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Nonlinear quantum behavior of ultrashort-pulse optical parametric oscillators
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The quantum features of ultrashort-pulse optical parametric oscillators (OPOs) are investigated theoretically in
the nonlinear regime near and above threshold. Viewing the pulsed OPO as a multimode open quantum system,
we rigorously derive a general input-output model that features nonlinear coupling among many cavity (i.e.,
system) signal modes and a broadband single-pass (i.e., reservoir) pump field. Under appropriate assumptions,
our model produces a Lindblad master equation with multimode nonlinear Lindblad operators describing
two-photon dissipation and a multimode four-wave-mixing Hamiltonian describing a broadband, dispersive
optical cascade, which we show is required to preserve causality. To simplify the multimode complexity of
the model, we employ a supermode decomposition to perform numerical simulations in the regime where the
pulsed supermodes experience strong single-photon nonlinearity. We find that the quantum nonlinear dynamics
induces pump depletion as well as corrections to the below-threshold squeezing spectrum predicted by linearized
models. We also observe the formation of non-Gaussian states with Wigner-function negativity and show that the
multimode interactions with the pump, both dissipative and dispersive, can act as effective decoherence channels.
Finally, we briefly discuss some experimental considerations for potentially observing such quantum nonlinear
phenomena with ultrashort-pulse OPOs on nonlinear nanophotonic platforms.
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I. INTRODUCTION

Ultrashort-pulse optical parametric oscillators (OPOs)
have become established as an ideal test bed for the gen-
eration and manipulation of coherent nonlinear interactions
among many optical frequency modes at once. In the classical
domain, pulsed OPOs are used to generate frequency combs
for applications in molecular spectroscopy and atomic clocks
[1–4], and the strong temporal confinement of the field facili-
tates efficient nonlinear optics [5]. In quantum experiments,
they have been synchronously pumped below threshold to
generate multimode squeezed light [6–8]. Because their quan-
tum states intrinsically reside in a multimode Hilbert space
of high dimensionality, they are also being investigated as a
resource for optical quantum information processing [9–13].

Many of the quantum features of pulsed OPOs are inherited
from their single-mode continuous-wave (cw) counterparts,
including squeezing [14], non-Gaussian state generation [15],
and their applications to quantum information and communi-
cation [16,17]. Quantum input-output theory, which describes
open quantum system dynamics using master equations in
Lindblad form [18–20], has been pivotal in elucidating the
properties of cw OPOs. This framework makes numerical
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simulation tractable by reducing the OPO physics to the
dynamics of a single internal mode interacting with a white-
noise reservoir [21,22]. As a result, a number of sophisticated
techniques, from quantum measurement and feedback to
quantum coherent control [20,23], have been applied to the
analysis of cw OPO dynamics and networks [24,25].

In this context, it is interesting to ask whether quantum
input-output theory can be applied to pulsed OPOs as well. At
first glance, such a theory appears intractable due to the large
number of internal cavity modes (typically 104−105). Never-
theless, such a construction was successfully demonstrated by
Refs. [26–28] for synchronously pumped OPOs (SPOPOs). A
key technique employed in these seminal papers was to recast
the multimode input-output model into a low-dimensional
supermode basis [11,29] over the signal resonances. This con-
cise description enabled a detailed analysis [26–28] of the
multimode Gaussian states produced in table-top SPOPOs,
which, as experimentally demonstrated in Ref. [6], manifest
as rich, highly entangled optical networks.

On the other hand, non-Gaussian states can arise in sys-
tems with nonlinear dynamics, provided sufficiently strong
single-photon nonlinearities. For instance, cw OPOs in the
deeply quantum regime have been theoretically predicted to
produce Schrödinger cat states [15], which can form the basis
for schemes in quantum computation [30,31] and quantum-
enhanced metrology [31,32]. Though this regime has thus
far only been accessible in exotic quantum systems such as
in atom-cavity [33] or superconducting-circuit [34] quantum
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electrodynamics, recent rapid advances in thin-film integrated
nanophotonics suggest single-photon nonlinearities may soon
also be accessible with all-optical (i.e., χ (2) or χ (3)) non-
linearities, due to the strong spatial confinement of light
into subwavelength nonlinear waveguides [35–37]. Combined
with the promising potential of these platforms to support
advanced dispersion engineering (and hence strong temporal
confinement as well) [38,39], ultrashort-pulse SPOPOs ex-
hibiting few-photon nonlinear quantum dynamics appear to
be within the realm of experimental possibility.

In this paper, we study theoretically the quantum behavior
of ultrashort-pulse OPOs in this highly nonlinear regime. Our
analysis is based on a rigorous, general quantum input-output
model of an SPOPO, valid in both Gaussian and non-Gaussian
regimes of operation. We model the nonlinear three-wave
interaction between nonresonant pump and resonant signal
modes using a nonlinear system-reservoir Hamiltonian and
derive input-output relations from the Heisenberg equations of
motion, while the internal dynamics of the SPOPO are cap-
tured with a time-convolutionless second-order Born-Markov
master equation. In the process, we define band-limited quan-
tum noise operators, which reduce to the noise operators in
Ref. [27] under appropriate timescale limits. In the process,
we thus clarify the requirements for a quantum input-output
model, which is formulated in continuous time by construc-
tion, to be compatible with the pulsed nature of the system.
The resulting model includes Lindblad operators representing
nonlinear dissipation induced by pump depletion, but notably
it also reveals the somewhat surprising existence of a non-
linear (quartic) dispersive Hamiltonian, which we show is
necessary to preserve causality and maintain consistency with
classical models in the mean-field limit.

We also show that the supermode technique of
Refs. [26–28] can be applied to our model, in order to obtain
an efficient description of the nonlinear quantum dynamics.
This approach enables us to perform numerical simulations
in the supermode basis and observe a variety of nonlinear
phenomena predicted by the model, such as pump depletion,
corrections to the linearized squeezing spectrum, and the
generation of non-Gaussian states. We provide estimates for
the experimental parameters and regimes needed to observe
these exotic quantum effects and compare them against the
state of the art in nonlinear nanophotonics.

II. MULTIMODE INPUT-OUTPUT THEORY
OF PULSED OPOS

The input-output formalism deals with systems coupled
weakly to a reservoir, which we take to be a good character-
ization of a high-finesse pulsed OPO (the system) coupled to
freely propagating optical fields (the reservoir) [18,19]. The
systems we consider consist of a broadband set of resonant
modes in a signal band of frequencies and are schematically
shown in Fig. 1. The system exhibits linear coupling to a
corresponding signal band S in the free field and nonlinear
coupling to a second-harmonic pump band P , also in the free
field. Note that we use “pump” to refer to the reservoir with
frequencies in the range of the second harmonic of the signal
modes, even when there is no active pumping. Following the
usual procedure for high-finesse optical systems, we assume
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FIG. 1. Schematics of various systems of pulsed OPOs and their
cavity mode structure. (a) A single resonator (highlighted in yellow)
is coupled on the bottom to a propagating pump field through a
dichroic and on top to a propagating signal field through an outcou-
pler, resulting in (c) a set of uniformly spaced resonances. (b) Two
coupled resonators form a single system (highlighted in yellow),
resulting in (d) a nonuniform mode structure. In both cases, only the
signal is resonant in the system and the cavity medium (i.e., region
in yellow) is taken to contain the χ (2) nonlinearity (with appropriate
dispersion compensation). The highlights in (c) and (d) indicate the
bands Sm over which we define signal input-output operators (see the
text).

the system (quasi)modes can be quantized independently of
the reservoir and we derive perturbatively the system dynam-
ics subject to the effects of the reservoir in an input-output
framework.

Let the cavity resonate a set of signal modes ŝm, with
resonance frequencies ωsm. For the following, we work in an
interaction frame rotating at these frequencies, generated by
a Hamiltonian

∑
m ωsmŝ†

mŝm. We suppose the resonant signal
modes are described by an electric displacement field operator
D̂s(r, t ) of the form

D̂s(r, t ) = i
∑

m

Dsm(r)ŝme−iωsmt + H.c., (1)

where [ŝm, ŝ†
n] = δmn and Dsm(r) are appropriately chosen

mode functions, as prescribed by canonical quantization of
the macroscopic Maxwell’s equations [40,41].

In the derivation to follow, we do not necessarily assume
uniform cavity mode spacing, which is the example depicted
in Fig. 1(c). This special case of uniform mode spacing is
addressed in more detail in Sec. III. In general, however,
cavity resonances may not be uniformly spaced, either due
to intracavity dispersion (especially in broadband cavities) or
because the system may consist of multiple coupled cavities,
as depicted in Fig. 1(b), resulting in the resonance splitting
in Fig. 1(d). The following derivation can be applied to these
nonuniform cases as well.

A. Linear dissipation

We begin by treating the linear coupling to the reservoir at
the signal frequency band. Aside from outcoupling, this can
also describe linear losses due to scattering or other intrin-
sic imperfections; while such effects are by nature spatially
multimode, we take the usual assumption that, for each cavity
mode, the various scattering channels can be combined into a
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single effective coupling to the reservoir, following Wigner-
Weisskopf theory [42].

We introduce reservoir modes b̂ω, with [b̂ω, b̂†
ω′ ] =

2πδ(ω − ω′) in a signal frequency range S of interest, and
posit a minimal-coupling Hamiltonian in the interaction frame
of the form

V̂lin(t ) := i
∑

m

∫
S

dω

2π

√
2κm(ω)ŝmb̂†

ωe−i(ωsm−ω)t + H.c. (2)

To further develop this interaction in a way that suits a
multimode cavity, we define a set of band-limited reservoir
operators

b̂(m)
t :=

∫
Sm

dω

2π
b̂ωe−i(ω−ωsm )t , (3)

where

Sm := (
1
2 (ωsm + ωsm−1), 1

2 (ωsm + ωsm+1)
)
, (4)

as illustrated in Figs. 1(c) and 1(d). We can compute the
evolution of these reservoir modes using their Heisenberg
equations of motion. We parametrize this evolution by t ,
which we note is distinct in nature from the index t ′ denoting
the mode. This produces

d

dt
b̂(m)

t ′ (t ) = −i
[
b̂(m)

t ′ (t ), V̂lin(t )
]

=
∑

n

ŝneiωsmt ′
e−iωsnt

∫
Sm

dω

2π

√
2κn(ω)eiω(t−t ′ ). (5)

We now assume a Markov condition, in which the bandwidths
of both κn(ω) [i.e., the range of ω over which κn(ω) is suffi-
ciently flat] and Sm (i.e., the quantity ωsm − ωsm−1) are much
larger than the bandwidth of any system dynamics. Following
similar assumptions made in single-mode quantum optics,
this Markov condition allows us to formulate a multimode
Markovian input-output theory for this interaction, and we
will further develop and utilize this condition throughout this
work. Under this Markov condition, the integral in (5) can
effectively be replaced with

√
2κn(ωm)δ(t − t ′) and the result

is simplified to

d

dt
b̂(m)

t ′ (t ) =
∑

n

ŝnei(ωsm−ωsn )t
√

2κn(ωm)δ(t − t ′). (6)

From this we see the reservoir mode only evolves discretely
upon interacting with the system at t ′ = t , so we can isolate
these two segments of its evolution as an input and output part

b̂(m)
t,in := lim

t ′→−∞
b̂(m)

t (t ′), b̂(m)
t,out := lim

t ′→+∞
b̂(m)

t (t ′), (7)

which are related via the input-output relationship

b̂(m)
t,out = b̂(m)

t,in +
∑

n

√
2κn(ωm)ŝn(t )ei(ωsm−ωsn )t

≈ b̂(m)
t,in +

√
2κmŝm(t ), (8)

where κm := κm(ωsm) and we have made a rotating-wave ap-
proximation in the second line, which holds as long as the
Markov condition is satisfied. In this case, κm is the field
amplitude decay rate for the mth signal mode.

Next we derive the evolution of the system signal modes
due to the coupling V̂lin, in the form of a Lindblad master

equation, starting from a second-order time-convolutionless
Born-Markov approximation [43]. Let ρ̂ denote the system
state, trS̄ denote a partial trace over the reservoir, and ρ̂S̄
denote the density matrix of the reservoir in the absence of
interaction with the system, which we take to correspond to
the vacuum. The contribution to d ρ̂/dt due to V̂lin is given by

Llinρ̂ = −
∫ ∞

0
dτ trS̄ [V̂lin(t ), [V̂lin(t − τ ), ρ̂(t )ρ̂S̄ ]]. (9)

In evaluating (9), we neglect Lamb shifts (i.e., assume they
can be absorbed into renormalized energy levels ωsm) and we
make a secular (post-trace rotating-wave) approximation by
dropping any terms in (9) that oscillate as e−i(ωsn−ωsm )t for m �=
n, which is also justified by the Markov condition. The result
is the standard Lindblad master equation

Llinρ̂ =
∑

m

D
[
L̂(m)

lin

]
ρ̂, (10a)

where D[L̂]ρ̂ := L̂ρ̂L̂† − 1
2 {L̂†L̂, ρ̂} (the anticommutator is

{Â, B̂} := ÂB̂ + B̂Â) and we have identified a set of linear
Lindblad operators

L̂(m)
lin :=

√
2κmŝm (10b)

representing dissipation into each frequency bin.

B. Nonlinear parametric interactions

We now turn to the treatment of the nonlinear χ (2) inter-
action between the cavity signal modes and the nonresonant
pump field. We suppose the pump is described as a spectrally
continuous field, with an electric displacement field operator
D̂p of the form

D̂p(r, t ) = i
∫
P

dω

2π
Dpω(r) âωe−iωt + H.c. (11)

in the interaction frame, where the continuum pump reser-
voir modes âω obey [âω, â†

ω′ ] = 2πδ(ω − ω′) and Dpω(r)
are appropriately chosen continuum mode profile functions,
as prescribed by canonical quantization of the macroscopic
Maxwell’s equations [40,41]. The frequency range P for this
integral (i.e., the pump band) should be sufficiently confined
so as to not overlap with the signal reservoir band S . Note that
in this section we do not yet consider an active coherent drive
on the pump field (i.e., we do not yet pump the OPO), but in
Sec. III we show how such a drive can be easily handled once
we have derived the appropriate interaction with the pump
reservoir.

