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Coherence Poincaré sphere of partially polarized optical beams
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A Poincaré sphere representation of electromagnetic spectral two-point spatial coherence was recently in-
troduced for fully polarized light beams. In this work, we employ the singular-value decomposition of the
cross-spectral density matrix and establish a rigorous interpretation for the formalism in the context of partial
polarization. At a single point, the construction reduces to the traditional polarization Poincaré sphere, which
therefore can be regarded as a limiting case of the coherence sphere. The formalism is illustrated with paraxial
blackbody radiation and Gaussian Schell-model beams. We expect our results will find use in understanding the
coherence-polarization state of optical beams in situations dealing with random light.
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I. INTRODUCTION

Spatial coherence is a fundamental characteristic of light
fields which for scalar beams is traditionally quantified by the
visibility of intensity fringes in Young’s two-pinhole interfer-
ence [1,2]. Today, it plays a vital role in diverse areas such as
astronomy, interferometry, medical optics, and ghost imaging
[3]. However, the recent progress in optical physics involving
evanescent near fields and the growing complexity of compo-
nents and systems in nanophotonics and plasmonics often call
for rigorous electromagnetic treatment of light. Along with
this development the electromagnetic theory of coherence
with emphasis on the polarization features has attracted a great
deal of research within the last two decades [4–9]. Among the
very recent results is the introduction of the Poincaré sphere
construction and the related Stokes parameters that graphi-
cally display the state of spatial electromagnetic coherence of
fully polarized random light beams [10]. The paramount quan-
tity was a matrix descriptor of two-point coherence whose
mathematical properties are analogous to those of the con-
ventional polarization matrix. The sphere representation of
spatial coherence is similar to the customary Poincaré sphere
in polarization optics [4] and the Bloch sphere of quantum
mechanics [11].

In this paper, we establish the interpretation of the coher-
ence Poincaré sphere for partially polarized light and show
that for a general, nonuniformly partially polarized beam two
coherence Poincaré vectors on the Poincaré sphere are needed
which describe the state and degree of spatial coherence at two
points. More precisely, the directions of the coherence vectors
are determined by the singular vectors related to the larger sin-
gular value of the cross-spectral density matrix. When the two
points coincide, the traditional polarization Poincaré sphere is
obtained, whereas in the case of full polarization the results
of [10] are found. The formalism is illustrated with paraxial
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radiation emanating from a blackbody cavity as well as with
Gaussian Schell-model (GSM) beams.

The structure of this paper is as follows: in Sec. II we revisit
the fundamental descriptors of electromagnetic coherence to-
gether with the matrix formalism that underlies the coherence
Poincaré sphere. In Sec. III, the Poincaré sphere is introduced
and interpreted for nonuniformly partially polarized beams.
Section IV illustrates the formalism with examples. Finally, in
Sec. V we briefly summarize the main findings of this work.

II. COHERENCE AND POLARIZATION
OF ELECTROMAGNETIC BEAMS

A. Central concepts

We begin by recalling the concepts of electromagnetic
coherence theory in the space-frequency domain that are
relevant for this work. Our analysis considers a random, poly-
chromatic, and statistically stationary electromagnetic beam
whose electric-field realization at a point r and time t is given
by E(r, t ) = [Ex(r, t ), Ey(r, t )]T, with the superscript T de-
noting the matrix transpose. The spatial coherence properties
of this beam are described by the 2×2 cross-spectral density
(CSD) matrix [2,4,7,12]

W(r1, r2) = 1

2π

∫ ∞

−∞
�(r1, r2, τ )eiωτ dτ

=
[
Wxx(r1, r2) Wxy(r1, r2)

Wyx(r1, r2) Wyy(r1, r2)

