 1(h) and 1(i), which are the same as that of the
complex bands in Figs. 1(b) and 1(c) with EPs appearing
at k = ±kEP. Specifically, the coupling in the Lieb lattice is
not independent of that in the SSH chain, while the on-site
dissipation is independent. Consequently, we can adjust the
dissipation to achieve EPs after DPs are prepared. The trans-
formation between H and HB does not change the eigenvalues,

but rotates the eigenvectors. The band structures of the en-
tire system are a direct combination of two Hermitian and
non-Hermitian subsystems. Moreover, as the matrix U is uni-
tary (U † = U −1), the orthogonality of eigenvectors remains
unchanged after transformation. Therefore, the entire system
inherits the nature of the Hermitian and non-Hermitian sub-
spaces, allowing the coexistence of DPs and EPs.

Whether the energy bands are Hermitian or not can be fur-
ther verified by calculating the phase rigidity of the respective
bands, defined as

pn(k) =
∣∣∣∣ 〈�n(k)|�n(k)〉
〈�n(k)|�n(k)〉

∣∣∣∣. (5)

〈ψn(k)| and |�n(k)〉 denote the left and right eigenvec-
tors of the nth energy band at momentum k, which
satisfy H†(k)|�n(k)〉 = E∗

n (k)|�n(k)〉 and H (k)|�n(k)〉 =
En(k)|�n(k)〉, respectively. Phase rigidity characterizes the
mixture of different states. At EPs, the two states are perfectly
mixed as a result of the collapse of the eigenvectors, resulting
in vanished phase rigidity. In contrast, phase rigidity is unitary
when the system is Hermitian. As shown in Fig. 2(a), we plot
the phase rigidity of each band as a function of Bloch momen-
tum. The first and second bands remain unitary throughout the
Brillouin zone, implying their Hermitian nature. Therefore,
the degeneracies at k = ±π are Hermitian DPs. In contrast,
one can see p3 = p5 = 0 at k ≈ 0.91 π , indicating the appear-
ance of EPs. By the way, we also have EPs as p4 = p5 = 0 at
k ≈ π , which is consistent with the discussions about Fig. 1.
To sum up, we have constructed a non-Hermitian system
hosting DPs and EPs at the same time, which stem from the
coexistence of Hermitian and non-Hermitian subspaces.

The decomposition of the whole system into a Hermitian
and a non-Hermitian subsystem may be explained by pseu-
dochirality, which is also referred to as non-Hermitian chiral
symmetry or pseudo-anti-Hermitian symmetry [16,32,64],

UPCH (k)U −1
PC = −H†(k), (6)

with UPC = diag(–1, 1, –1, 1, 1). This symmetry leads to
a constraint on eigenvalues and eigenstates as H (k)
UPC|�(k)〉 = −UPCH†(k)|�(k)〉 = −E∗UPC|�(k)〉. This in-
dicates UPC|�(k)〉 is also an eigenstate of H with eigenvalues
of −E∗. As a result, the eigenvalues are either purely imagi-
nary numbers (symmetric phase) or occur in pairs () (broken
phase). Furthermore, the conjugate pair allows two different
conditions with E1 = a, E2 = –a or E3 = a + bi, E4 = –a +
bi, a, b ∈ R. For our five-band non-Hermitian system, the
more specific situation is listed in Table I.

The pseudochirality permits a subspace with two real
eigenvalues, which may be Hermitian on the condition that
the associated eigenvectors are orthonormal to each other,
〈�1|�2〉=〈�1|Uor occur in pairs|�1〉= 0, or the left and right
eigenstates belonging to the same eigenvalues are equal,
|�1,2〉=|�1,2〉. We now show this subspace is indeed a Hermi-
tian one according to the rank-nullity theorem argument [57],
which indicates there must be a Hermitian SSH subsystem.
When the interchain coupling (r1 = r2 = 0) is absent, the
system supports two degenerate bands similar to SSH chains
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FIG. 2. Phase rigidity and third-order exceptional points. (a) Phase rigidity for different band structures corresponding to Fig. 1. (b,c)
are the real (upper panel) and imaginary parts (lower panel) of band structures for different on-site loss. (b) γ = 1.96i. (c) γ = 1.84i. Other
parameters are kept unchanged compared to Fig. 1.