We take the macroscopic nonlinear χ (2) Hamiltonian in the
interaction frame to be [40,41]

V̂nl(t ) :=
∫

d3r
∑
i, j,k

η
(2)
i jk (r)D̂i

p(r)D̂ j
s (r)D̂k

s (r) (12)

= i
∫
P

dω

2π
â†

ω

∑
m,n

fmn(ω)ŝmŝne−i(ωsm+ωsn−ω)t + H.c.,

where η
(2)
i jk (r) is the second-order inverse susceptibility tensor

[40] (assumed to be frequency independent) and the coupling
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strength of the three-wave interaction is

fmn(ω) :=
∫

d3r
∑
i, j,k

η
(2)
i jk (r)

(
Di∗

pωD j
smDk

sn

)
(r), (13)

which we can take to be real valued without loss of generality
when Dpω(r) corresponds to normal modes of the system.
That is, linear loss of these modes have been phenomenologi-
cally treated according to the preceding section, as opposed
to direct quantization of lossy (quasinormal) modes [44].
In Sec. IV we consider some concrete forms for fmn(ω) in
SPOPOs based on phase-matching considerations.

We follow a similar procedure as in the linear dissipation
case in order to define input-output pump operators. The
choice of partitions Pq of the pump frequencies is somewhat
arbitrary; if the pump is a frequency comb, for example, one
natural choice is to use the pump comb lines. In any case, let
us denote such pump frequencies of interest by ωpq. We now
define pump operators

â(q)
t :=

∫
Pq

dω

2π
âωe−i(ω−ωpq )t , (14)

where

Pq := (
1
2 (ωpq + ωpq−1), 1

2 (ωpq + ωpq+1)
)
. (15)

To derive the evolution of these reservoir modes â(q)
t ′ , we

again calculate

d

dt
â(q)

t ′ (t )= − i
[
â(q)

t ′ (t ), V̂nl(t )
]

=
∑
m,n

ŝmŝne−i(ωsm+ωsn )t eiωpqt ′
∫
Pq

dω

2π
fmn(ω)eiω(t−t ′ ).

(16)

As in the case for linear dissipation, we impose the Markov
condition that the bandwidths of the signal-pump coupling
fmn(ω) as well as the pump bands Pq are much larger than
any system dynamical rate. Under this Markov condition, we
can effectively replace the integral by fmn(ωpq)δ(t − t ′) and
the result is

d

dt
â(q)

t ′ (t ) =
∑
m,n

f (q)
mn ŝmŝne−i(ωsm+ωsn−ωpq )tδ(t − t ′), (17)

where we introduce the simplified notation

f (q)
mn := fmn(ωpq). (18)

In contrast to the case of linear dissipation, the Markov con-
dition on fmn(ω) needs to be treated with some care. We show
in Appendix A, in the context of the Born-Markov master
equation, that the bandwidth of fmn(ω) is intimately linked
to the memory time of the pump reservoir, which in turn is
related to the round-trip time of the signal cavity, consistent
with the requirement for the bandwidths of Pq or Sm to be
sufficiently large; we also provide a brief discussion of these
timescale considerations for SPOPOs in Sec. VI.

Again, this δ-function interaction with the system in (17)
produces an input-output relationship

â(q)
t,out = â(q)

t,in +
∑
m,n

f (q)
mn ŝmŝne−i(ωsm+ωsn−ωpq )t , (19a)

where

â(q)
t,in := lim

t ′→−∞
â(q)

t (t ′), â(q)
t,out := lim

t ′→+∞
â(q)

t (t ′). (19b)

In the following section, we show that the rotating terms
in (19) can be eliminated for a synchronously pumped OPO
with a natural choice for the pump frequencies ωpq. In general,
however, if ωpq are arbitrarily picked relative to the signal
frequencies ωsm, one may not be able to apply a rotating-wave
approximation to simplify this input-output relation further.

We next turn to deriving the master-equation model for the
evolution of the signal modes subject to this nonlinear interac-
tion with the pump reservoir. We again employ a second-order
time-convolutionless Born-Markov approximation [43]. Let ρ̂

denote the system state, trP̄ denote a partial trace over the
pump reservoir, and ρ̂P̄ denote the density matrix of the pump
reservoir in the absence of interaction with the system, which
we take (for now) to be the vacuum. The contribution to d ρ̂/dt
by V̂nl is

Lnlρ̂ = −
∫ ∞

0
dτ trP̄ [V̂nl(t ), [V̂nl(t − τ ), ρ̂(t )ρ̂P̄ ]]. (20)

Note that as the signal frequency band and pump frequency
band reservoirs are independent (i.e., nonoverlapping), the
Born-Markov approximation allows the influence of these
reservoirs to be derived independently of one another. Eval-
uating the partial trace, we find

Lnlρ̂ =
∑
m′,n′

∑
m,n

ei(ωsm′+ωsn′ )t e−i(ωsm+ωsn )t (21)

× ξmnm′n′ [ŝmŝnρ̂(t ), ŝ†
m′ ŝ

†
n′] + H.c.,

with an interaction tensor

ξmnm′n′ :=
∫ ∞

0
dτ hmnm′n′ (τ ), (22)

where

hmnm′n′ (τ ) :=
∫ ∞

0

dω

2π
fm′n′ (ω) fmn(ω) (23)

× ei(ωsm+ωsn−ω)τ

are nonlinear memory functions associated with the system’s
nonlinear coupling to the pump reservoir, which correspond to
the temporal decay of correlations between the system and the
pump reservoir induced by the nonlinear interaction. For the
Born-Markov approximation to hold in (20), hmnm′n′ (τ ) must
vanish for τ larger than any system interaction timescale (i.e.,
the memory time should be short). Using additional assump-
tions in Sec. IV (with details in Appendix A), we explicitly
evaluate (23) and show that the memory function indeed sat-
isfies this requirement for a broad class of ultrashort-pulse
OPOs.

Using the Sokhotski-Plemelj theorem from complex anal-
ysis and assuming fmn(ω) to be continuous, the coupling
constants can also be written in terms of their real and
imaginary parts such that ξ = γ + iχ , where

γmnm′n′ := 1

2
fm′n′ (ωsm + ωsn) fmn(ωsm + ωsn), (24a)

χmnm′n′ := P
∫ ∞

0

dω

2π

fm′n′ (ω) fmn(ω)

ωsm + ωsn − ω
, (24b)
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where P denotes the Cauchy principal value. As we will
see later, under assumptions appropriate to synchronously
pumped OPOs, γ physically contributes to dissipative evo-
lution under (20) while χ physically contributes to coherent
evolution under (20). However, we note that, as we show in
Sec. IV, it can be easier in practice to directly compute ξ using
(22) and (23), rather than the integrals in (24).

Without additional assumptions, (21) is the most general
quantum master-equation model for the nonlinear evolution
of the signal modes. In general, it is a time-dependent master
equation with nonlinear, non-Lindblad dissipative terms (cor-
responding to γ ), as well as an additional nonlinear effective
Hamiltonian (corresponding to χ ). In Sec. III we show that a
secular approximation, retaining only terms in the sum where
ωsm + ωsn ≈ ωsm′ + ωsn′ , can be made in (21) for the case of
a synchronously pumped OPO, in which case we can further
simplify (21) by casting it in Lindblad form. Then, as we show
in Sec. IV, we can explicitly calculate the coupling constants
in (24) once given a form for the phase-matching function
fmn(ω).

III. QUASIDEGENERATE SYNCHRONOUSLY
PUMPED OPO

An experimentally relevant special case of the above theory
applies to the quasidegenerate SPOPO [6,7,45], in which (i)
the system consists of a cavity resonating a uniform comb of
signal modes with free spectral range � (i.e., any mode disper-
sion due to the nonlinear medium is compensated elsewhere in
the cavity), as illustrated in Fig. 1(c); (ii) the system is pumped
by a classical frequency comb (e.g., as produced by a mode-
locked laser), with comb spacing (i.e., pulse repetition rate)
equal to � (synchronous pumping); and (iii) the phase match-
ing is chosen such that maximal nonlinear coupling strength
occurs between the center signal mode at frequency ω0 and the
center pump line at frequency 2ω0, but there is still sufficient
phase matching off-center to facilitate nondegenerate interac-
tions within the system optical bandwidth (quasidegenerate).
For such a system, it is convenient to enumerate the cavity
signal modes as ωsm = ω0 + m� and the pump frequencies as
ωpq = 2ω0 + q�. In this case, the size of the frequency bands
Sm and Pq are all given by �. Thus, for SPOPOs, the Markov
condition imposes the requirement that � be larger than all
system dynamical rates (see Sec. VI for addition discussion).

Assuming the Markov condition holds, the uniformity of
the frequency spacings also enables a secular (rotating-wave)
approximation to allow only near-resonant nonlinear interac-
tions such that the only contributions to the sum in (19) obey
m + n = q and the only contributions to the sum in (21) obey
m + n = m′ + n′. Thus, the input-output relations (19) for the
pump reservoir can be rewritten for an SPOPO in the further
simplified form

â(q)
t,out = â(q)

t,in +
∑

m+n=q

f (q)
mn ŝmŝn. (25)

In addition, the system dynamics under the Born-Markov
master equation (21) can be simplified to

Lnlρ̂ =
∑

q

∑
m,m′

ξ
(q)
mm′ [ŝmŝq−mρ̂, ŝ†

m′ ŝ
†
q−m′ ] + H.c., (26)

where we have used m + n = m′ + n′ = q in the inner
sum to eliminate n and n′. We have also defined ξ

(q)
mm′ :=

ξm,q−m,m′,q−m′ , so we can write

ξ
(q)
mm′ = γ

(q)
mm′ + iχ (q)

mm′ , (27)

where γ
(q)

mm′ and χ
(q)
mm′ are both real and symmetric over the m

and m′ indices. They are given by

γ
(q)

mm′ := 1

2
f (q)
m′,q−m′ f (q)

m,q−m, (28a)

χ
(q)
mm′ := P

∫ ∞

0

dω

2π

fm′,q−m′ (ω) fm,q−m(ω)

ωpq − ω
. (28b)

Using these expressions, we can now explicitly evaluate the
commutators in (26) and obtain the master equation in Lind-
blad form

Lnlρ̂ =
∑

q

D
[
L̂(q)

nl

]
ρ̂ − i[Ĥnl, ρ̂], (29a)

where the dissipative part of the evolution is contributed by
γ (q) and consists of a multimode set of two-photon loss chan-
nels

L̂(q)
nl :=

∑
m

f (q)
m,q−mŝmŝq−m =

∑
m+n=q

f (q)
mn ŝmŝn, (29b)

while the coherent part is contributed by χ (q) and takes the
form of a four-wave-mixing dispersive optical cascade

Ĥnl =
∑

q

∑
m,m′

χ
(q)
mm′ ŝ

†
m′ ŝ

†
q−m′ ŝmŝq−m. (29c)

As we show in Appendix B, the existence of a cascaded
nonlinear term in the system Hamiltonian is generally re-
quired to preserve causality in the presence of nonlinear
dissipation, by virtue of a Kramers-Kronig–like relationship
between the real and imaginary parts of the tensor ξ . While
single-mode (cw) OPOs have the option of avoiding this effect
by employing perfect phase matching, the same is not true
in general for SPOPOs, where the large number of signal
modes means that many elements of χ

(q)
mm′ are nonzero due to

dispersion.
Having derived a suitable input-output model for the inter-

action between the signal and pump, we also straightforwardly
obtain a rigorous model for the important special case of an
SPOPO with an active pump. Suppose we drive the SPOPO
with coherent pump amplitude αq at frequency ωpq. To model
this drive, one simply needs to displace â(q)

t,in by α(q) (so that

〈â(q)
t,in〉 = α(q)), which also adds a new system Hamiltonian

i
∑

q α(q)∗L̂(q)
nl + H.c. However, in this paper it is more con-

venient to keep the input in the vacuum (so that 〈â(q)
t,in〉 = 0)

and instead apply an equivalent formal procedure [20] where
we displace the Lindblad operators

L̂(q)
nl �→

∑
m+n=q

f (q)
mn ŝmŝn + α(q) (30a)

and add a system Hamiltonian

Ĥpump = i

2

∑
m,n

α(m+n)∗ f (m+n)
mn ŝmŝn + H.c. (30b)

033508-5



TATSUHIRO ONODERA et al. PHYSICAL REVIEW A 105, 033508 (2022)

It is worth noting these two conventions for the input-
output fields lead to the same Lindblad master equation (29)
[19]. The pumped Hamiltonian (30b) describes multimode
squeezing (i.e., a broadband version of the usual quadratic
Hamiltonian for an OPO below threshold) and it is in agree-
ment with prior derivations through other means, such as by
assuming a resonant but adiabatically eliminated multimode
pump [27].

Finally, it is also often useful to analyze the experimen-
tally relevant situation where the SPOPO possesses some
slight nonuniformity in its signal resonances so that the bare
frequencies of the modes are instead ωsm = ω0 + m� + δm,
where |δm| � � for the Markov condition to hold. First,
we note that, throughout Sec. II B, we have performed all
our calculations in a frame rotating at the bare frequencies
of each signal mode so the results of Sec. II B need not
change in principle. However, in trying to apply the secular
approximation to arrive at (26) for the SPOPO, we can-
not consistently define a unique set of ωpq such that ωpq =
ωsm + ωsn = (m + n)� + δm + δn for all m + n = q, due to
the detunings being potentially unique for each signal mode.
Thus, even with a post-trace rotating-wave approximation, the
master equation cannot be put into Lindblad form and the
system interactions involve the full rank-four tensor ξmnm′n′ ,
which contains vastly more elements than the simplified ξ

(q)
mm′ .