]
, (1)

which is obtained via the Wiener-Khintchine theorem as
the Fourier transform of the mutual coherence matrix
�(r1, r2, τ ) = 〈E∗(r1, t )ET(r2, t + τ )〉. In these expressions
τ = t2 − t1, and the angle brackets and asterisk stand for the
time average and complex conjugate, respectively. If the field
is ergodic, the brackets may also denote ensemble averaging.
For brevity, here and henceforth, the frequency dependence
is not explicitly shown in the spectral quantities. The polar-
ization properties of the field are specified by the polarization
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matrix defined by �(r) = W(r, r). The polarization matrix is
Hermitian, �(r) = �†(r), with the dagger denoting the Her-
mitian adjoint, whereas the CSD matrix is quasi-Hermitian in
the sense that W†(r1, r2) = W(r2, r1). Both matrices satisfy
certain non-negative definiteness conditions [2]. Furthermore,
the polarization matrix of any light beam can be uniquely
expressed as the sum

�(r) = �(u)(r) + �(p)(r), (2)

where the former matrix represents a completely unpolarized
field and the latter represents a fully polarized field. The
degree of polarization is then defined as [2,4,7]

P(r) = tr �(p)(r)

tr �(r)
=

[
1 − 4 det �(r)

tr2�(r)

]1/2

, (3)

with det and tr denoting the matrix determinant and trace,
respectively. Physically, this quantity therefore describes the
spectral density ratio of the polarized part and the total beam.
The degree of polarization is bounded as 0 � P(r) � 1, where
the lower and upper limits correspond to unpolarized and fully
polarized fields, respectively [2].

Another frequently used representation for the polarization
of light is the set of one-point Stokes parameters that can be
written in terms of the polarization matrix elements �αβ (r) =
Wαβ (r, r), with (α, β ) ∈ (x, y), as [4]

S0(r) = �xx(r) + �yy(r), (4a)

S1(r) = �xx(r) − �yy(r), (4b)

S2(r) = �xy(r) + �yx(r), (4c)

S3(r) = i[�yx(r) − �xy(r)]. (4d)

These parameters are real and can be normalized via s j (r) =
S j (r)/S0(r), j ∈ (0, . . . , 3). Their illustrative value is man-
ifested with the renowned construction of the polarization
Poincaré sphere that includes all possible states of polariza-
tion, full or partial, as points on or within a unit sphere in
(s1, s2, s3) space. This representation is based on the expres-
sion

s2
1(r) + s2

2(r) + s2
3(r) = P2(r), (5)

and the corresponding Poincaré vector is defined as s(r) =
[s1(r), s2(r), s3(r)]. The length of the Poincaré vector is thus
given by the degree of polarization |s(r)| = P(r), while the
direction is determined by the state of polarization related to
�(p)(r) in Eq. (2).

The electromagnetic degree of coherence that indicates
the level of two-point correlations between the electric field
components is defined (in squared form) as [9,13]

μ2(r1, r2) = tr[W†(r1, r2)W(r1, r2)]

S0(r1)S0(r2)
. (6)

The physical interpretation of this quantity relates to the
sum of contrasts of the spectral density and polarization-state
modulations in interference [14]. It is normalized as 0 �
μ(r1, r2) � 1, with the lower and upper bounds representing
complete incoherence and full coherence, respectively, at the
two points on frequency ω.

B. The Gram matrix representation of electromagnetic
spatial coherence

We proceed to consider the coherence information con-
tained in the matrix

�(r1, r2) = W†(r1, r2)W(r1, r2) (7)

and introduce the abbreviations W(r1, r2) = W12 and
�(r1, r2) = �12, which will be employed throughout the text
for legibility unless clarity requires otherwise. The matrix �12

is formally defined as the Gram matrix [15] of the set of CSD
matrix columns, and it is by definition a Hermitian and non-
negative-definite matrix obeying �†

12 = �12 and det �12 � 0.
These are the key mathematical properties that �12 shares
with the traditional polarization matrix, and they constitute
the main motivation for the description of coherence in terms
of �12.