E±
SSH. Then, after a transformation, the Hamiltonian in the

basis of eigenvalues reads as

h(k) = X −1H (k)X

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E+
SSH 0 0 0 r1ρ

∗√
2

0 E+
SSH 0 0 r2ρ

∗√
2

0 0 E−
SSH 0 − r1ρ

∗√
2

0 0 0 E−
SSH − r2ρ

∗√
2

r1ρ√
2

r2ρ√
2

− r1ρ√
2

− r2ρ√
2

iγ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where

X = 1√
2

⎛
⎜⎜⎜⎜⎝

ρ 0 −ρ 0 0
1 0 1 0 0
0 ρ 0 −ρ 0
0 1 0 1 0
0 0 0 0

√
2

⎞
⎟⎟⎟⎟⎠, (8)

and ρ = (t + se−ik )/E+
SSH. The two terms E±

SSH are coupled
to the lossy site iγ with C+ = (r1ρ, r2ρ )/

√
2 and C− =

−(r1ρ, r2ρ)/
√

2. It is easy to find two eigenvectors of the
Hamiltonian h(k); that is, |�+〉 = (φ1 φ2 0 0 0)T

and |�−〉 = (0 0 φ3 φ4 0)T with eigenvalues E =
E±

SSH. It is obvious that the two eigenvectors are also orthog-
onal to each other; namely, 〈�+|�−〉 = 0. Consequently, the
proposed indirectly coupled SSH chain always sustains a set
of Hermitian SSH bands regardless of the loss present in the
immediate chain. More physically, the rank of C± indicates
the effective coupling channels to other parts [57]. There is
only one channel present in the system such that only one set

TABLE I. The eigenvalues E of the five sites non-Hermitian
system.

PC-symmetric phase PC-broken phase

E1 = –E2, E1,2 ∈ R E1 = –E2, E1,2 ∈ R
E3,4 ∈ iR E3 = −E∗

4

E5 ∈ iR E5 ∈ iR

of E = E±
SSH is lifted and the other set survives. To sum up, our

proposed non-Hermitian system always sustains a Hermitian
SSH subsystem.

We also discuss the symmetry of two decoupled sub-
systems, namely, the virtual SSH and non-Hermitian Lieb
chains. The SSH chain has chiral symmetry σzHSSH(k)σz

−1 =
−HSSH(k) with σz denoting the Pauli matrix. This symmetry
leads to the appearance of paired eigenvalues (E , −E ), quan-
tized Zak phase, and zero-energy topological edge modes in
the SSH chains. On the other hand, the virtual Lieb lattice
also respects PC symmetry, 
PCHLieb(k)
−1

PC = −H†
Lieb(k),

with 
PC = diag(1, –1, −1). In addition to leading to paired
eigenvalues (E ,−E∗), this symmetry promises the stable EP3
in two dimensions composed of parameter space. Accord-
ing to [64], we construct a characteristic polynomial, Pλ =
det[HLieb(λ) − E ]. EP3 appears when the determinant of the
first- and second-order resultant vector are vanished, that is,
Rj (λ0) = (−i)n(n− j)RP,P( j) . By solving the equation, we can
figure out the condition for EP3:

γ = ±3
√

3
√

t2 + s2 + 2ts cos k,

R = ±2
√

2
√

t2 + s2 + 2ts cos k. (9)

As t = s, Eq. (9) reduces to k= ± arccos( r2

16t2 − 1), γ= ±
3
√

3R
2
√

2
. Figures 2(b) and 2(c) plot the numerical band structures

as t = s for different on-site dissipation. As γ increases, the
two EP2’s get closer. At γ = 1.84, they collapse into EP3 at
k = ±0.89 π , accommodated with the condition indicated by
Eq. (9).