To remedy this, we note that the derivation of Sec. II can
instead be done starting from an interaction frame rotating
at the nominal mode frequencies ω0 + m� (i.e., without the
perturbations δm). In doing so, it is necessary to add a new
detuning system Hamiltonian

Ĥdetuning =
∑

m

δmŝ†
mŝm. (31)

Under the Markov condition, the effect of this detuning
system Hamiltonian can be neglected while deriving the
system-reservoir interactions in Sec. II B. In this paper we
only consider the case of δm = 0 for our numerical simula-
tions (so the bare and nominal mode frequency interaction
frames coincide), but we retain the possibility of such inho-
mogeneities in our model for the sake of generality and to
facilitate studying the robustness of our model to experimental
imperfections. We reiterate that if the deviations δm are not
small compared to the nominal mode spacing �, however, the
master equation and input-output model must be derived in the
interaction frame of the bare frequencies according to Sec. II.

Input-output theory and quantum stochastic
differential equations

Because the secular approximation allows us to describe
the dynamics of the SPOPO using a master equation in
standard Lindblad form, we can now formulate a standard
input-output quantum model for the SPOPO, encompassing
the multimode and nonlinear nature of its system-reservoir
interactions.

Revisiting (8) and (10b) for the linear dissipation and
(25) and (29b) for the nonlinear dissipation, we see that the

input-output relations can be written in terms of the Lindblad
operators (10b) and (29b) [and (30a) for active pumping] as

b̂(m)
t,out = b̂(m)

t,in + L̂(m)
lin , (32a)

â(q)
t,out = â(q)

t,in + L̂(q)
nl . (32b)

Since the internal dynamics of the system are also gov-
erned by a master equation in Lindblad form using the same
Lindblad operators, we can summarize all the dynamics of
the SPOPO via an input-output model with total effective
Hamiltonian

ĤSPOPO = Ĥdetuning + Ĥnl + Ĥpump

+
(

i
∑

m

b̂(m)†
t L̂(m)

lin + i
∑

q

â(q)†
t L̂(q)

nl + H.c.

)
.

(33)

In this formulation of the model, it is crucial that the reservoir
modes obey a white-noise approximation that [b̂(m)

t , b̂(m′ )†
t ′ ] ≈

δ(t − t ′), which is afforded by the Markov condition. Specifi-
cally, this commutator is given by

[
b̂(m)

t , b̂(m′ )†
t ′

] = δmm′

∫ �/2

−�/2

dω

2π
e−iω(t−t ′ ), (34)

and similarly for the pump reservoir operators â(m)
t . We there-

fore see that as long as the Markov condition holds, this
integral can effectively be approximated by δ(t − t ′), hence
justifying an interpretation of these reservoir operators as
quantum white-noise operators [18]. This abstracted model of
the SPOPO enables us to readily integrate SPOPOs into phys-
ical systems involving other quantum input-output devices
through the use of the SLH formalism [20]. This system-level
approach to quantum optics facilitates the construction of
complex quantum networks and provides a powerful frame-
work for deploying techniques such as dissipation engineering
or quantum control.

Furthermore, the input-output theory for the SPOPO also
allows us to formally derive quantum stochastic differential
equations (QSDEs), or Heisenberg-Langevin equations, de-
scribing system dynamics subject to a quantum white-noise
bath. In Itô form, the QSDEs for the SPOPO are given by

dŝm

dt
= −(κm + iδm)ŝm − 2

∑
q

f (q)
m,q−mα(q)ŝ†

q−m

− 2
∑

q

∑
n

(
γ (q)

nm + iχ (q)
nm

)
ŝ†

q−mŝnŝq−n

−
∑

q

√
2κmb̂(m)

t,in − 2
∑

q

f (q)
m,q−mŝ†

q−mâ(q)
t,in. (35)

Provided all the approximations leading up to the quantum
input-output model (33) hold, these QSDEs concisely summa-
rize all the quantum dynamics that can occur in an SPOPO.
In addition to multimode squeezing in the linearized regime
(as extensively studied in Ref. [27]), there is also a rich set
of multimode nonlinear interactions above threshold as well,
with both dissipative and dispersive contributions to the quan-
tum dynamics.
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IV. PHASE MATCHING

It is clear that the coupling functions fmn(ω) play a crucial
role in the physics of our model, as they affect the nonlinear
Lindblad operators, the squeezing Hamiltonian under ac-
tive pumping, and the dispersive nonlinear Hamiltonian. The
physical considerations that govern the structure of fmn(ω) are
determined through the three-wave interaction integral (13),
which in turn is dictated by the cavity mode profiles and the
phase matching of the nonlinear interactions.

To get intuition for the typical structure of fmn(ω), we
can consider some physical assumptions for both the cavity
modes and the phase-matching conditions. We assume the
signal modes, pump frequencies, and cavity dispersion are set
consistently with the SPOPO model introduced in Sec. III.
The coupling constants of the pump Hamiltonian can be sum-
marized using a symmetric matrix fmn := f (m+n)

mn , which plays
an important role as it captures the multimode squeezing and
gain of the system.

Let us also consider the special case of a one-dimensional
cavity containing a section of nonlinear χ (2) material with
length L and that the pump and signal modes propagate along
the cavity optical axis z with a one-dimensional phase front
(i.e., they are mostly collimated) in the region where there
is material nonlinearity. Then the mode functions can be
written as

Dsm(r) = Dsm(r⊥)eikz (ωsm )z, (36a)

Dpω(r) = Dpω(r⊥)eikz (ω)z, (36b)

where kz(ω) is the z component of the wave vector and r⊥ is
transverse to z. We also take the material nonlinearity to have
a one-dimensional modulation due to quasi-phase-matching
with period kQPM:1

η
(2)
i jk (r) = η

(2)
i jk (r⊥) cos(kQPMz). (37)

Inserting these relations into (13), the function we are inter-
ested in can be written as2

fmn(ω) ≈ g1/2
mn (ω)sinc[�mn(ω)], (38)

assuming kz(2ω0) − 2kz(ω0) � 1/L, with coupling rates
gmn(ω) and phase-mismatch functions �mn(ω) given by

g1/2
mn (ω) := L

2

∫
d2r⊥η

(2)
i jk (r⊥)

(
Di∗

pωD j
smDk

sn

)
(r⊥), (39)

�mn(ω) := kQPM + kz(ω) − kz(ωsm) − kz(ωsn)

2/L
. (40)

For the remainder of this paper, we make the further as-
sumption that gmn(ω) is approximately constant across the
optical bandwidth of interest and we denote its value by g0.
Recalling (28a) and (29b), the nonlinear Lindblad operators
and pump Hamiltonian for the SPOPO are then fully deter-
mined by the coefficients

fmn := f (m+n)
mn = g1/2

0 sinc(�mn), (41)

1To obtain the case of type-I phase matching instead, take
√

gmn →
2
√

gmn and kQPM → 0.
2Here, as throughout the paper, sinc(x) := sin x/x.

since f (m+n)
mn = fmn(ωpm+n), and we similarly define

�mn := �mn(ωpm+n). (42)

Finally, we also posit a form for the phase mismatch. By
the quasidegenerate nature of the SPOPO, we have 2kz(ω0) −
kz(2ω0) = kQPM, or that �00 = 0. Then, if the dispersion is
sufficiently smooth within the optical bandwidth of interest,
we can Taylor expand the wave-vector dispersion kz(ω) to sec-
ond order around the carrier frequencies of the fundamental
(ω0) and second harmonic (2ω0). Thus, the phase-mismatch
coefficients can be given the form

�mn ≈ β1(m + n) + β2p(m + n)2 − β2s(m
2 + n2), (43)

where β1 := 1
2�(GVM)L, β2p := 1

4�2(GDDp), and β2s :=
1
4�2(GDDs). Here the material dispersion parameters are
GVM, the group velocity mismatch of pump relative to sig-
nal, and GDDp (GDDs), the group delay dispersion of pump
(signal), evaluated at ω0 for signal and 2ω0 for pump. Un-
der this simple model for the phase mismatch, we show in
Figs. 2(a)–2(c) some typical forms for the dissipative nonlin-
ear coefficients fmn.

With this specific model for the phase matching, we can
also obtain explicit expressions for the coupling rates χ

(q)
mm′ in

the nonlinear Hamiltonian Ĥnl as well. We only summarize
the main arguments and results here, while the full derivation
is provided in Appendix A. As alluded to in Sec. II B, it is
more convenient to calculate χ

(q)
mm′ by directly calculating ξ

(q)
mm′

via (22) and (23), rather than via the Cauchy principal-value
integral [i.e., (24b), or (28b)]; from (27) we can take the
imaginary part of ξ (q) to obtain χ (q). As a result, the bulk of
the calculation is in evaluating the memory functions, which
by (23) have the form

h(q)
mm′ (τ ) := hm,q−m,m′,q−m′ (τ ) = g0

∫ ∞

0

dω

2π
ei(ωpq−ω)τ

× sinc[�m,q−m(ω)]sinc[�m′,q−m′ (ω)]. (44)

Physically, the interaction among signal modes ωsm, ωsq−m,
ωsm′ , and ωsq−m′ is mediated by the pump reservoir, so this
integral evaluates the total interaction by weighing the con-
tributions at each reservoir frequency ω. In this context,
the exponential term produces oscillations for non-energy-
conserving contributions, while the sinc functions account
for momentum (i.e., phase) mismatch. In Appendix A we
argue that for the evaluation of this integral, it suffices to
expand the ω dependence of the phase mismatch to first order
according to

�m,q−m(ω) ≈ �m,q−m + 1
2 Tnl(ω − ωpq), (45)

where Tnl characterizes the time required for a pump photon of
frequency ωpq to travel through the nonlinear region. Inserting
this expansion into (44), we can derive explicit expressions
for h(q)

mm′ (see Appendix A for details), which turn out to
vanish for memory times τ larger than order Tnl. Physically,
this corresponds to the fact that an incident (virtual) pump
photon from the reservoir can interact with the system signal
modes for only the time ∼Tnl during which it resides within
the nonlinear region. As Tnl ∼ Rfill/�, where Rfill is the ratio
between the length of the nonlinear crystal and the total cavity
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FIG. 2. Structure of frequency-mode coupling coefficients for an SPOPO with gmn ≈ g0, for various material dispersion parameters chosen
according to the second-order expansion (43). (a)–(c) Coupling coefficients fmn for the dissipative nonlinear interaction, given by (41). (d)–(f)
Coupling coefficients χ (m+n)

mn for the dispersive nonlinear interaction, given by (47). For all three dispersion parameters shown here, β2s limits
the phase-matching bandwidth and we set β2s = 10−8, which corresponds to ∼104 phase-matched comb lines for tens-of-femtosecond pulses
with gigahertz repetition rates.

length, the memory time is at most �−1, verifying that the
memoryless Born-Markov master equation (20) is indeed self-
consistent under the Markov condition for the SPOPO that �

be sufficiently large.
Finally, inserting the explicit forms for h(q)

mm′ into (22) and
taking the imaginary part of ξ

(q)
mm′ ,

χ
(q)
mm′ = g0

2
(�m′,q−m′ − �m,q−m)−1[cos(�m′,q−m′ )

× sinc(�m,q−m) − cos(�m,q−m)sinc(�m′,q−m′ )]. (46)

A particularly interesting two-dimensional slice of this three-
dimensional tensor is χ (m+n)

mn , corresponding to Hamiltonian
terms of the form χ (m+n)

mn ŝ†
mŝ†

nŝmŝn wherein the pairs of photons
being created and destroyed are identical. In this case, we have
the simplified expression

χ (m+n)
mn = g0

2�mn
[sinc(2�mn) − 1]. (47)

Figures 2(d)–2(f) show these specific slices χ (m+n)
mn for three

different dispersion parameters. We see that the dispersive
interaction tends to be weak where the dissipative interactions
are strong and vice versa. This is physically intuitive as, due to
its origin as an optical cascade, the dispersive interaction tends
to be weak where the three-wave mixing is phase matched,
which is also exactly where dissipative interactions due to
two-photon loss (i.e., up-conversion to pump) are strong.

V. CONSTRUCTION OF SUPERMODES

Given the possibly large number of Lindblad operators and
internal cavity modes, it is natural to ask whether there is a
more efficient basis in which to describe the interactions. In
general, one can apply any arbitrary basis transformation on
the continuum pump modes to obtain new pump supermode
operators

Â(k)
t :=

∑
q

Rkqâ(q)
t , (48)

where Rkq is unitary, such that [Â(k)
t , Â†(k)

t ′ ] = δkk′δ(t − t ′) in
the white-noise limit. Neglecting any pumping terms for now,
such a transformation can be applied to construct new super-
mode nonlinear Lindblad operators of the form

L̂′(k)
nl :=

∑
q

RkqL̂(q)
nl =

∑
m,n

Rk,m+n fmn︸ ︷︷ ︸
f ′(k)
mn

ŝmŝn. (49)

Whereas L̂(q)
nl describes the coupling of the system to fre-

quency modes of the reservoir at ωpq, L̂′(k)
nl describes the

coupling of the system to supermodes of the reservoir.
At the same time, it is also possible to apply any arbitrary

basis transformation on the signal modes, to define signal
supermode operators

Ŝi :=
∑

m

Timŝm, (50)
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where Tim is also unitary, such that [Ŝi, Ŝ†
j ] = δi j . This can be

used to generate a corresponding transformation of the signal
reservoir operators into supermode reservoir operators

B̂(i)
t :=

∑
m

Timb̂(m)
t (51)

such that [B̂(i)
t , B̂†( j)

t ′ ] = δi jδ(t − t ′) in the white-noise limit.
Hence, Tim can also be used to transform the linear Lindblad
operators into supermode ones:

L̂′(i)
lin :=

∑
m

TimL̂(m)
lin =

∑
m

Tim

√
2κm ŝm. (52)

After performing these basis transformations, the super-
mode Lindblad operators can be furthermore written in terms
of the signal supermodes as

L̂′(i)
lin =

√
2

∑
j

(∑
m

√
κm TimT ∗

jm

)
︸ ︷︷ ︸√

Ki j

Ŝ j, (53a)

L̂′(k)
nl =

∑
i, j

(∑
m,n

f ′(k)
mn T ∗

imT ∗
jn

)
︸ ︷︷ ︸

G(k)
i j

ŜiŜ j . (53b)

Similarly, the Hamiltonians corresponding to the detuning and
dispersive nonlinearity can be written as

Ĥdetuning =
∑
i, j

�i j Ŝ
†
i Ŝ j, (54a)

where

�i j :=
∑

m

δmTimTjm, (54b)

and

Ĥnl =
∑

i′, j′,i, j

Ji′ j′i j Ŝ
†
i′ Ŝ

†
j′ ŜiŜ j, (54c)

where

Ji′ j′i j :=
∑

q

∑
m,m′

χ
(q)
mm′Ti′m′Tj′,q−m′T ∗

imT ∗
j,q−m. (54d)

The utility of this form is that, for physically realistic cases
where fmn is relatively smooth (i.e., low rank) in the mode
indices (as depicted in Fig. 2, for example), the physics of the
SPOPO is most concisely described using supermode bases
for both pump and signal. In such cases, we can single out
one nonlinear Lindblad operator to pump while at the same
time identifying a single signal supermode as the dominant
degree of freedom in the cavity. The consequence is that in this
supermode model, we need only consider a small range for the
indices (i, j, k) to accurately describe the physics, allowing us
to truncate the interaction matrix G(k)

i j , as well as the dispersive
interaction tensor Ji′ j′i j .