We note that the unique decomposition [10]

�12 = �
(u)
12 + �

(p)
12 = A12

[
1 0
0 1

]
+

[
B12 D12

D∗
12 C12

]
, (8)

with A12, B12, C12 � 0 and det �(p)
12 = 0, holds for any pair

of points. This feature is analogous to the decomposition of
the polarization matrix into the parts corresponding to an
unpolarized beam and a polarized beam in Eq. (2). Introducing
notation for the elements of �12 via

�12 =
[
�xx(r1, r2) �xy(r1, r2)
�yx(r1, r2) �yy(r1, r2)

]
, (9)

the parameters A12, B12, C12, and D12 can be equivalently
written in terms of the �12 elements as

A12 = 1

2
tr �12 − 1

2

√
tr2 �12 − 4 det �12, (10a)

B12 = 1

2
[�xx(r1, r2) − �yy(r1, r2)]

+ 1

2

√
tr2 �12 − 4 det �12, (10b)

C12 = 1

2
[�yy(r1, r2) − �xx(r1, r2)]

+ 1

2

√
tr2 �12 − 4 det �12, (10c)

D12 = �xy(r1, r2). (10d)

However, unlike with the polarization matrix, in the context of
�12 the total field is not an incoherent mixture of the two fields
corresponding to �

(u)
12 and �

(p)
12 . Further, the related matrices

W(u)
12 and W(p)

12 and fields are not unique.
We emphasize that in general �12 �= �21, and thus, the co-

herence information in the two matrices is different. However,
it is presumable that these matrices are connected according to
the quasi-Hermiticity of the CSD matrix. Insight into this fea-
ture is gained by invoking the singular-value decomposition
(SVD) [16] of the CSD. The SVD reads W12 = UDV†, where
U = [û+, û−] and V = [v̂+, v̂−] are unitary matrices and D =
diag[ν+, ν−], with ν+ and ν− being the singular values of
the CSD. The columns of U and V are complex unit vectors
obeying W12v̂± = ν±û± and W†

12û± = ν±v̂±. The singular
values are real and satisfy ν+ � ν− � 0. It readily follows that
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v̂± and û± are the eigenvectors of �12 and �21, respectively,
while ν2

± are the related eigenvalues for both matrices, i.e.,
�12v̂± = ν2

±v̂± and �21û± = ν2
±û±. These eigenvalue equa-

tions admit analytical solutions leading to the singular values
of the form (see, e.g., [8,16,17])

ν2
± = 1

2 tr �12[1 ± P�(r1, r2)], (11)

where

P�(r1, r2) = tr �
(p)
12

tr �12
=

(
1 − 4 det �12

tr2�12

)1/2

(12)

satisfies 0 � P�(r1, r2) � 1 and can be viewed as represent-
ing the (trace) portion of �

(p)
12 in �12. The definition of P� is

analogous to that of P in Eq. (3) but in the context of �12.
Furthermore, we can write

�12 = ν2
+v̂+v̂†

+ + ν2
−v̂−v̂†

−, (13)

�21 = ν2
+û+û†

+ + ν2
−û−û†

−. (14)

We have thus established the connection of �12 and �21

via the SVD of the CSD matrix. The interpretation of these
expressions will be developed further in Sec. III.

We shall illustrate the implications of the cases P� = 1 and
P� = 0, which are of specific interest as the bounds of P�. To
this aim we employ Eq. (11) and write

P�(r1, r2) = ν2
+ − ν2

−
ν2+ + ν2−

. (15)

The condition P� = 1 is equivalent to ν− = 0 and the CSD
matrix being singular. It then factorizes due to the SVD as
W12 = ν+û+v̂†

+, leading to �12 = ν2
+v̂+v̂†

+. For W21 we find
W21 = ν+v̂+û†

+, resulting in �21 = ν2
+û+û†

+. When P� = 1
holds everywhere, then �12 = �

(p)
12 in Eq. (8), and the field is

necessarily fully polarized at all points [10]. This point allows
us to connect the SVD to the coherence characteristics. In-
deed, it was shown earlier (see the supplement in [10]) that for
a nonuniformly fully polarized beam the CSD can be written
as W12 = W12â∗

1 âT
2 , where W12 is a scalar-field CSD function

and the complex (column) unit vector â j represents the nor-
malized Jones vector at point r j , j ∈ (1, 2). It follows that

�12 = |W12|2â∗
2 âT

2 . (16)

In an analogous manner we would find that �21 = |W12|2â∗
1 âT

1 .
It is now evident that ν+ = |W12|, v̂+ = â∗

2, and û+ = â∗
1. As

a summary, we see that �12 expresses the polarization state
in r2, while �21 does so in r1. These results highlight, in view
of the SVD and the Jones vectors, the different information
content of �12 and �21 in the case of P� = 1.