III. NONDISSIPATIVE WAVE DYNAMICS

Now we show that the characteristics of Hermitian and
non-Hermitian subspaces can be reflected from wave dynam-
ics by suitably choosing an initial wave packet to stimulate
them. The state at time t f relates to initial state ti as |�t f 〉 =
T exp[−i ∫t f

ti Hdt]|�ti〉 with T denoting the time ordering
product. We use the Crank-Nicolson approximant to calculate
the time-evolution operator

exp [−iH�t] = 1 − iH�t/2

1 + iH�t/2
+ O(�t3). (10)
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Time (units of 1/t) Time (units of 1/t)

Time (units of 1/t) Time (units of 1/t)

FIG. 3. Wave dynamics for Hermitian and non-Hermitian subspaces. (a–c) are for the Hermitian subspace as waves are launched from the
two upper and lower layers at the same time. (a) shows the field intensity for beam excitation as ϕ0 = π , where ϕ0 denotes the phase difference
between adjacent sites. (b) plots the evolution of total power corresponding to (a). (c) shows the output field distributions as ϕ0 is varying.
(d–f) are for non-Hermitian subspaces with waves launched from the middle lossy layer. In all cases, the Gaussian width of the beam envelope
is w0 = 20.

Then the wave propagation in time can be numerically
figured out according to the coupled mode equation. In Fig. 3
, we launch wave beams from sites a and c with opposite am-
plitudes (upper and lower two layers) under a Gaussian packet
given by an = r2e−n2/w2

0 einϕ0 and cn = −r1e−n2/w2
0 einϕ0 , where

ϕ0 and w0 are the initial phase difference and beam width,
respectively. The phase difference is to arouse the Bloch mode
near k = ϕ0. In this way, the virtual SSH chain is excited since
the supersites between SSH and original lattices are related as

|a′〉 = (−r2|a〉 + r1|c〉)/R,

|b′〉 = (−r2|b〉 + r1|d〉)/R. (11)

Figure 3(a) shows the wave evolution as the initial phase
difference of the wave packet is ϕ0 = π . The beam width is
fixed at w0 = 20. The wave propagation direction is deter-
mined by the group velocity and is figured out to be θ (ϕ0) =
−arctan(∂E/∂k) [65]. At ϕ0 = π , the Bloch modes around
the DPs are stimulated where the energy bands of SSH are ap-
proximated to be E ≈ ±t (π–k). The band structure is linear in
the vicinity of the DPs and the group velocity is not certainly

defined due to the intersection of two band structures. As a
result, light splits into two beams with a fixed beam width,
as shown in Fig. 3(a), where the self-splitting phenomenon
appears in both the first and third layers without any energy
residing in the middle lossy layer. In addition, the total power
of the system remains constant during the propagation, as
depicted in Fig. 3(b). We further illustrate the output intensity
profiles as a function of the phase difference of the initial
wave packet in Fig. 3(e). The output profiles display a si-
nusoidal curve, fairly coincident with the cosine feature of
band structures of the SSH model. By selectively stimulating
different sites at the initial condition, we present the self-
splitting and collimated beam propagations, which correspond
to the typical characteristics of DPs and EPs, respectively.
According to Eq. (11), the Hermitian counterpart can also be
stimulated if waves are injected from sites b and d with op-
posite amplitudes and also from the four sites with the proper
combination.

We now launch waves from the lossy sites e from the
middle layer with a Gaussian envelope to stimulate the non-
Hermitian subspace. The supersites of the virtual Lieb lattice
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FIG. 4. Nondissipative wave dynamics via Hermitian subspace where waves are illuminated from the upper layer. (a) is the field intensity
for the excitation of Gaussian beam with phase difference ϕ0 = π . (b) is the field intensity for single-site excitation. (c,d) are the evolution of
total power corresponding to (a,b), respectively. Other parameters are the same as that used in Fig. 3.

relate to the original model as

|c′〉 = (r1|a〉 + r2|c〉)/R,

|d ′〉 = (r1|b〉 + r2|d〉)/R,

|e′〉 = |e〉. (12)