We remark that in performing these supermode transfor-
mations, it is numerically convenient to use the numerical
technique described in Ref. [27], Sec. 5.2, for downsam-
pling the frequency comb indices (and performing appropriate
rescalings of the SPOPO parameters) to take advantage of the

FIG. 3. Supermode basis transformations on (a) pump reser-
voir modes and (b) signal system and reservoir modes, based
on an SPOPO with dispersion and coupling parameters shown in
Figs. 2(c) and 2(f). In (a) the pump supermode basis Rkq is cho-
sen to be Hermite-Gaussian functions according to (55) with Np =
1.31 × 104 and in (b) the signal supermode basis Tim diagonalizes
G(1)

i j defined in (53b).

smooth nature of fmn as a function of its indices. In this paper
we utilize such rescalings in calculating the supermode-basis
coupling coefficients defined above.

To make the above discussion more concrete, consider the
SPOPO with nonlinear coefficients fmn given by Fig. 2(c).
Suppose we would like to pump this SPOPO using a Gaussian
spectrum centered on 2ω0, with Np comb lines spanning from
the center to where the power falls to 1/e. Then a good choice
for pump supermodes are the Hermite-Gaussian functions

Rkq = 1

[
√

πNp2k−1(k − 1)!]1/2
Hk−1(q/Np)e−(q/Np )2/2, (55)

where Hk is the physicists’ Hermite polynomial of order k.
This set of pump supermodes is illustrated in Fig. 3(a).

Next we can choose the signal supermodes Tim such that
the matrix G(1)

i j is diagonal. As shown in Ref. [27] and below,
this choice leads to a very simple form for the squeezing
interaction induced by pumping in the k = 1 supermode. This
set of signal supermodes is shown in Fig. 3(b). Note that Tim

is an orthogonal matrix since f ′(1)
mn is real and symmetric for

the interactions we are considering.
Pumping the SPOPO with amplitude A and a pump spec-

trum α(q) = AR1q given by the first pump supermode, the
supermode version of (30a) gives

L̂′(1)
nl �→

∑
i, j

G(1)
i j ŜiŜ j + A =

∑
i

�iŜ
2
i + A, (56a)

while all the other Lindblad operators remain invariant. Fur-
thermore, the squeezing Hamiltonian (30b) becomes

Ĥpump = iA
2

∑
i

�iŜ
2
i + H.c., (56b)
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FIG. 4. Structure of coupling coefficients in the supermode basis
for an SPOPO with parameters shown in Figs. 2(c) and 2(f), after
performing the supermode-basis transformations shown in Fig. 3
and diagonalizing the matrix G(1)

i j as described in the text. The
magnitudes �2

i of the first ten eigenvalues from the diagonalization
are shown in (b), and �1 is used to normalize all other coupling
coefficients. (a) Coupling coefficients G(k)

i j (for k = 1, 2) that de-

scribe the nonlinear Lindblad operators L̂′(k)
nl . (c) Slice of the coupling

coefficients Ji′ j′11 that describes a dynamically relevant part (see the
discussion in text) of the nonlinear dispersive Hamiltonian Ĥnl.

where �i is the ith eigenvalue of G(1)
i j ; in this paper, eigen-

values are ordered in decreasing magnitude. This Hamiltonian
describes a series of independent squeezing terms in the super-
modes Ŝi, in agreement with the physics obtained by Ref. [27]
for an SPOPO below threshold after a supermode decomposi-
tion.

In Fig. 4 we carry out this supermode transformation and
compute nonlinear coupling coefficients in the supermode
basis for the SPOPO depicted in Figs. 2(c) and 2(f) and using
the supermodes shown in Fig. 3. As expected from our con-
struction of the signal supermodes Tim, the matrix G(1)

i j shown
in Fig. 4(a) is diagonal, with eigenvalues �i whose magni-
tudes are shown in Fig. 4(b). The eigenvalues clearly show a
rapid decay with increasing supermode index; consequently,
by pumping the first supermode as described in (56), the first
supermode dominantly experiences most of the squeezing and
gain in the system. When the SPOPO goes through threshold
(i.e., experiences nonlinear dynamics), however, the action of
the nonlinear Lindblad operators L̂(k)

nl , defined, respectively, by
the coefficients G(k)

i j , and shown for k = 1, 2 in Fig. 4(a), gen-
erally populate higher-order supermodes through multimode

nonlinear loss. Nevertheless, because the nonlinear interac-
tions all tend to decay rapidly at larger supermode indices,
excitations can remain confined to a relatively limited set of
supermodes.

As shown in Fig. 4(c), however, multisupermode interac-
tions can be mediated not only by the nonlinear loss but also
by the coherent nonlinear dispersion due to Ĥnl. One of the
most important slices of the four-index tensor Ji′ j′i j is Ji′ j′11,
which acts on the state like Ŝ†

i′ Ŝ
†
j′ Ŝ

2
1 , thus moving photons

from the dominant supermode (index 1) to higher-order ones
(indices i′, j′ > 1). However, as is the case for the dissipative
nonlinearity, Fig. 4(c) shows that the coherent nonlinearity
also decays at higher-order supermodes and furthermore are
smaller in magnitude than the dominant dissipative nonlinear
terms. This suggests it may be possible to tune parameters
such as SPOPO dispersion or the pump spectrum in order to
optimize the relative strengths of the dissipative and coherent
nonlinear effects.

Finally, one of the most important features of ultrashort-
pulse SPOPOs that can be seen from Fig. 4 is an effective
pulsed enhancement of the base nonlinear rate g0, intuitively
due to the temporal confinement of the field into a short
pulse with higher peak power. Figure 4(b) shows that all
supermode coupling coefficients can be normalized to the
principal eigenvalue �1, which for this example takes on a
value �2

1/g0 ∼ 104. In the linearized regime where both the
nonlinear Lindblad operators and the nonlinear Hamiltonian
can be neglected, the dynamics cleanly decompose into inde-
pendent squeezing on the supermodes Ŝi with squeezing rates
enhanced by �i/

√
g0, physically corresponding to a reduction

in the pump amplitude needed to reach threshold [27]. In
the nonlinear regime, multisupermode interactions complicate
the dynamics, but we still nevertheless expect the dynamical
timescale for the mode Ŝ1, for example, to be on the order of
1/�2

1. In Sec. VII we show dynamical quantum simulations of
the supermode model presented in Fig. 4 that explicitly verify
this fact, while in Sec. VIII we give some intuition for how this
enhancement factor scales with experimental parameters and
implications for the realization of ultrashort-pulse SPOPOs in
regimes of single-photon quantum nonlinearities.

SPOPO equations of motion

After defining the supermodes for signal and pump, we
can also transform the Heisenberg-Langevin equations of mo-
tion (35) for the longitudinal modes into their corresponding
supermode form as well. Assuming a coherent drive of ampli-
tude A(k) on each pump supermode Rkq,

dŜi′

dt
= −

∑
i

(Ki′i + i�i′i )Ŝi −
∑
k, j′

2A(k)G(k)
i′ j′ Ŝ

†
j′

−
∑
j′,i, j

(∑
k

G(k)
i′ j′G

(k)∗
i j + 2iJi′ j′i j

)
Ŝ†

j′ ŜiŜ j

−
√

2
∑

i

√
Ki′iB̂

(i)
in,t −

∑
k, j′

2G(k)
i′ j′ Ŝ

†
j′ Â

(k)
in,t , (57)
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and the corresponding quantum input-output relations for the
reservoir operators are

B̂(i)
out,t = B̂(i)

in,t +
√

2
∑

j

√
Ki j Ŝ j, (58a)

Â(k)
out,t = Â(k)

in,t + A(k) +
∑
i, j

G(k)
i j ŜiŜ j, (58b)

where B̂(i)
in,t and Â(k)

in,t (B̂(i)
out,t and Â(k)

out,t ) are input (output)
quantum white-noise operators for the signal and pump, re-
spectively.

The first term in (57) describes linear decay and coupling
of the signal supermodes. In general, linear interactions can
actually induce couplings between the different supermodes;
this effect can potentially be useful for, e.g., designing cou-
plings in coherent Ising machines [46]. A useful special case
to consider is κm = κ , a constant for all m, and δm = 0 for all
m (evenly spaced signal modes); then this first term becomes
−κ Ŝi.

The second term in (57) is the phase-sensitive OPO gain
(phase-sensitive due to the dagger on Ŝ†

j ), which is responsible
for squeezing and thus the generation of signal excitation from
pump driving. In general, this squeezing is multimode, but
as discussed, we can choose to pump in the first supermode,
so that A(1) = A, a constant, with all others zero. Then by
assuming that the signal supermode basis Tim was chosen
to diagonalize Ĝ(1)

i j with eigenvalues �i, this term becomes

−2A�iŜ
†
i .

The third term in (57) describes the nonlinear interaction
among different signal supermodes resulting from nonlin-
ear interactions with the pump reservoir. Formally, this term
(along with its associated noise term) is discarded in a linear
treatment of SPOPOs [27]. Physically, this term provides a
nonlinear clamping mechanism to stabilize the system when
the gain produced by the second term exceeds the linear loss
induced by the first term; this can be seen most readily in
the single-supermode case where this term is proportional to
−(Ŝ†Ŝ)Ŝ, signifying an intensity-dependent self-interaction.
The real part of this term is a dissipative nonlinear interac-
tion corresponding to two-photon loss, while the imaginary
part corresponds to a coherent dispersive nonlinear interac-
tion or, equivalently, an off-resonant cascaded χ (2) interaction
mimicking an effective four-wave-mixing χ (3) interaction. For
example, in the single-supermode case, the imaginary part is
proportional to −i(Ŝ†Ŝ)Ŝ, corresponding to self-phase mod-
ulation. Notably, such a cascaded term is absent from a cw
single-frequency-mode OPO under perfect phase matching,
but it arises in the SPOPO case since phase-mismatched in-
teractions are inherent to the multimode couplings described
by χ

(q)
mm′ . In general, both the real and imaginary parts of this

term are multimode and nonlinear: The supermode diagonal-
ization procedure that cleanly simplifies the gain term still has
residual structure which show up here and produces nonlinear
couplings among supermodes.

The fourth and fifth terms in (57) are quantum noise terms
that describe the interaction between the signal supermodes
and the supermodes of the two reservoirs: the first at the signal
frequency band due to linear dissipation (which become
independent interactions in the special case of κm = κ) and

the second at the pump frequency band due to nonlinear
parametric interactions. The reservoir modes themselves
follow the input-output relations (58a) and (58b), which also
provide some insight into the physics of the SPOPO. In (58b)
we see that the nonlinear interaction with the cavity produces
a two-photon contribution to the outgoing field, which can
be thought of as broadband second-harmonic generation or,
alternatively, a model for back-conversion of signal light
back into pump light. Furthermore, when the sign of the
back-conversion (i.e., the sign of

∑
i j G(k)

i j ŜiŜ j) becomes out
of phase with the drive amplitude A(k), interference between
the back-converted light and the input pump light manifests
as pump depletion. In a linearized theory consistent with
discarding the nonlinear terms of (57), the latter term in (58b)
is omitted.

VI. MARKOV CONDITION FOR SPOPOS

At a high level, our ability to formulate a quantum input-
output theory for SPOPOs relies primarily on what we call
the Markov condition, that both the bandwidth of the system-
reservoir couplings κm(ω) and fmn(ω) and the repetition rate
� are much larger than all other system dynamical rates.
In conventional quantum input-output theory for cw (i.e.,
single-frequency-mode) cavities with high finesse, we rou-
tinely make the Markov approximation that the system-bath
coupling is constant over a bandwidth larger than the rates
of any system interactions. This facilitates derivation of a
memoryless Born-Markov master equation for the system dy-
namics, input-output relationships for the reservoir dynamics,
and even a quantum white-noise interpretation of the theory
in terms of QSDEs. For example, when defining the reservoir
operators

b̂(cw)
t :=

∫
B

dω

2π
b̂ωe−iωt , [b̂†

ω, b̂ω′ ] = 2πδ(ω − ω′), (59)

the band B is taken to have bandwidth greater than any system
coupling rate (e.g., in the Hamiltonian or the linewidth). As a
result, any excitations in these time-bin modes represented by
b̂(cw)

t are very short compared to the timescale of the system
dynamics, in which case we think of the interactions of these
modes with the system to be independent sequential events.
Physically, the primary limitation to the bandwidth of B in
most cw systems is the free spectral range (FSR) of the cavity:
For an FSR of, say, 100 MHz, numerical simulations produced
by input-output theory are representative of the true physics
down to the 10-ns scale, and it is rarely necessary to consider
interactions occurring faster than this in cw systems.