If P� = 0 holds, Eq. (15) implies that the CSD matrix has
a degenerate singular value ν = ν+ = ν−. According to the
SVD, the CSD matrix is generally of the form W12 = νM12,
where M12 = UV† is a unitary matrix. In this special case the
CSD matrix is normal, W†

12W12 = W12W†
12, and thus, �12 =

�21. In other words, the information contents of the two
matrices are the same. Moreover, if P� = 0 holds throughout
the considered volume, the field is necessarily unpolarized in
that domain [10]. However, we remark that not all unpolarized
fields obey this condition. Specific examples of fields with

P� = 0 are the pure unpolarized states that remain unpolar-
ized in Young’s interferometer [18]. Their CSD matrix is of
the form W12 = W12I, where I is the 2×2 identity matrix.
Consequently, for every �

(u)
12 one can associate W12 of a pure

unpolarized beam, although the CSD matrix does not have to
be of this form since in general W12 = νM12. However, this
general expression can be rendered in the form of a pure un-
polarized beam using the operations U†W12V. In other words,
every field with P� = 0 can be formally transformed into a
pure unpolarized beam by performing the unitary operations
U∗ at r1 and VT at r2.

III. COHERENCE POINCARÉ SPHERE

In this section, we illustrate the content of matrix �12 at
two points in terms of the geometrical representation that we
call the coherence Poincaré sphere [10]. Next, we establish a
rigorous interpretation of the coherence Poincaré sphere for
all electromagnetic beams regardless of the state and degree
of polarization.

The Hermiticity of �12 allows us to form four real-valued
Stokes parameters analogous to those of the polarization
matrix listed in Eqs. (4a)–(4d) [10]. The related Stokes pa-
rameters are given in terms of Eq. (9) as

Q0(r1, r2) = �xx(r1, r2) + �yy(r1, r2), (17a)

Q1(r1, r2) = �xx(r1, r2) − �yy(r1, r2), (17b)

Q2(r1, r2) = �xy(r1, r2) + �yx(r1, r2), (17c)

Q3(r1, r2) = i[�yx(r1, r2) − �xy(r1, r2)]. (17d)

These quantities can be written at two points or in a single
point, and they can be normalized with the spectral density
via

q j (r1, r2) = Qj (r1, r2)

S0(r1)S0(r2)
, j ∈ (0, . . . , 3). (18)

The Poincaré sphere of electromagnetic spatial coherence for
a general partially polarized beam is then defined by the equa-
tion

q2
1(r1, r2) + q2

2(r1, r2) + q2
3(r1, r2) = P2

�(r1, r2)μ4(r1, r2),
(19)

with μ and P� given in Eqs. (6) and (12), respectively. The
above relation forms an origin-centered sphere with a radius
of 0 � P�μ2 � 1 in (q1, q2, q3) space. This sphere together
with the coherence Poincaré vector

q(r1, r2) = [q1(r1, r2), q2(r1, r2), q3(r1, r2)] (20)

provides a graphical representation for electromagnetic spatial
coherence. The length of q is P�μ2, and its direction describes
the state of electromagnetic spatial coherence of the beam,
as will be illustrated shortly. First, we inspect spatially fully
coherent beams with μ = 1. This necessitates that P� = 1
[10], and we see that the surface of the sphere, |q| = 1, cor-
responds to complete spatial coherence. Second, the origin
encompasses the cases of μ = 0 and/or P� = 0. The former
condition exclusively implies complete spatial incoherence,
while the latter includes the pure unpolarized beams and those
which can be transformed to that type by the specific unitary
operations at the two points, as discussed earlier.
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Next, we interpret the direction of the coherence Poincaré
vector q12 = q(r1, r2). Equation (8) and the properties
B12 � 0, C12 � 0, and det �(p)