The virtual supersite |e′〉 is the same as the real site |e〉.
In this case, only the virtual non-Hermitian Lieb lattice is ex-
cited. We plot one typical wave propagation ϕ0 = π , as shown
in Fig. 3(d). The intensity is normalized to clearly present
the intensity distribution. Since the group velocity is zero, the
center of the beam remains unchanged during the evolution,
in contrast to the split beams of the Hermitian case as ϕ0 = π .
On the other hand, the total energy for this excitation expo-
nentially decreases, clearly demonstrating its non-Hermitian
characteristics, as shown in Fig. 3(e). Furthermore, EPs can be
probed from the evolution profiles. As illustrated in Fig. 3(f),
we plot the output intensity profiles, as the evolution time is
20(units of 1/t), as a function of the phase difference of the
initial wave packet. On the edge of the Brillouin zone, the
real part of the band structure is flat outside the two EPs,
resulting in collimated propagation, and thus the center of
the output fields remains at the center. Within the range of
two EPs, the waves split into two separated beams except
ϕ0 = 0. The output profiles exhibit distinct boundaries, which
are differentiated by EPs.

The coexistence of Hermitian and non-Hermitian sub-
spaces raises a significant physical consequence, giving rise
to stable and nondissipative wave dynamics that has locked
phase and amplitudes at two SSH layers. Figures 4(a) and
4(b) show the wave propagations for beam and single-site
injections, respectively. In both cases, the waves are launched
from the upper layer. Other parameters stay unchanged, as that

used in Fig. 3. For the injection of the Gaussian beam with
phase difference ϕ0 = π , waves split into two beams without
diffraction at the upper layer [Fig. 4(a)]. At the same time, a
similar image as the upper layer is automatically formed at the
lower layer. For single-site injection, we also see two similar
patterns (known as discrete diffraction) formed at upper and
lower layers [Fig. 4(b)]. This self-imaging phenomenon is a
result of the existence of Hermitian subspace. In Figs. 4(c)
and 4(d), we plot the total energy versus time corresponding
to Figs. 4(a) and 4(b). In both cases, the energy decreases
first and then remains stable without decay. Considering the
Hermitian and non-Hermitian subspaces are completely de-
coupled, an injection will result in definite amounts of energy
in respect to the two subsystems. The energy in the non-
Hermitian subsystem will be completely decayed without
affecting the amount of energy in the Hermitian subspace. As
a result, the total energy will become stable after long enough
evolution [Figs. 4(c) and 4(d)]. In addition, a supersite of a
virtual Hermitian subspace relates to two real sites according
to Eq. (11). Hence, the waves at corresponding sites in the
upper and lower layers always differ by a phase π and their
amplitudes are determined by the relation between supersites
and real sites, which can be further controlled by interchain
couplings r1 and r2.

IV. TOPOLOGICAL EDGE MODES

The coexistence of two subspaces furthermore enables
the investigation of Hermitian and non-Hermitian topological
edge modes in a single system. The topological property of
the whole system originates from its two virtual subsystems,
which bulk-edge correspondence inherits that from the virtual
Hermitian SSH model and the non-Hermitian Lieb lattice. The
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FIG. 5. The bulk-edge correspondence of the virtual Lieb lattice using MSR. (a,b) are the real and imaginary parts of the energy spectrum
for a finite chain as a function of coupling s, respectively. We set t = 1, R = 1, and γ = 1. (c) The eigenvalues of supermodes in nontrivial
phase (t = 1, s = 4). The blue circles and red dots represent Re(E ) and Im(E ), respectively. (d) Mode profiles plotted as a function of mode
number. (e–g) are MSs on Bloch spheres in the topological, transition, and trivial phases.

standard Hermitian SSH model was well studied in previous
works, where the topological phase transition emerges at the
DPs as t = s. As intercell coupling exceeds intracell coupling
(t < s), the system is in the topological nontrivial phase, sup-
porting two zero-energy edge modes under open boundary
conditions. In contrast, as t > s, there are no edge modes
under open boundary conditions because the system is in the
trivial phase.