As we have seen from Sec. II, the situation is more subtle
for the pulsed OPO. To be concrete, let us consider the SPOPO
with repetition rate �/2π . As in the cw case, the bandwidth
of Sm used to define b̂(m)

t in (3) cannot exceed order � or else
the partitions Sm will begin to overlap each other. As long
as the system dynamical rates (e.g., in the few-photon exci-
tation regime, |A|2, G(k)∗

i′ j′ G(k)
i j , Ji′ j′i j , Ki j , and �i j) are small

compared to �, we have shown that it is possible to formulate
a quantum input-output theory encompassing both the linear
and nonlinear couplings of the SPOPO to its environment. The
end result is a multimode generalization of the cw theory, in
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which, for example, the reservoir operators b̂(m)
t and â(q)

t are
directly analogous to the operators b̂(cw)

t , with the only com-
plication being the frequency multiplexing of the reservoir
spectrum into indexed partitions Sm and Pq. In this sense, the
Markov condition we have imposed is essentially a multimode
version of the usual conditions needed to formulate quantum
input-output theory in the single-mode case.

At the same time, for a pulsed system, it is arguably
more natural to think about dynamics on a pulse-by-pulse
basis, including dynamical effects that occur at sub-round-
trip timescales. However, such a picture cannot be faithfully
captured by the input-output model we have presented. For
example, we know from physical intuition that in an SPOPO
without scattering losses, the pulse amplitude should only
decrease when the pulse envelope hits the outcoupler; at
single-round-trip timescales, this is effectively a discrete phe-
nomenon. However, if we instantiate a coherent state of the
first supermode Ŝ1 in the cavity and zoom into its dynamics
on sub-round-trip timescales, we see from the Heisenberg
equations of motion (57) that the expectation value of the field
decays continuously in time, contrary to physical intuition.
As this effect is a natural consequence of formulating an
input-output theory for pulsed OPOs, it is also a prominent
feature of the model described in Refs. [26,27].

The resolution to this discrepancy is the observation that
if κ � � (which is imposed by the Markov condition), the
dynamics of the system at longer timescales of multiple round
trips, e.g., the ringdown envelope of the pulses, is correctly
reproduced. Thus, intuitively, our model after imposing the
Markov condition holds only when the pulses do not ex-
perience dramatic changes over a single round-trip or upon
passing through a single optical element, a condition anal-
ogous to similar approximations made in classical pulsed
nonlinear optics [47]. This approximation is a good charac-
terization of pulsed OPOs with typical material nonlinearities
and relatively low loss3 such as those found in Refs. [6,10].

It is worth emphasizing that while this continuous-time
approximation intuitively only requires that � dominate all
other system dynamical rates, applying the approximation
self-consistently is rather physically involved. As discussed
in Sec. II B, the coupling of the cavity modes to the pump
reservoir is not through a simple beam-splitter transfer
function or scattering or loss spectrum, but rather through a
phase-matching function fmn(ω) describing up-conversion to
nonresonant pump photons, which generically can have richer
spectral features and is more sensitive to experimental design.
As a result, we cannot a priori take the usual assumption
that fmn(ω) is flat as a function of ω, i.e., that the coupling
of modes m and n to the reservoir is memoryless. Rather,
Appendix A shows that the nonlinear interaction between
signal and pump has an explicit memory time ∼1/� (and
possibly shorter if Rfill < 1), physically originating from the
transit of a pump photon in the crystal. Thus the requirement

3It is worth noting that these conditions do not conflict with our
numerical study of SPOPOs in the highly nonlinear regime, which
merely involves the relative scale of the nonlinear coupling rate to
the linear dissipation rate.

for � to be sufficiently large is indirectly but intrinsically
also responsible for ensuring that fmn(ω) be sufficiently
flat. In this sense, the continuous-time limit in which � is
sufficiently large is the fundamental underlying assumption
of our quantum SPOPO model.

In Appendix C we explicitly relate the continuous-time
dynamics of our model to a more conventional pulse-by-pulse
description for the physics, by comparing their equations of
motion in the classical, high-finesse limit where � is large. We
therefore refer interested readers to Appendix C for details on
how this continuous-time picture can be justified from within
a pulse-propagation perspective.

Finally, as a topic for further research, we note that
for high-gain, high-loss pulsed OPOs [48,49], it is possi-
ble that quantum input-output theory would need significant
modifications or even outright replacement in favor of a free-
field formulation [50,51], possibly involving the quantization
[40,52,53] of nonlinear classical field equations (such as the
classical coupled-wave equations used in Appendix C), in
order to model quantum pulse propagation at sub-round-trip
timescales.

VII. NUMERICAL SIMULATIONS

Having established the formalism of the model, we now
turn to numerical simulations in order to explore the behavior
of the nonlinear effects we have found in the model. In par-
ticular, we simulate SPOPOs in a highly nonlinear regime to
study how multimode nonlinear quantum dynamics can affect
important aspects of OPO phenomenology such as squeezing,
output spectra, and non-Gaussian state generation.

To perform numerical simulations, it is helpful to make
various simplifying assumptions as mentioned throughout
this paper. We consider an SPOPO as described in Sec. III,
with nonlinear interactions governed by the phase-matching
assumptions made in Sec. IV; specifically, we consider the
dispersion parameters shown in Fig. 2(c). Following Sec. V,
we recast the physics in supermode form, by pumping with
strength A in the first Hermite-Gaussian pump supermode R1q

in (55). We also choose the signal supermodes Tim to diag-
onalize the interactions G(1)

i j , with resulting eigenvalues �i,
corresponding to the eigenvectors Tim; these transformations
correspond to those shown in Fig. 4. Finally, we assume that
κm ≈ κ , a constant, and all signal cavity modes have equal
spacing � such that δm = 0 for all m, to simplify the linear
dynamics as discussed in Sec. V.

The result of these simplifying assumptions is a super-
mode quantum input-output model for an SPOPO with system
Hamiltonian Ĥpump + Ĥnl and a set of both linear and nonlin-
ear Lindblad operators, given by

Ĥpump

κ
= ir

4

∑
i

�i

�1
Ŝ2

i + H.c., (60a)

Ĥnl

κ
= η

∑
i,i′, j, j′

Ji′ j′i j

�2
1

Ŝ†
i′ Ŝ

†
j′ ŜiŜ j, (60b)

L̂′(i)
lin√
κ

=
√

2Ŝi, (60c)
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L̂′(k)
nl√
κ

= √
η

∑
i, j

G(k)
i j

�1
ŜiŜ j + r

2
√

η
δk1, (60d)

where �i = G(1)
ii after diagonalization and we have introduced

dimensionless parameters

r := 2A�1

κ
, η := �2

1

κ
. (61)

The parameter r is the pump parameter, representing the ratio
of the pump field amplitude to the pump field amplitude at the
(mean-field) threshold of the first supermode. The parameter
η is the ratio between the intensity-dependent and the linear
decay rates of the first supermode in isolation. These dimen-
sionless parameters incorporate the pump strength A and the
scale g0 of the nonlinear coupling coefficients. Thus, in our
simulations, we set 1/κ as the unit of time, and for a given η,
we set g0 in Fig. 4(b) such that �1 = √

κη, while for a given
r, we set A = κr/2�1.

We perform numerical simulations in JULIA using the
QUANTUMOPTICS.JL package [54]. We simulate quantum state
evolution using standard numerical techniques, which we
summarize in Appendix D for convenience. We take ad-
vantage of the supermode decomposition to truncate the
multimode simulation to a total of five signal modes (i.e.,
1 � i � 5) and to the first 20 nonlinear Lindblad operators
(i.e., 1 � k � 20). We use a Fock dimension of nine for the
most dominant supermodes and a dimension of three for the
remaining higher-order supermodes. To check that our choices
for numerical truncation are appropriate, we repeat calcula-
tions with increasing thresholds for truncation until we arrive
at results that do not qualitatively change upon increase.

We first simulate the steady-state squeezing spectrum of
the SPOPO in the first supermode in the highly nonlinear
regime of η = 1. In this strongly quantum limit, our quantum
model for the SPOPO exhibits important nonlinear deviations
from conventional squeezing near and above threshold, aris-
ing from both the dissipative and coherent nonlinearities. In
fact, the nonlinearity imparted by Ĥnl rotates the internal state
of the SPOPO in phase space (see also Fig. 8), so we compute
the squeezing not along a fixed quadrature, but instead along
the angle of optimal squeezing, defined here as

θopt := arg min
θ

〈(Ŝ1e−iθ + Ŝ†
1eiθ )2〉, (62)

which produces the minimal variance in the resulting homo-
dyne measurement. Figure 5(a) shows how θopt changes with
the pump parameter r, indicating that the dispersive nonlin-
earity can have a direct effect on the squeezing properties of
an SPOPO.

At this optimal angle, Fig. 5(b) shows, for the first signal
supermode Ŝ1, the steady-state squeezing spectrum Shom(ω)
given by (D4) (see Appendix D for additional details). For
comparison, we also show in Fig. 5(c) the analytic squeezing
spectrum

S(lin)
hom (ω) := ω2 + κ2(1 − r)2

ω2 + κ2(1 + r)2
, (63)

obtained by linearizing the equations of motion (57) as done
in Ref. [27] (corresponding to η → 0). As we can see, the
nonlinear model allows us to calculate squeezing beyond

FIG. 5. Squeezing generated by the first supermode Ŝ1 of an
SPOPO (60) operating in the quantum regime of η = 1, at varying
pump parameter r. (a) Optimal squeezing angle θopt relative to the
in-phase quadrature (62), induced by coherent nonlinear phase shifts
in the model. (b) Steady-state squeezing spectrum Shom(ω) (D4),
measured at θopt. (c) Analytic linearized approximation to the squeez-
ing spectrum according to (63), neglecting both nonlinear loss and
phase shifts. In (b) and (c) the vacuum level is normalized to 1. The
dispersion parameters and choice of pump and signal supermodes
follow Fig. 4.

the threshold point of r = 1 where the linearized model
breaks down. In addition, the spectra are markedly different
in appearance: In this regime of high nonlinearity, both the
bandwidth and the amount of squeezing are reduced, which is
in accordance with the results of Ref. [55]. These results also
suggest that, at η ∼ 1, threshold as a mean-field concept is
no longer sharply defined, as the mean photon number in the
vacuum squeezed state below threshold (r < 1) is comparable
to the mean photon number in the bright state above threshold
(r > 1).

Another feature of the nonlinear quantum model is that
the input-output behavior of the pump can be nontrivial. In
Fig. 6 we show the steady-state optical output spectrum of the
pump, also in the highly nonlinear regime of η = 1. Here the
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FIG. 6. Steady-state input-output pump spectrum (i.e., photon-
flux spectral density) of an SPOPO (60) operating in the quantum
regime of η = 1. The dashed line corresponds to the input spectrum
set by external pumping of the first pump supermode and is given
by |α(q)|2/κr2 = R2

1q/4η; see also (55). Each solid line shows an

output spectrum, given by 〈L̂(q)†
nl L̂(q)

nl 〉/κ . To better compare spectra
at different pump parameters, we additionally normalize all curves
by r2.

spectrum is defined as 〈L̂(q)†
nl L̂(q)

nl 〉 as a function q, i.e., the mean
photon flux coming out of the SPOPO at frequency ωpq; this
constitutes what one might measure, for example, on an opti-
cal spectrum analyzer. First, we find the output flux at nonzero
r (solid lines) is significantly lower than the input flux (dashed
line; note the different vertical scales), indicating the presence
of pump depletion. In fact, due to the strong nonlinearity
associated with η = 1 and the ambiguity of classical threshold
in this regime, pump depletion occurs even below threshold
(r < 1), making undepleted-pump approximations generally
invalid for quantum SPOPOs. Furthermore, as the pump
parameter is increased, the output pump spectrum is nonlin-
early distorted, since nonlinear interactions in the SPOPO
increasingly excite higher-order signal supermodes with in-
creasing r. These signal excitations back-convert into the
pump reservoir through the action of the Lindblad operators
L̂′(k)

nl .
To better understand the effects of the multimode non-

linearities in and of themselves, we also study the system
in the absence of linear loss. This model can be obtained
by a reparametrization of (60): We resubstitute η and r and
cancel out κ in favor of parametrizing time in 1/�2

1. More
specifically, we use the model

Ĥpump

�2
1

= ip

4

∑
i

�i

�1
Ŝ2

i + H.c., (64a)

Ĥnl

�2
1

=
∑

i, j,i′, j′

Ji′ j′i j

�2
1

Ŝ†
i′ Ŝ

†
j′ ŜiŜ j, (64b)

L̂′(k)
nl

�1
=

∑
i, j

G(k)
i j

�1
ŜiŜ j + p

2
δk1, (64c)

where we define a new pump parameter p := 2A/�1.
We are especially interested in comparing this multimode

model to its corresponding single-mode (or cw) version,
which we define by restricting the indices appearing in (64)

to i = j = k = 1 (i.e., neglecting all higher-order pump and
signal supermodes), as well as neglecting the self-phase mod-
ulation Kerr nonlinearity term J1111Ŝ2†

1 Ŝ2
1 , which vanishes for

single-mode degenerate OPOs with perfect phase matching.
The dynamics of such cw OPOs are well studied and relevant
for applications of OPOs to quantum information processing;
as shown in Ref. [15], the steady state in the absence of linear
loss is the pure cat state |i√p〉 + | − i

√
p〉 (i.e., a superposi-

tion of coherent states).
Figure 7 shows quantum trajectories from solving the

stochastic Schrödinger equation for both an SPOPO and its
corresponding single-mode cw OPO, at a pump parameter
p = 2. As the only relevant Lindblad operators are the non-
linear ones, our choice of unraveling corresponds to in-phase
homodyne monitoring of the pump channels. The resulting
trajectories provide direct evidence that multimode dynamics
occur in the SPOPO, as the signal photon numbers in higher-
order supermodes (i > 1) grow with time, while nonzero
homodyne signals are observed in higher-order pump super-
modes (k > 1). In the initial transient period (t < 2/�2

1), the
trajectories for the multimode SPOPO show stochastic vari-
ations qualitatively similar to those for the single-mode cw
OPO. This is true in both the mean and variance of their
respective ensembles, but also within a single instantiation
of quantum noise, as is evident from the bolded trajectories.
After the transient period, however, the cw OPO quickly ap-
proaches steady state; specifically, it forms a pure single-mode
cat state, which is dark to the nonlinear loss. On the other
hand, the SPOPO continues to evolve stochastically due to
still-increasing excitation in higher-order supermodes. These
stochastic fluctuations about the ensemble mean decrease
the purity of the ensemble, which indicates that the SPOPO
experiences pump-induced decoherence even when the single-
mode OPO has reached a pure state.