12 = 0 allow us to decompose
�

(p)
12 into the form

�
(p)
12 = tr �

(p)
12 ê∗

12êT
12, (21)

where ê12 = [e12x, e12y]T is a complex unit vector describ-
ing the beam’s state of electromagnetic spatial coherence at
points r1 and r2. Comparison of Eqs. (8) and (21) yields
|e12x| = √

B12/(B12 + C12), |e12y| = √
C12/(B12 + C12), and

D12 = √
B12C12 exp[i(ϕ12y − ϕ12x )], with ϕ12x and ϕ12y denot-

ing the phases of e12x and e12y, respectively. Inserting Eq. (21)
into Eq. (8) and then using Eqs. (10a) and (12) result in

�12 = tr �12

(
1 − P�

2
I + P�ê∗

12êT
12

)
. (22)

It is insightful to contrast this representation with the implica-
tions of the SVD of CSD. Equations (13) and (11), together
with the fact that v̂+v̂†

+ + v̂−v̂†
− = I, lead to

�12 = tr �12

(
1 − P�

2
I + P�v̂+v̂†

+

)
, (23)

and thus, ê12 = v̂∗
+. An analogous consideration for �21 shows

that ê21 = û∗
+. The vectors ê12 and ê21 therefore directly

describe the complex conjugates of the singular vectors per-
taining to the larger singular value of the CSD.

Using Eq. (22), the �12 matrix Stokes parameters take the
forms

Q0(r1, r2) = 2A12 + tr �
(p)
12 , (24a)

Q1(r1, r2) = tr �
(p)
12 (|e12x|2 − |e12y|2), (24b)

Q2(r1, r2) = tr �
(p)
12 2Re(e∗

12xe12y), (24c)

Q3(r1, r2) = tr �
(p)
12 2Im(e∗

12xe12y), (24d)

where Re and Im denote the real and imaginary parts, respec-
tively. We may normalize these quantities via Eq. (18), make
use of Eq. (6) together with Eq. (12), and after straightforward
developments find that

q12 = P�μ2ŝ12, (25)

where

ŝ12 = [|e12x|2 − |e12y|2, 2Re(e∗
12xe12y), 2Im(e∗

12xe12y)] (26)

is the unit-length vector specified by ê12 and determines the
direction of q12. Using an analogous procedure, we see that
q21 = q(r2, r1) can be expressed as

q21 = P�μ2ŝ21, (27)

where ŝ21 is defined in analogy to Eq. (26), but for ê21. We
conclude that for every matrix �12 with P� �= 0 there is a vec-
tor ê12 = v∗

+ which unambiguously determines the direction
of q12. Further, the direction of q21 that characterizes �21

is exclusively determined by ê21 = u∗
+. The two coherence

vectors are separated by the central angle

θ12 = arccos (ŝ12 · ŝ21), (28)

which is bounded as 0 � θ12 � π . This angle is a geometric
measure of similarity between the electromagnetic coherence
states at the two points described by q12 and q21. The lower
bound θ12 = 0 is obtained when q12 = q21. The upper limit
θ12 = π indicates that the vectors are inverse, q12 = −q21.

The single-point version of vector ê12 reduces to the com-
plex unit (Jones) vector that represents the state of polarization
at that point, as is shown next. To this aim we select, say, point
r1 and notice that the singular values ν± of the polarization
matrix �1 coincide with its eigenvalues [16]. Likewise, the
corresponding singular vectors v̂± = û± are the eigenvectors
of this matrix. Moreover, since Eqs. (22) and (23) hold also
at a single point, we confirm that ê11 = v̂∗

+. Consequently,
ê∗

11 is the eigenvector associated with the larger eigenvalue
of the polarization matrix. We then utilize the decomposition
�1 = ν+v̂+v̂†

+ + ν−v̂−v̂†
−. Using Eq. (3) together with the or-

thonormality of v̂+ and v̂−, this decomposition is expressible
in the form

�1 = tr �1

(
1 − P

2
I + Pv̂+v̂†

+

)
. (29)

We also revisit Eq. (2) and note that the single-point form of
the CSD matrix for the polarized constituent (Sec. II B) can be
written as �

(p)
1 = tr �

(p)
1 â∗

1 âT
1 . This together with Eq. (3) and

the formal analogy of Eq. (10a) allow us to express Eq. (2) in
the form

�1 = tr �1

(
1 − P

2
I + Pâ∗

1 âT
1

)
. (30)

A comparison of Eqs. (29) and (30) shows that v̂+ = â∗
1.