We now study the bulk-edge correspondence for the Lieb
lattice based on MSR. The results show that the topologi-
cal phase transition is only determined by the relative value
of coupling of t and s, irrespective of interchain coupling
r1, r2 or on-site loss. In Figs. 5(a) and 5(b), we plot the
eigenvalue spectra of the Lieb lattice as coupling s is varied.
Other parameters are fixed at t = 1, R = 1, γ = 1 and the
total number of sites is N = 30. As s/t > 1, a pair of edge
modes appears in the upper and lower band gaps of Re(E ).
For the parameters given in Fig. 5, their eigenvalues are
E = ±0.866 + 0.5i. In addition, there is always a flat band
in the real part of the spectrum, which further supports a
topological edge mode with zero energy as s/t > 1. To clearly

see edge modes, we plot the eigenvalues for the open chain
in the nontrivial phase as s/t = 4. The two modes with E =
± 0.866 + 0.5i (mode number N = 10 and 21) reside in the
band gap. An edge mode with energy E = 0 (mode number
N = 15) lies in the flat band, which can be distinguished
from their imaginary part of the energy. In addition, the edge
modes can also clearly be reflected from distributions of mode
profiles, as shown in Fig. 5(d) where the tenth and 21st modes
are confined at the left edge and the 15th mode resides at the
right termination.

We now utilize MSR to reveal the bulk-edge correspon-
dence of this non-Hermitian Lieb lattice by mapping the
eigenstates of a Bloch Hamiltonian as a set of stars on Bloch
sphere. The Majorana stars are determined by a polynomial
equation for the complex variable x [55,56],

2L∑
l=0

(−1)lC2L−l+1√
(2L − l )!l!

x2L−l = 0, (13)

where L = (n–1) with n denoting the number of energy
bands; Ci represents the component of the right eigenvec-
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FIG. 6. Topological edge modes in the whole systems and their evolution. (a,b) are the eigenvalue spectra and field distributions,
respectively. The parameters are t = 1, s = 4, r1 = r2 = √

2/2, and γ = 1. (c,d) are the evolution of edge modes where the waves are launched
from (c) the left lossless site a and (d) the left lossy site e from the upper layer. (e) plots the time-varying amplitudes at the first site at the
upper and lower layers. (f) plots the ratio of output amplitude of the upper layer to that of the lower layer as interlayer coupling is varied. The
total evolution time is set to be t = 20.

tors, |�n〉 = [C1 C2 · · · Ci]T . For our three-band (n =
3) system, we get two roots of x and then determine two
Majorana stars (MSs) according to x = tan(θ/2) exp(iφ) with
(1, θ , φ) signifying the coordinates on the Bloch sphere. By
continuously varying Bloch momentum k, we arrive at full
representation of the MS, which generally forms a closed
loop.

The different topological phases can be directly viewed
through MSR depending on whether they encircle the z axis
that connects the north and south poles. Figures 5(e) and 5(f)
show three typical cases of MSR for different couplings s.
In the topologically nontrivial phase as s > t , there are three
loops encircling the z axis [Fig. 5(e)]. At the transition point,
we see some loops just pass through the north or south poles
[Fig. 5(d)]. In the trivial phase as s < t , all loops exclude the z

axis. The topological invariant can be defined by the azimuthal
winding number of each energy band [55]:

υ = − 1

2π

2∑
m=1

∮
∂kφm(k)dk, . (14)

The number of topological edge modes under open bound-
ary conditions is equal to the summation of all winding
numbers. In the Lieb chain, the total winding number va = 3
as three loops encircle the z axis in the nontrivial phase,
equaling the number of edge modes. Therefore, the phase
transition point and the number of edge modes are indicated
by MSR, constructing the bulk-edge correspondence in our
system.