Similar conclusions can be reached by examining the quan-
tum states generated in these trajectories, which we show in
Fig. 8 by plotting the Wigner functions of the first supermode
at various points in time, both along the bolded trajectories of
Fig. 7 and for the ensemble-averaged dynamics (calculated
from the unconditional master equation). As in Fig. 7, we
observe that the Wigner functions of the pulsed and cw OPO
are qualitatively similar during the initial transient period (i.e.,
t = 0.5/�1

1, 1.0/�2
1). After this initial transient, the cw OPO

quickly converges to its steady-state Wigner function and the
single trajectory looks similar to the ensemble average. On
the other hand, for the SPOPO, the Wigner functions of the
single trajectory differ from that of the ensemble average (e.g.,
exhibit more negativity), indicating the presence of stochastic
variations at later times. We furthermore observe that at later
times in the single trajectory of the SPOPO, for example, in
Fig. 8(a iv), the reduced state of the first supermode is also
impure (we estimate from simulations a purity of 0.6), even
though the system state is pure under conditional evolution.
This indicates that the multimode interactions in the SPOPO
also entangle the various signal supermodes when condition-
ing on pump homodyne. Finally, it is also worth noting that
the Wigner functions of the pulsed OPO are rotated compared
to its cw counterpart: This is due to self-phase modulation of
the first supermode, which is a consequence of the dispersive
nonlinearity Ĥnl, unique to the pulsed case.
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FIG. 7. Quantum trajectory simulations comparing (a) and (b) the multimode SPOPO (64) with (c) and (d) its single-mode cw counterpart,
both evolving stochastically under no linear loss but continuous-time in-phase homodyne monitoring of the nonlinear loss channels L̂′(k)

nl . (a) and
(c) Evolution of the internal photon number(s) in the signal supermode(s). (b) and (d) Evolution of the mean pump homodyne photocurrent.
The dispersion parameters and choice of pump and signal supermodes follow Fig. 4, and we use p = 2 for the pump parameter in (64). To
facilitate a direct comparison between the multimode and single-mode dynamics, bolded trajectories indicate corresponding simulations that
use the same seed in the random number generator.

VIII. PROSPECTS FOR EXPERIMENTS

In this section we briefly discuss how our work relates to
the experimental design of ultrashort-pulse SPOPOs, focusing

in particular on prospects for observing the single-photon-
regime nonlinear quantum behavior explored in Sec. VII. As
discussed in Sec. VI, the approximations we have made in our

FIG. 8. Wigner functions representing the state of the first signal supermode at various points in time (indexed with lowercase roman
numerals); here (a) and (b) correspond to the multimode SPOPO, while (c) and (d) correspond to its single-mode counterpart. In (a) and (c) we
show the Wigner functions for the bold stochastic trajectories in Figs. 7(a) and 7(c), respectively. In (b) and (d) we show the Wigner functions
of the ensemble average over all trajectories for each model, here computed via the unconditional master equation. Higher-order supermode
components in the state of the SPOPO are partial-traced out.
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quantum model produce continuous-time dynamics, while in
conventional models for experimental SPOPOs, outcoupling
or losses are modeled using discrete beam-splitter operations
and the evolution of the pulse through the nonlinear crys-
tal is treated directly by integrating a set of coupled-wave
equations. In Appendix C we connect our model to the latter
framework and derive an explicit mapping (in the mean-field
limit) between the two models via a high-finesse continuous-
time approximation.

Throughout this work, we have used a phenomenological
frequency-independent coupling rate g0 to characterize the
χ (2) nonlinearity [although a more ab initio approach can start
from (12) instead]. This corresponds to assuming an instan-
taneous nonlinear coupling parameter ε in the coupled-wave
equations of Appendix C; under such conditions, a figure of
merit used in many experiments is the second-harmonic con-
version slope efficiency, here defined as η0 := (2h̄ω0)−1ε2.
This results in the correspondence

g0 = h̄ω0

2

(
L

T

)2

η0, (65)

where T is the round-trip time of the cavity and L is the
propagation length through the nonlinear medium within the
cavity. From a design perspective for nanophotonic cavities,
it is often more natural to scale L and T together. In this
case, we can reexpress L/T = Rfillv, where Rfill is the ratio
between L and the length of the cavity, and v is the (average)
group velocity of the signal pulse. Under this condition, the
only dependence of g0 on absolute lengths or the repetition
rate arises via Rfill, which would ideally be a weak function
thereof.

The decay rate κ in our quantum theory can also be simi-
larly related to experimentally relevant parameters. Following
the derivation in Appendix C, we have

κ = �2

2T
, (66)

where �2 denotes the fraction of power lost over one round-
trip due to linear mechanisms such as intrinsic losses and
outcoupling. When this attenuation is dominated by scattering
in a waveguide (rather than the outcoupler), �2 also naturally
scales with T , so we can express �2/T = αlossv, where αloss is
the propagation power loss constant in units of Np/(length).
In this case, κ does not scale with the absolute cavity
length.

In Appendix C we also establish similar correspondences
for the phase-mismatch coefficients �mn and the pump ampli-
tudes α(q). We note again that these correspondences are only
meaningful when the resulting dynamical rates in the super-
mode basis are sufficiently small compared to the repetition
rate � (see Sec. VI). That is, the resulting dynamics of the
experimental SPOPO in question should have high finesse and
it should be valid to approximate its dynamics in continuous
time over many round-trips.

From an experimental and technological standpoint, one
of the most important results from quantum studies of ul-
trafast SPOPOs such as this paper and Ref. [27] is the
rigorous identification of a pulsed enhancement of the non-
linear rate g0, which intuitively arises due to the temporal

confinement of the field to a short pulse. As first pointed
out in Ref. [27] and discussed in Sec. V, decomposing the
multimode quantum model into a supermode basis allows
us to express the quantum model in terms of a small set of
excited spectral-temporal supermodes. However, as we have
shown in Sec. VII, nonlinear dynamics due to the two-photon
loss and the dispersive optical cascade create interactions
among the supermodes. This means that if we want to exper-
imentally observe single-supermode behavior in the SPOPO
while enjoying the pulsed enhancement due to temporal con-
finement, we must be careful to operate the SPOPO in a
quasi-single-mode regime. Identifying such a regime requires
careful choice of the parameters of the system (especially for
the dispersion), combined with a rigorous, concise model for
its dynamics.

As discussed in Sec. V and borne out by quantum-
dynamical simulations in Sec. VII, the first supermode Ŝ1

primarily experiences dynamics (e.g., squeezing rate and two-
photon loss) on timescales set by �1, where �i is the ith
eigenvalue of the matrix G(1)

i j and is determined not only by
the value of the underlying g0 but also by the dispersion
parameters of the system. Thus, a reasonable choice for quan-
tifying the pulsed enhancement factor is the value of �2

1/g0,
assuming we can operate the SPOPO in a quasi-single-mode
regime.

A detailed study systematically identifying such quasi-
single-mode operating regimes, especially with all quantum
effects taken into account, is beyond the scope of this paper
and requires further research. However, for the purposes of
establishing intuition for the experimental numbers relevant
to the physics we explore in this paper, we can make some
heuristic arguments as follows. For an SPOPO pumped in the
first pump supermode as was done throughout Sec. VII, ex-
citations are initially generated by the squeezing Hamiltonian
Ĥpump, which populates the signal supermodes via indepen-
dent squeezing. As discussed in Sec. V, these excitations
then facilitate the action of both the nonlinear dissipation
and the nonlinear dispersion, which generically mixes the
supermodes together in complicated ways. As a result, it is
reasonable to heuristically consider the ratio �2

1/
∑

i �
2
i ∼ 1

as a necessary (but generically not sufficient) condition for
quasi-single-mode operation. In the following discussion, we
use this single-modedness ratio as a heuristic metric for quasi-
single-mode operation.

In Figs. 9(a) and 9(b) we show some representative plots
for how the pulsed enhancement factor and the single moded-
ness, respectively, change with some of the parameters used
in our second-order dispersion model (43). For simplicity, we
focus here on the case where the GVM β1 = 0; intuitively,
we can expect quasi-single-mode operation to be difficult to
achieve with large GVM. In this case, the GDD of the signal
sets a characteristic scale for the number of cavity modes
comprising the first supermode, allowing us to normalize by√

β2s throughout. Furthermore, at each dispersion parameter,
we have also chosen a particular pump bandwidth, defined by
Np in (55), in order to maximize the single modedness; this
chosen value of Np is shown in Fig. 9(c) for reference. For
most parameters in the region where the single modedness is
high, Np ∼ 1/

√
β2s, indicating that the optimum width τp of

the pump pulse is set approximately by the signal GDD, i.e.,
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FIG. 9. Heuristic SPOPO figures of merit under the second-order
dispersion model (43): (a) pulsed nonlinear enhancement factor (nor-
malized by β

−1/2
2s ) and (b) single-modedness ratio. These values are

calculated using a number of pump comb lines Np [see (55)] chosen
to maximize single modedness, as shown in (c) (normalized by
β

−1/2
2s ).

τp� ∼ 1/
√

β2s. Interestingly, we also see that slightly larger
enhancements can be achieved by setting the pump GDD to be
equal to the signal GDD, which is near the peak of Fig. 9(a).

Towards the goal of reaching the quantum limit of
SPOPOs, we are especially interested in the results of
Fig. 9(a), which indicates that �2

1/g0 ∼ 1/
√

β2s, assuming
β1 is negligible. We also recall that β2s = 1

4�2L(GVDs)
where GVDs := k′′

z (ω0). Combining these results and as-
suming quasi-single-mode operation, we get that the pulsed
enhancement can be estimated as

�2
1

g0
∼ Rfill

π

√
L

v2(GVDs)
(67a)

≈ 6710 ×
√

L

GVDs
× 1 fs2 mm−1

1 cm
, (67b)

where we have used L/T = Rfillv in (67a) and assumed Rfill ≈
1 and v ≈ c/2 in (67b). In a nanophotonic platform, g0 and
(for a small outcoupler) κ do not directly scale with L as
argued above, while v and GVDs are clearly independent of L.
This expression provides an explicit expression for the pulsed
enhancement we can expect in an ultrashort-pulse SPOPO,
assuming it is operating in a quasi-single-mode regime in
the limit of high finesse (and is GDD and scattering-loss

dominated, etc.) Finally, Table I evaluates this expression for
some representative numbers which have recently appeared in
the literature on thin-film lithium niobate devices, to provide
a sense of scale for the path forward to on-chip quantum
SPOPOs.

IX. CONCLUSION

In this paper we have investigated the nonlinear, multimode
quantum effects in ultrashort-pulse OPOs, as revealed by a
first-principles application of quantum input-output theory.
We have rigorously derived a quantum input-output model for
the SPOPO that features, under appropriate timescale condi-
tions, a Born-Markov master equation in Lindblad form which
includes the nonlinear interactions between the signal modes
and the pump reservoir. The resulting model generically ex-
hibits both dissipative nonlinearity, in the form of two-photon
loss and modeled with nonlinear Lindblad operators, as well
as a dispersive nonlinearity, in the form of an optical cascade
and modeled with a four-wave-mixing Hamiltonian. By ex-
tending the supermode technique of Refs. [26,27], we have
obtained an efficient description for these multimode inter-
actions. Numerical simulations using this supermode model
show nonlinear phenomena such as pump depletion and
back-conversion from signal to pump, as well as nonlinear
corrections to the squeezing spectrum. In the regime of strong
single-photon nonlinearities, we have found that, as expected,
non-Gaussian physics in this regime can produce exotic intra-
cavity states with Wigner-function negativity, but at the same
time, the nonlinear multimode interactions, both dissipative
and dispersive, play a significant and complicated role in the
structure and dynamics of such states.

By inserting current as well as speculative experimental
parameters into our model, we have seen that state-of-
the-art devices in thin-film, dispersion-engineered nonlinear
nanophotonics are now closer than ever before to reaching,
in an all-optical platform, the quantum regime of few-photon
operation. Such a breakthrough would make the on-chip short-
pulse SPOPO a promising device for finally realizing the
many quantum and coherent information processing applica-
tions proposed over decades of research into quantum OPOs,
other quantum nonlinear oscillators, and networks thereof.
At the same time, this paper also shows that, despite this
potential, a significant amount of work is still needed to
model, control, and harness the multimode quantum effects
that inherently arise from working with broadband devices
like SPOPOs. For instance, the use of pump spectral shap-
ing or advanced dispersion engineering may be needed to
facilitate high-fidelity quantum operations and programmable
quantum state generation. To enable such efforts in device and
experimental design, further theoretical work will be needed
to develop and apply more sophisticated model reduction
techniques that can concisely and accurately capture the mul-
timode quantum dynamics in the system.
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APPENDIX A: EVALUATING THE NONLINEAR
INTERACTION TENSOR

In this Appendix we give details underlying the calculation
of the coefficients χ

(q)
mm′ that make up the nonlinear dispersive

Hamiltonian, via direct evaluation of the memory function
(44) associated with the signal-pump interaction. We also
provide some physical justification for the approximation (45)
used in performing these calculations.