Therefore, ê11 equals the Jones vector â1 representing the
polarization state of the polarized constituent at r1. Conse-
quently, the corresponding single-point unit vector ŝ11 on the
coherence Poincaré sphere reduces to the traditional polariza-
tion Poincaré vector s1. Naturally, analogous reductions hold
at r2.

We summarize the relevant properties of the coherence
Poincaré vectors q12 and q21, which are illustrated in Fig. 1
in (q1, q2, q3) space. Their lengths are the same and equal
to P�μ2, where both P� and μ are invariant under the inter-
change of r1 and r2. Hence, the tips of q12 and q21 are on the
same sphere in (q1, q2, q3) space, and their separation is quan-
tified by the central angle θ12 in Eq. (28). Equations (25) and
(27) constitute the interpretation of the coherence Poincaré
sphere in the context of partially polarized light beams, where
ŝ12 and ŝ21 are determined by v̂∗

+ and û∗
+, respectively, i.e., the

(conjugates of) singular vectors corresponding to the larger
singular value of the CSD. If the field is fully polarized
throughout [10], P� = 1 is valid, and q12 = μ2s2, and q21 =
μ2s1, where the length is defined by the degree of coherence μ

alone and the polarization Poincaré vectors s2 and s1 at the in-
dicated points specify the directions. This shows that the axes
of the coherence Poincaré space represent the polarization
state in full analogy to the single-point formalism. Thus, x and
y polarized beams are located on the q1 axis; ±45◦ polarized
beams are on the q2 axis, and the right-handed and left-handed
circularly polarized beams are on the q3 axis, in the case of
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1

P 2

q12

q21q1

q3

q2

FIG. 1. Illustration of the coherence Poincaré sphere that dis-
plays the state of two-point electromagnetic coherence of a random,
generally partially polarized light beam. The distance from the origin
is P�μ2, and the directions of vectors q12 and q21 are specified by the
state of spatial coherence at points r1 and r2.

complete polarization. Both vectors are needed to illustrate the
coherence-polarization information of a nonuniformly fully
polarized beam on the sphere. If the beam is uniformly po-
larized, then s1 = s2 = s, and only a single vector q = μ2s
is required [10]. Finally, in a single point, regardless of the
degree of polarization, q = P2s is true [10], showing that the
traditional Poincaré sphere is a limiting case of the Poincaré
sphere of two-point spatial coherence, and in the present
context it can be interpreted as a geometrical representation
of the single-point coherence properties of electromagnetic
beams.

IV. EXAMPLES

A. Blackbody radiation

As the first example we consider the radiation emanating
from a circular opening in a cavity containing blackbody
radiation. The 2×2 CSD matrix of the paraxial far field at a
distance of r in the directions specified by the unit vectors r̂1

and r̂2 can be expressed as [19,20]

W(rr̂1, rr̂2) = 2Aa0(ω)

r2

J1(kε
)

kε

I. (31)

Above, A = πε2 is the area of the aperture with radius ε,
J1(x) is the first-order Bessel function, and k = 2π/λ is the
free-space wave number corresponding to wavelength λ. In
addition, 
 = |�2 − �1|, with � j being the projection of r̂ j ,
j ∈ (1, 2), onto the aperture plane, and a0(ω) is the Planck
spectrum as defined in [20]. The CSD matrix and the related
�12 are both proportional to the identity matrix conforming

to a pure unpolarized beam. Consequently, the normalized
Stokes parameters of �12 are

q0 = 2

[
J1(kε
)

kε


]2

= μ2, (32a)

q1 = q2 = q3 = 0, (32b)

and hence, the coherence Poincaré vector is q = (0, 0, 0).
Further, P� = 0 holds. In conclusion, the paraxial far field of
a blackbody cavity is positioned in the origin of the Stokes
parameter space.