The above discussions show that both virtual subsystems
experience topological phase transition at t = s. Then we can
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easily figure out the topological property of the total system,
whose phase transition point is also t = s and supports five
edge modes, the summation of the number of edge modes
in the two subsystems. In Fig. 6(a), we plot the eigenvalues
for the open chain in the nontrivial phase as t < s. The total
number of lattice sites is N = 50. The spectrum hosts two
dispersive energy bands with a vanished imaginary part of
eigenvalues. We can also see a lossy band with flat Re(E )
isolated from the dispersive bands. Figure 6(b) shows the field
distributions of all modes, arranged by the real part of the
energy. There are five topological edge modes supported in
the system. Two edge modes with E = 0 (N = 20 and 31)
stem from the Hermitian subspace, which are localized at
both sides of the system due to chiral symmetry. In addition,
there is another set of edge modes originating from the virtual
Lieb lattice. The spatial profile of the zero-energy edge mode
(N = 25) is accumulated at the right boundary and has van-
ished amplitudes residing on lossy sites. The other two modes
with E = ± 0.866 + 0.5i(N = 19 and 32) are in the band
gap. They are confined at the left termination of the system
and some fields are distributed at lossy sites.

We now study the wave dynamics of Hermitian and non-
Hermitian edge modes, which can be separately stimulated
by choosing suitable initial excitation. Figures 6(c) and 6(d)
present the wave evolution for different initial conditions as
waves are injected from a single site. When waves are injected
from the lossy site e at the left termination of the middle layer,
as shown in Fig. 6(c), the two edge modes from the non-
Hermitian subspace are stimulated. In this case, we observe

a breathing, beating intensity profile with beating length L =
2π/Re(�Eedge) ≈ 3.63. The field intensity decreases during
the evolution since these modes have imaginary parts of eigen-
values. In Fig. 6(d), we launch waves from the left site a in
the upper layer. In this case, the two zero-energy edge modes
from the Hermitian subspace are excited. We can see some
waves are confined at the left edge in both of the upper and
lower layers with uniform intensity while some experience
diffraction during the propagation. After enough evolution
time, the energy in the upper and lower two layers becomes
stable without dissipation. In Fig. 6(e), we plot the amplitudes
of waves at the first sites in the upper and lower two layers.
It clearly shows that the amplitudes firstly decrease and then
remain unchanged as the time becomes larger than 5. Since the
interlayer coupling is r1 = r2, the stable amplitudes for two
layers are equal with negative opposite signs, implying they
are of antiphase. We refer to this phenomenon as the coherent
splitters since the waves in the two layers automatically have
locked phase and amplitudes that are independent of evolution
time. The underlying mechanism relies on the relation be-
tween virtual supersites and real sites. According to Eq. (11),
the wave amplitude of supersite |a′〉 in the Hermitian subspace
leads to certain amplitudes in real sites |a〉 and |c〉 determined
by interchain coupling –r1 and r2, which can be further uti-
lized to control output amplitudes. As shown in Fig. 6(f), we
plot the ratio of amplitudes between the upper and lower lay-
ers (first site) at the output (time is 20) as interchain coupling
r2 is varied. The ratio linearly increases with r2/r1 and the
amplitudes in different layers are always out of phase.
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FIG. 8. Simulations of energy spectrum and edge dynamics. (a,b) show the energy spectrum of the trivial and nontrivial arrays, respectively.
(c,d) are the evolution of edge states of different subspaces by exciting the e and a single sites. The parameters are dx1 = 4.375 μm, dx2 =
5.6 μm, dy = 5.775 μm in (a) and dx1 = 5.6 μm, dx2 = 4.375 μm, dy = 5.775 μm in (b–d). Other parameters are the same as in Fig. 7.

V. OPTICAL DESIGN OF WAVEGUIDE

The proposed theoretical model can be realized in coupled
waveguide arrays, which are schematically shown in Fig. 7(a)
with each unit cell containing five-cylinder waveguides. The
light waves propagate along the z direction. The evolution of
waveguides is determined by the Helmholtz equation [8,66],

[∇2 + k2
0ε(x)

]
�(x, z) = 0, (16)

where �(x, z) represents the field amplitude, k0 denotes the
wave vector in free space, and ε(x) is the relative permittiv-
ity. In the weakly coupling regime where the spatial spacing
between neighboring waveguides considerably exceeds the
mode width of the single waveguide, the system is subjected
to a tight-binding model [8]. In the simulation, the refractive
index of the background dielectric is n0 = 3.5. The radius of
the cylinder waveguide is w = 1.2 μm with refractive index
ncore = 3.52. The connecting waveguide at the middle row is
lossy with the imaginary part of the refractive index being