Starting with (44), we first apply the linearization (45)
and then also assume we can extend the lower limit of the
integral to −∞, which is warranted as the integrand of (44)
is localized around ω = ωpq. Under these assumptions, the
memory functions can be expressed in terms of dimensionless
quantities τ̃ := 2τ/Tnl and δ̃ := 1

2 Tnl(ωpq − ω) as

h(q)
mm′ (τ̃ ) = g0

πTnl

∫ ∞

−∞
d δ̃ Yqm(δ̃)Yqm′ (δ̃)eiδ̃τ̃ , (A1)

where Yqm(δ̃) and its (inverse) Fourier transform yqm(τ̃ ) :=
1

2π

∫ ∞
−∞ d δ̃ Yqm(δ̃)eiδ̃τ̃ are given by

Yqm(δ̃) = sinc
(
�(q)

m − δ̃
)
, (A2)

yqm(τ̃ ) = 1
2 exp

(
i�(q)

m τ̃
)
�(τ̃ ), (A3)

where �(x) takes the value 1 for −1 < x < 1 and is zero oth-
erwise. For notational convenience, we have also introduced
the denotation �

(q)
m := �m,q−m. The convolution theorem then

gives

h(q)
mm′ (τ̃ ) = 2g0

Tnl

∫ ∞

−∞
d τ̃ ′yqm(τ̃ ′)yqm′ (τ̃ − τ̃ ′) (A4)

= g0

2Tnl
ei�(q)

m′ τ̃
∫ ∞

−∞
d τ̃ ′ei(�(q)

m −�
(q)
m′ )τ̃ ′

�(τ̃ ′)�(τ̃ − τ̃ ′).

The last line shows that the memory function is given by a
convolution between two temporal windows. For large τ̃ , the
windows no longer overlap and the integrand vanishes for all

τ̃ ′. Consequently,

h(q)
mm′ (τ > Tnl ) = h(q)

mm′ (τ̃ > 2) = 0. (A5)

For τ < Tnl where the two windows overlap, the integral eval-
uates to

h(q)
mm′ (τ < Tnl ) = g0

2Tnl

i

�
(q)
m′ − �

(q)
m

(A6)

× (
ei(�(q)

m −�
(q)
m′ )ei�(q)

m′ τ̃ − ei(�(q)
m′ −�

(q)
m )ei�(q)

m τ̃
)
.

Having derived an expression for the memory functions
h(q)

mm′ (τ ), we can now use (22) to find the nonlinear coupling
coefficients by integrating over τ̃ . The result is

ξ
(q)
mm′ = g0

2
sinc�(q)

m sinc�(q)
m′ + i

g0

2

(
�(q)

m − �
(q)
m′

)−1

× (
cos �

(q)
m′ sinc�(q)

m − cos �(q)
m sinc�(q)

m′
)
. (A7)

We see that the real part of (A7) is consistent with the expres-
sion derived in the main text (28a) for the dissipative nonlinear
couplings γ

(q)
mm′ . However, more importantly, the imaginary

part of (A7) now provides us an expression for χ
(q)
mm′ , which

specifies the coherent nonlinear couplings in Ĥnl.
As an aside, since the nonlinear memory functions van-

ish for times τ � Tnl, and Tnl ∼ Rfill/�, we note that for
small crystals relative to the cavity length where Rfill � 1,
it is possible to formulate a Markovian input-output master-
equation model along the lines of Sec. II B which requires
only the weaker condition that the rate of the system dynamics
need only be less than �/Rfill, although this would require
a larger binning of the input-output channels than we have
chosen, in order to accommodate the larger interaction band-
width. In this case, the requirement that the cavity remain
high-finesse still stands however.

Validity of first-order expansion in δ

The function �m,q−m(ω) describing the phase mismatch
between two signal modes at ωsm and ωsq−m with a pump
photon at ω can be expanded more generally up to second
order in the detuning δ = ωpq − ω via

�m,q−m(ω) ≈ �(q)
m + 1

2
Tnlδ + β2p

�2
δ2, (A8)

where Tnl := k′
z(ωpq)L is the time the pump photon spends

in the nonlinear crystal, while β2p/�
2 = k′′

z (ωpq)L under
our second-order dispersion model (43). The second-order

033508-18



NONLINEAR QUANTUM BEHAVIOR OF … PHYSICAL REVIEW A 105, 033508 (2022)

term only becomes comparable to the first-order term when
|δ/�| � �Tnl/2β2p ∼ Rfill/β2p, where Rfill is the ratio of the
nonlinear crystal length L to the cavity length. For nanopho-
tonic cavities, Rfill ≈ 1, while for free-space SPOPOs, Rfill

is usually no smaller than 10−4. On the other hand, 1/β
1/2
2p

represents the number of signal frequency modes within a
characteristic frequency bandwidth set by the pump GDD;
consequently, β2p is very small for an ultrafast SPOPO (in
this paper, we consider β2p on the order of 10−8). As a result,
the second-order contribution is only significant for |δ| on the
scale of many � (in this paper, ∼108 × �). Physically, we do
not expect the pump reservoir at these large detunings away
from ωpq to mediate nonlinear interactions between signal
frequencies at ωsm and ωsq−m, and a first-order expansion in
δ should suffice intuitively.

To develop the argument further, we see that in evaluating
the memory functions (44), the most dominant contributions
to the integral occur when (i) the complex exponential is not
too oscillatory (i.e., ω ≈ ωpq) and (ii) the phase matching is
within the main lobe of the sinc functions [i.e., |�m,q−m(ω)| �
π ]. Physically, the nonlinear dispersive interaction between
signal frequencies ωsm and ωsq−m is primarily mediated by the
pump reservoir at frequencies ω that are both (i) nearly res-
onant (i.e., energy conserving) and (ii) nearly phase matched
(i.e., momentum conserving). Thus, in principle, a linear ap-
proximation to �m,q−m(ω) suffices if the effective integration
bandwidth of δ imposed by these two conditions is smaller
than the value of δ where the second-order contribution in
(A8) becomes important.

As we can see in (A7), analytic evaluation of the integral
(44) presupposing an expansion of �m,q−m(ω) to first order in
δ suggests that the coupling constants are only nonzero when
�

(q)
m and �

(q)
m′ are also nearly phase matched, i.e., within the

main lobe of the sinc function. Combining this fact with the
need for phase matching over δ in the integral [i.e., condi-
tion (b) above], we can see [via (A2), for example] that we
need δ � 2�

(q)
m /Tnl ∼ 2�

(q)
m′ /Tnl ∼ T −1

nl . Thus, this argument
suggests that the effective limits of the integral (44) scale
as |δ/�| � 1/Rfill. Finally, comparing this to the detuning at
which the second-order term of (A8) becomes important, i.e.,
|δ/�| ∼ Rfill/β2p, we see that so long as Rfill �

√
β2p (which

is generically the case in most experiments, both on chip and
in free space), then the first-order expansion in δ is consistent.

APPENDIX B: KRAMERS-KRONIG–LIKE RELATIONSHIP
BETWEEN DISSIPATIVE AND DISPERSIVE PART OF

NONLINEAR COUPLING CONSTANTS

In this Appendix we show how the real (giving rise to
dissipation) and imaginary (giving rise to coherent cascade
dynamics) parts of the coupling constants ξnmn′m′ are related
by means of a Kramers-Kronig–like relationship, as a conse-
quence of causality.

First, we start with the contribution to the nonlinear part of
the master equation. Instead of the form (20), we begin with
a master equation which only applies the Born approximation
[separability of system and reservoir density matrices under
the integral in (20)], but not the Markov approximation that

corresponds to the replacement ρ̂(t − τ ) → ρ̂(t ). This mas-
ter equation, sometimes called the Nakajima-Zwanzig master
equation, can be derived via projector operator techniques
[43] and is given by

Lnlρ̂ = −
∫ ∞

0
dτ trP̄ [V̂nl(t ), [V̂nl(t − τ ), ρ̂(t − τ )ρ̂P̄ ]].

(B1)
Since both this equation and the time-convolutionless Born-
Markov master equation in (20) can be derived using
second-order perturbation theory, the error associated with
both equations can be expected to have the same scaling
with the system-bath coupling [43]. As such, while the Born-
Markov form in (20) is much more suitable for calculations,
the Born form in (B1) shows explicitly that the master-
equation theory has a causal structure, in that the evolution
of the density matrix at time t only depends on the state
of the system at times t ′ < t . Following similar steps to the
derivation in Sec. II, we can write (B1) in the form

Lnlρ̂ =
∑
m′,n′

∑
m,n

∫ ∞

−∞
dτ h′

mnm′n′ (τ )Lmnm′n′ (t )ρ̂(t − τ )

+ H.c., (B2)

where h′
mnm′n′ (τ ) = hmnm′n′ (τ )θ (τ ), with θ (τ ) the Heaviside

step function, and we have defined the superoperator

Lmnm′n′ (t )ρ̂ = ei(ωsm′+ωsn′−ωsm−ωsn )t [ŝmŝnρ̂, ŝ†
m′ ŝ

†
n′]. (B3)

In this form, it is clear that the evolution of the density matrix
of the system depends on a set of bath memory functions
h′

mnmn′ (τ ) which vanish explicitly for τ < 0, a manifestation
of causality, as the density operator at time t cannot depend
on the state of the density matrix at time t ′ > t .

We can then define a (frequency-shifted) Fourier transform
of this function

ξmnm′n′ (ω) :=
∫ ∞

−∞
dτ h′

mnm′n′ (τ )ei(ω−ωsm−ωsn )τ . (B4)

If we assume fmn(ω) to be a continuous and real function of
ω, we can apply the Sokhotski-Plemelj theorem for integrals
over the real axis to find

Re{ξmnm′n′ (ω)} =
{

1
2 fm′n′ (ω) fmn(ω), ω > 0
0, ω < 0,

(B5a)

Im{ξmnm′n′ (ω)} = −P
∫ ∞

0

dω′

2π

fm′n′ (ω′) fmn(ω′)
ω′ − ω

. (B5b)

Since ξmnm′n′ (ω) is a (shifted) Fourier transform of a func-
tion h′

mnm′n′ (τ ) which vanishes for τ < 0, by Titchmarsh’s
theorem [57], it is an analytic function of complex ω in the
upper half plane. As such, we can use the residue theorem∫

C
dω′ ξmnm′n′ (ω′)

ω′ − ω
= 0 (B6)

for any contour C which is entirely located in the upper half
plane. To derive the Kramers-Kronig–like relationship, we can
choose a counterclockwise contour which approaches from
the interior of the contour a path consisting of a part along
the real axis and a semicircle with radius R → ∞; for well-
behaved phase-matching functions fnm(ω), the contribution
along this semicircle vanishes due to the exponential factor
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in (B4). We then evaluate (B6) by using again the Sokhotski-
Plemelj theorem, finding the Kramers-Kronig–like relations

Re{ξmnm′n′ (ω)} = 1

π
P

∫ ∞

−∞
dω′ Im{ξmnm′n′ (ω′)}

ω′ − ω
, (B7a)

Im{ξmnm′n′ (ω)} = − 1

π
P

∫ ∞

−∞
dω′ Re{ξmnm′n′ (ω′)}

ω′ − ω
.(B7b)

We observe that the nonlinear coupling constants from
Sec. II are related to these functions by ξmnm′n′ (ωsm + ωsn) =
ξmnm′n′ , and thus for the SPOPO model ξm,q−m,m′,q−m′ (ωpq) =
ξ

(q)
mm′ . As such, we can conclude that the dissipative part of

the nonlinear interaction, which gives rise to incoherent and
nonunitary evolution of the system signal modes and arises
from real two-photon transitions, and the dispersive cascade
part, which gives rise to coherent and unitary evolution of
the system signal modes and arises from virtual two-photon
transitions, are not independent of each other, and indeed the
existence of one implies the existence of the other. The result
of this is that a theory of SPOPOs which includes nonlinear
two-photon loss must also generally include the four-wave-
mixing cascaded nonlinear Hamiltonian in order to preserve
the causal structure of the interaction of the system signal
modes with the pump reservoir.

APPENDIX C: CORRESPONDENCE TO THE CLASSICAL
PULSE-PROPAGATION THEORY OF SPOPOs

In this Appendix we connect the mean-field limit of
our quantum input-output theory for the SPOPO with a
pulse-propagation model more commonly used in classical
nonlinear optics. In the low-gain (i.e., short-crystal) limit,
we show that the propagation of a classical pulse through
a nonlinear χ (2) crystal can be approximated as an input-
output map; iterating this map over multiple round-trips of
the cavity in the low-loss limit yields continuous-time classi-
cal dynamics which correspond to the mean-field dynamics
of the quantum theory. Notably, this derivation produces
a mapping between classical figures of merit, such as the
second-harmonic conversion efficiency, and the parameters
used in the quantum model, thus conceptually bridging the
theoretical results of this paper with more familiar models
widely used in nanophotonic engineering. These results also
provide an intuitive interpretation of the approximations made
in the theory, connecting them to continuous-time approxi-
mations commonly employed in the classical domain to treat
low-gain high-finesse SPOPOs.

We begin by considering the mean-field dynamics gener-
ated by the quantum model given in Sec. III. Starting from
the quantum stochastic differential equations for the SPOPO
(35), we take their expectation value and factor the resulting
products using the mean-field approximation:

d〈ŝm〉
dt

= −(κm + iδm)〈ŝm〉 − 2
∑

q

fm,q−mα(q)〈ŝq−m〉∗

− 2
∑

q

∑
n

ξ (q)
nm 〈ŝq−m〉∗〈ŝn〉〈ŝq−n〉. (C1a)

Here a mean-field approximation was used to factor
〈ŝ†

q−mŝnŝq−n〉 into 〈ŝq−m〉∗〈ŝn〉〈ŝq−n〉. This approximation is

justified if the internal state of the SPOPO is a multimode
coherent state, e.g., in the classical regime where loss is much
larger than nonlinearity.