B. Gaussian Schell-model beams

Consider an electromagnetic GSM beam for which the ele-
ments of the CSD matrix at the waist are generally expressed
as [7]

Wαβ (r1, r2, ω) = AαAβBαβ exp

[
−

(
r2

1

2σ 2
α

+ r2
2

2σ 2
β

)]

× exp

[
− (r1 − r2)2

2δ2
αβ

]
, (α, β ) ∈ (x, y),

(33)

where Aα and σα characterize the peak value and the
width of the spectral density of the α component, respec-
tively, while δαβ and (complex) Bαβ represent the transverse
extent and single-point value of the field correlations be-
tween the α and β components. From the properties of
the CSD matrix, it follows that Bxx = Byy = 1, δxy = δyx,
and Bxy = B∗

yx, with |Bxy| � 1. Moreover, for a realiz-
able GSM source it is required that max(δxx, δyy) � δxy �
min(δxx/

√|Bxy|, δyy/
√|Bxy|) [7]. All listed parameters are in-

dependent of position but may depend on frequency.

1. Rotationally symmetric GSM beam

We first assess the special class of rotationally symmetric,
uniformly partially polarized GSM beams [21] for which we
set Ax = Ay = A, σx = σy = σ , and δxx = δyy = δxy = δ. The
CSD matrix can therefore be written as

W12 = A2 exp

(
−r2

1 + r2
2

2σ 2

)
exp

(
−|�r|2

2δ2

)

×
[

1 Bxy

B∗
xy 1

]
, (34)

where we introduced �r = r2 − r1. Inserting r1 = r2 = r re-
sults in the polarization matrix

� = A2 exp

(
− r2

σ 2

)[
1 Bxy

B∗
xy 1

]
, (35)

whose unpolarized and polarized parts read, respectively,

�(u) = A2 exp

(
− r2

σ 2

)[
1 − P 0

0 1 − P

]
, (36)

�(p) = A2 exp

(
− r2

σ 2

)[
P Bxy

B∗
xy P

]
, (37)
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where we used the fact that for the polarized constituent
det �(p) = 0 and thus |Bxy| = P, with P denoting the degree
of polarization given in Eq. (3). Further, using Eqs. (7) and
(34), the Gram matrix is found and has the form

�12 = A4exp

(
−r2

1 + r2
2

σ 2

)
exp

(
−|�r|2

δ2

)

×
[

1 + P2 2Bxy

2B∗
xy 1 + P2

]
. (38)

Equation (12) implies

P�(r1, r2) = 2P

1 + P2
. (39)

The normalized Stokes parameters defined in Eq. (18) are

q0 = exp

(
−|�r|2

δ2

)
1 + P2

2
= μ2, (40a)

q1 = 0, (40b)

q2 = exp

(
−|�r|2

δ2

)
Re(Bxy), (40c)

q3 = exp

(
−|�r|2

δ2

)
Im(Bxy). (40d)

The coherence Poincaré vector q = q12 = q21 can be written
as

q = P exp

(
−|�r|2

δ2

)
ŝ, (41)

where

ŝ = [0, cos[arg(Bxy)], sin[arg(Bxy)]] (42)

is the (unit) polarization Poincaré vector of the fully polarized
part of the field with the polarization matrix given in Eq. (37).
The q vector for the chosen symmetric GSM beam lies in the
q2q3 plane on a circle whose radius is determined by the de-
gree of polarization together with the factor exp(−|�r|2/δ2),
which reflects the degree of coherence. The direction of q is
specified by the polarization Poincaré vector ŝ of the fully
polarized beam portion. We further observe that the surface
of the (unit) sphere is approached when P = 1 and |�r| → 0,
whereas the origin is reached when P = 0 or |�r| → ∞.