Im(ncore ) = 1.15 × 10–4. We assume the incident wave is at
the communication band with λ = 1.55 μm. Under these pa-
rameters, the effective refraction of each individual waveguide
is figured out to be neff = 3.5071 with two degenerate ground
modes which have different polarizations. All the simulations
are performed in COMSOL MULTIPHYSICS. The two degenerate
modes are generally uncoupled. For simplicity, we consider
the array has a homogeneous spatial spacing with the spacing
along the x and y directions being dx = dy = 7 μm, corre-
sponding to relative coupling strength t = s = r1 = r2. The
simulated results of band structures are shown in Figs. 7(b)
and 7(c), which are accommodated with the tight-binding
model shown in Fig. 1. The two bands that stem from the Her-
mitian subspace have vanished Im(E ), while DPs appear at
the edge of the Brillouin zone (k = ±π ). We also see Re(neff )
and Im(neff ) of the other three complex bands almost coalesce
at k = ±0.89 π . The results clearly demonstrate the coexis-
tence of DPs and EPs. Figure 8 shows us the energy spectrum
of the trivial and nontrivial conditions and the intensity
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distributions of edge states at different propagation distances.
The array comprises ten unit cells with open boundaries.
The trivial arrays have an intracell distance dx1 = 4.375 μm,
intercell distance dx2 = 5.6 μm, and the interchain distance
dy = 5.775 μm. Other parameters are the same as those in
Fig. 7(b). We swap intracell distance with intercell distance
in the nontrivial arrays; other parameters remain unchanged.
We can see that the energy spectra in Fig. 8(b) fit well with
that in Fig. 6(a). We also plot the energy spectra of the
trivial arrays in Fig. 8(a) which are consistent with the nu-
merical results. The dynamics of the boundary states at the
a and e sites at the leftmost of the arrays is stimulated. We
get the field distributions with a series of evolution lengths
increasing gradually from 0 to 15 mm with an interval of
2.5 mm. The propagation of the edge states in Figs. 8(c)
and 8(d) is consistent with that in Figs. 6(c) and 6(d), re-
spectively. When the e site is excited, the energy decreases
during the evolution and a breathing, beating phenomenon
is clearly shown. When the a site is stimulated, the field
intensity decreases with the propagation distance increasing
until the distance arrives at 12.5 mm approximately. After this
point, the energy remains equal in the a and c sites. There-
fore the edge mode from the Hermitian and non-Hermitian
subspaces can be stimulated by different stimulation
ways.

VI. CONCLUSIONS

In conclusion, we have shown that a non-Hermitian
system, which is composed of two identical SSH chains in-
directly coupled through a lossy chain, can be divided into
two completely decoupled virtual subsystems comprising a
Hermitian SSH chain and a non-Hermitian Lieb lattice. In
aid of Hermitian subspace, the system is able to sustain real

spectra despite its non-Hermitian nature. Since the dissipation
present in the system only affects the non-Hermitian subspace,
we can engineer two subsystems independently, allowing the
coexistence of DPs and EPs. The two different kinds of sin-
gular points have unique band structures near them and thus
provide versatile approaches to controlling the propagation
of wave packets, such as diffractionless self-splitting beams
and collimated wave propagations. In addition, we show the
two subsystems both undergo an identical topological phase
transition, which allows us to explore Hermitian and non-
Hermitian topological edge modes in a single system. As a
potential application, we propose a coherent splitter that has
locked phase and amplitudes at corresponding sites due to
the decoupling between Hermitian and non-Hermitian subsys-
tems. A recent study has demonstrated that a Dirac cone arises
in a non-Hermitian system with both gain and loss which have
pseudo-Hermiticity and anti-PT symmetries at the same time
[67]. The major advantage of our approach is that DPs can
be acquired in a passive platform without the necessity of any
gain medium. We perform full wave simulation and show the
proposed model can be realized in an evanescently coupled
optical waveguide. The proposed mechanism is valid for other
tight-binding systems and its extension to multiple chains
and high- dimensional systems is also possible, which may
develop alternative directions for exploring non-Hermitian
physics.
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