In addition, the input-output relationships for the signal and
pump channels reduce to〈

b̂(m)
out

〉 =
√

2κm〈ŝm〉, (C1b)〈
â(q)

out

〉 = α(q) +
∑

m

fm,q−m〈ŝm〉〈ŝq−m〉, (C1c)

since 〈b̂(m)
in 〉 = 〈â(q)

in 〉 = 0. Thus, we see that the quantum the-
ory consists of only the parameters κm, describing the linear
loss rates; α(q), describing the pump flux amplitudes; and fmn

and ξ
(q)
mn , representing the nonlinear interactions in the system.

We now introduce a simple but typical description of clas-
sical SPOPOs, which uses a set of coupled-wave equations to
model pulse propagation of pump and signal through the crys-
tal and an iterative loop to model the recycling of the signal
within the cavity. In the mostly collimated, one-dimensional
cavity situation considered in Sec. IV, the classical electric
fields of the signal and pump can be written as

Es(t ; r) = Es(r⊥)eik(ω0 )ze−iω0tαs(t ; z) + c.c., (C2a)

Ep(t ; r) = Ep(r⊥)eik(2ω0 )ze−2iω0tαp(t ; z) + c.c., (C2b)

where Es and Ep are some suitable mode functions, k(ω) is the
wave-vector component as a function of frequency along the
propagation direction z, and ω0 is the signal carrier frequency
chosen such that αs(t ) and αp(t ) are envelope functions for
the signal and pump fields satisfying the slowly varying en-
velope approximation. The signal envelope can be related to
the Fourier mode amplitudes of a cavity with round-trip time
T = 2π/� via

αs(t ; z) = 1√
T

∑
m

αsm(z)e−im�t . (C3a)

Although the spectrum of the pump envelope αp(t ) can techni-
cally be continuous, if we assume that the frequencies 2ω0 +
q� defined by the time window T are sufficiently fine to
approximate that spectrum (or indeed, if the system is pumped
with a mode-locked laser), then we can also similarly write

αp(t ; z) = 1√
T

∑
q

αpq(z)e−iq�t . (C3b)

The coupled-wave equations which describe the evolution
of the envelope functions within the crystal are

∂zαs(t ; z) = iks(i∂t )αs(t ; z) + ε(αpα
∗
s )(t ; z), (C4a)

∂zαp(t ; z) = ikp(i∂t )αp(t ; z) − 1
2εα2

s (t ; z), (C4b)

where we have introduced kp(ω̄) = k(2ω0 + ω̄) − k(2ω0) and
ks(ω̄) = k(ω0 + ω̄) − k(ω0), allowing us to write the dis-
persion operators as formal power series, e.g., ks(i∂t ) =∑

d (1/d!)k(d )
s (0)(i∂t )d , where k(d )

s denotes the dth derivative
of ks. Partial differential equations (PDEs) of this form can be
readily solved numerically, e.g., via Fourier split-step meth-
ods.
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To bring the classical dynamics closer to the quantum
formalism, we turn this pair of PDEs into a discrete set of or-
dinary differential equations by moving to the Fourier domain
using (C3). We also move into an interaction frame via

α̃sm(z) = e−iks (m�)zαsm(z), (C5a)

α̃pq(z) = e−ikp(q�)zαpq(z). (C5b)

With both of these transformations, the coupled-wave equa-
tions simplify to (suppressing z arguments)

dα̃sm

dz
= ε√

T

∑
q

α̃pqα̃
∗
sq−me+i�km,q−mz, (C6a)

dα̃pq

dz
= −1

2

ε√
T

∑
m

α̃smα̃sq−me−i�km,q−mz, (C6b)

where we have defined the momentum mismatch to be

�kmn = kp(m� + n�) − ks(m�) − ks(n�). (C7)

Our task is now to integrate these equations of motion through
a crystal of length L. For simplicity, we specify the input facet
of the crystal to be at z = −L/2, with the output facet at z =
L/2.

For both signal and pump, we also henceforth define α̃ =
α̃(z = −L/2) and α̃′ = α̃(z = +L/2) to suppress the argu-
ments at the facets, and we reserve α̃(z) to denote the field
only in the interior (i.e., when −L/2 < z < L/2).

In a limit where the single-pass gain is sufficiently weak,
we can approximately solve these equations of motion via a
Picard iteration. Let the Picard iterates for signal and pump be
α̃(i)

s (z) and α̃(i)
p (z). To determine the number of iterations we

should perform, we introduce a parameter δ such that

εL√
T

∼ αp ∼ δ1/2, (C8)

and we perform the Picard iteration until further iterations
no longer give any corrections of O(δ), that is, we want to
derive the dynamics via Picard iteration up to first order in δ,
assuming αs is zeroth order in δ.

As usual, the zeroth iteration is simply given by α̃(0)
s = αs

and α̃(0)
p (z) = αp. The first iteration is then

α̃(1)
sm (z) = α̃sm + εL√

T

∑
q

α̃pqα̃
∗
sq−mImq(z), (C9a)

α̃(1)
pq (z) = α̃pq − 1

2

εL√
T

∑
m

α̃smα̃sq−mI∗
mq(z), (C9b)

where we have introduced

Imq(z) :=
∫ z

−L/2
exp(i�km,q−mz′)

dz′

L
. (C10)

Inspecting the second terms of (C9), we see that they are ∼δ

and ∼δ1/2 for signal and pump, respectively. The next Picard
iteration gives

α̃(2)
sm (z) = α̃(1)

sm (z) − ε2L2

4T

∑
q,n

α̃∗
sq−mα̃snα̃sq−nHmnq(z)

+ O

(
ε2L2

T
α̃∗

p ∼ δ3/2

)
+ O

(
ε2L2

T
|α̃p|2 ∼ δ2

)
,

α̃(2)
pq (z) = α̃(1)

pq (z) + O

(
ε2L2

T
α̃p ∼ δ3/2

)

+ O

(
ε3L3

T 3/2
α̃2

p ∼ δ5/2

)
, (C11)

where we have introduced

Hmnq(z) = 2
∫ z

−L/2
exp(i�km,q−mz′)I∗

nq(z′)
dz′

L
. (C12)

Note that for the pump, we get no new terms at O(δ). It can
also be seen that further Picard iterations do not yield any
further corrections to either field at O(δ). Thus, we conclude
that for small δ, the crystal propagation implements a map
α̃sm �→ α̃′

sm according to

α̃′
sm = α̃sm + εL√

T

∑
q

α̃pqα̃
∗
sq−mImq

(
L

2

)
(C13a)

− ε2L2

4T

∑
q,n

α̃∗
sq−mα̃snα̃sq−nHmnq

(
L

2

)
,

α̃′
pq = α̃pq − 1

2

εL√
T

∑
m

α̃smα̃sq−mI∗
mq

(
L

2

)
, (C13b)

where the next-order correction to these equations are O(δ3/2).
Having completed the propagation through the crystal, we

need to take care of the remaining cavity elements, which act
only on the signal field. According to Sec. III, this consists of
applying two additional elements: a dispersion-compensating
element to cancel the linear dispersion of the crystal and an
output coupler (or scattering loss) which attenuates the signal
field.

First, in the short-crystal limit we are considering, the
dispersion-compensation element can be modeled as a simple
discrete transformation α̃sm �→ αsm, i.e., physically undoing
the interaction frame transformation we performed in (C5).
More precisely, the laboratory-frame coupled-wave equa-
tions (C4) involve dispersion and nonlinearity both acting
simultaneously, and these differential operators do not com-
mute in general. However, in the short-crystal limit, we can
approximate the action of these two terms via a Suzuki-Trotter
expansion as is done, for example, in the derivation of Fourier
split-step methods for numerical pulse propagation. At lead-
ing order in δ, then, we can factor out the linear dispersion
as occurring after the nonlinearity, which is immediately can-
celed by a separate dispersion-compensating element placed
in series with the crystal. The effective round-trip dynamics
of these two elements then become well described by (C6),
but with α̃sm �→ αsm and so on.

Finally, the linear loss can be modeled as a beam splitter
with small field-outcoupling ratio �m ∼ δ1/2 for each signal
Fourier mode αsm,

αsm �→
√

1 − �2
mαsm ≈ (

1 − 1
2�2

m

)
αsm, (C14a)

α
(m)
s,out = �mαsm, (C14b)

where α
(m)
s,out is the outcoupled Fourier mode. Again, consistent

with the low-gain low-loss limit, we assume �m � 1 and only
consider the effect of the beam splitter only up to O(�2

m ∼ δ).
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Putting all three of these effects together, the round-trip
recurrence relationship for the internal signal Fourier modes
can be written, up to O(δ), as

α′
sm ≈

(
1 − �2

m

2

)
αsm + εL√

T

∑
q

α̃pqα
∗
sq−mImq

(
L

2

)

− ε2L2

4T

∑
q,n

α∗
sq−mαsnαsq−nHmnq

(
L

2

)
. (C15)

Again, α′
s and αs denote the signal field immediately before

and immediately after completing one round-trip. If we also
define α

(q)
p,out to be the post-crystal pump field α̃pq(z = L/2)

after linear dispersion compensation, then

α
(q)
p,out ≈ αp − 1

2

εL√
T

∑
m

αsmαsq−mI∗
mq

(
L

2

)
. (C16)

Inspecting the equations above, we see that we can get a
form very similar to (C1) if we simply consider the finite-
difference ratio (α′

s − αs)/T , which is given by

α′
sm − αsm

T
= − �2

m

2T
αsm + εL

T 3/2

∑
q

αpqα
∗
sq−mImq

(
L

2

)

− ε2L2

4T 2

∑
q,n

α∗
sq−mαsnαsq−nHmnq

(
L

2

)
. (C17)

Comparing this against (C1), we see that if we make the
correspondence 〈ŝm〉 ↔ αsm and assume (α′

sm − αsm)/T →
d〈ŝm〉/dt in the limit T → 0, then we can make the corre-
spondences

κm ↔ �2
m

2T
, (C18a)

2α(q) f (q)
m,q−m ↔ εL

T 3/2
αpqImq

(
L

2

)
, (C18b)

2ξ (q)
nm ↔

(
εL

2T

)2

Hmnq

(
L

2

)
. (C18c)

To process these correspondences further, it is easy to show
that

Imq

(
L

2

)
= sinc

(
1

2
�km,q−mL

)
, (C19)

whereas, e.g., via integration by parts, we have

Hmnq

(
L

2

)
= sinc

(
1

2
�km,q−mL

)
sinc

(
1

2
�kn,q−nL

)
+ 2i(�km,q−m − �kn,q−n)−1L−1

×
[

cos

(
1

2
�kn,q−nL

)
sinc

(
1

2
�km,q−mL

)

− cos

(
1

2
�km,q−mL

)
sinc

(
1

2
�kn,q−nL

)]
.

(C20)

Thus, this nonlinear interaction tensor in the classical theory
is similar in form to its counterpart ξ

(q)
mn in the quantum theory,

as shown in (A7). Putting everything together, we have that

the mean field of the quantum theory and the classical theory
are equivalent if we also impose the correspondences

g0 ↔
(

εL

2T

)2

, (C21a)

�mn ↔ 1

2
�kmnL, (C21b)

α(q) ↔ 1√
T

αpq. (C21c)

APPENDIX D: SIMULATION METHOD

Here we briefly review the key results from input-output
theory we utilize in the numerical simulations of Sec. VII.
Most of the formulas in this Appendix follow the presentation
in Ref. [19].

We obtain the unconditional evolution of the system den-
sity matrix ρ(t ) using the master equation in Lindblad form

d ρ̂

dt
= −i[Ĥsys, ρ̂] +

∑
i

L̂iρ̂L̂†
i − 1

2

∑
i

{L̂†
i L̂i, ρ̂}, (D1)

where Ĥsys is the system Hamiltonian and the L̂i enumerate all
the Lindblad operators of the system. To compute the steady-
state density matrix ρ̂ss satisfying d ρ̂ss/dt = 0, we simulate
(D1) to a sufficiently large time T such that ρ̂(t > T ) ≈ ρ̂(T ).
To obtain the steady-state squeezing spectrum that results
from performing homodyne detection on a port represented
by a particular Lindblad operator L̂, we first compute the
steady-state homodyne correlation function

Fhom(τ ) = tr[(L̂ + L̂†)Â(τ )] + δ(τ ), (D2)

where A(τ ) is the solution to the differential equation

dÂ

dτ
= −i[Ĥsys, Â] +

∑
i

L̂iÂL̂†
i − 1

2

∑
i

{L̂†
i L̂i, Â} (D3)

with initial condition Â(0) = L̂ρ̂ss + ρ̂ssL̂†. The squeezing
spectrum is then the Fourier transform of the correlation func-
tion

Shom(ω) := 2 Re

( ∫ ∞

0
e−iωτ Fhom(τ )dτ

)
. (D4)

As described in Sec. VII, the squeezing spectrum is computed
at the optimal squeezing angle. Thus, the Lindblad operator
that we use in these simulations is given by L̂ = √

2κ Ŝ1e−iθopt .
To obtain conditional evolution, we simulate the stochas-

tic Schrödinger equation (SSE), by solving the unnormalized
SSE numerically and normalizing the state at every time step.
The unnormalized SSE is

d|ψ〉 =
(

f̂ dt +
∑

i

ĝi dWi

)
|ψ〉, (D5)

where dWi are differentials of independent standard Wiener
processes, and the deterministic and stochastic components of
the stochastic differential equation are, respectively,

f̂ := −iĤsys +
∑

i

(
− 1

2
L̂†

i L̂i + 〈L̂i + L̂†
i 〉L̂i

)
, (D6a)

ĝi := L̂i. (D6b)
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