2. Rotationally nonsymmetric GSM beam

Next, we consider a uniformly partially polarized GSM
beam with rotationally nonsymmetric coherence properties.
For this purpose we set δxx = δ, δyy = aδ, and δxy = bδ, with
restrictions set by the realizability conditions [see discussion
below Eq. (33)]. The CSD matrix of such a beam is written as

W12 = A2 exp

(
−r2

1 + r2
2

2σ 2

)[
� Bxy�

1/b2

B∗
xy�

1/b2
�1/a2

]
, (43)

where � = exp[−|�r|2/(2δ2)], for brevity. With a procedure
similar to the one that led to Eqs. (40a)–(40d), the normalized

Stokes parameters are found to be

q0 = 1
4

(
�2 + �2/a2 + 2�2/b2

P2
) = μ2, (44a)

q1 = 1
4

(
�2 − �2/a2)

, (44b)

q2 = 1
2

[
�1/b2(

� + �1/a2)
Re(Bxy)

]
, (44c)

q3 = 1
2

[
�1/b2(

� + �1/a2)
Im(Bxy)

]
, (44d)

and

q = 1
4

(
�2 − �2/a2

, 0, 0
) + 1

2�1/b2(
� + �1/a2)

Pŝ, (45)

where again ŝ is the polarization Poincaré vector of the beam’s
fully polarized constituent as presented in Eq. (42). The coher-
ence Poincaré vector depends on the two spatial points only
through their separation |�r|. As seen from Eq. (45), the co-
herence Poincaré vector can be divided into two parts, the first
of which points along the q1 axis with the length determined
by �2 − �2/a2

. Besides the distance |�r|, it depends only
on the coherence-width ratio a = δyy/δxx of the beam. The
second vector is located in the q2q3 plane, and its direction
is determined solely by the polarization Poincaré vector ŝ of
the beam’s fully polarized part, while its length is influenced
by the degree of polarization and coherence-width ratios a and
b = δxy/δxx. In other words, the beam’s polarization properties
affect the geography of the coherence Poincaré vector on only
the q2q3 plane, whereas the displacement along the q1 axis
is dictated by the ratio of the coherence widths in the x and
y directions via a. We can also state that if the two-point
coherence properties are kept fixed but the polarization state
is varied, the q vector traces a circle with its center at the q1

axis. The direction of q with respect to the center point (corre-
sponding to an unpolarized beam) is determined by the state of
polarization. If a = 1, the first vector (asymmetry) in Eq. (45)
disappears, and q is located on a sphere in the q2q3 plane for
any b, P, and ŝ. Moreover, if also b = 1, the case reduces to the
rotationally symmetric GSM beams encountered in Eq. (41).
In conclusion, we state that an asymmetry of the coherence
lengths in the x and y directions induces a displacement of the
vector q along the q1 axis.

3. Anisotropic GSM beams

In the final example we consider a class of anisotropic
GSM beams for which σx �= σy. As in the first GSM example,
we assume symmetry in the coherence widths, δxx = δyy =
δxy = δ, and mark Ax = Ay = A. With these selections we
revisit Eq. (33) and arrive at the CSD matrix

W12 = A2 exp

(
−|�r|2

2δ2

)

×
[

�xx(r1, r2) Bxy�xy(r1, r2)
B∗

xy�yx(r1, r2) �yy(r1, r2)

]
, (46)

where

�αβ (r1, r2) = exp

[
−

(
r2

1

2σ 2
α

+ r2
2

2σ 2
β

)]
. (47)
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We follow anew the steps that preceded Eqs. (41) and (45) and
obtain the expressions

q12 = exp
(−|�r|2

δ2

)

×

⎡
⎢⎢⎢⎣

�2
xx (r1,r2 )−�2

yy (r1,r2 )+|Bxy|2[�2
yx (r1,r2 )−�2

xy (r1,r2 )]
�2

xx (r1,r2 )+�2
yy (r1,r2 )+�2

yx (r1,r2 )+�2
xy (r1,r2 )

2Re(Bxy )�2
xy (r2,r2 )[�2

xx (r1,r1 )+�2
yy (r1,r1 )]

�2
xx (r1,r2 )+�2

yy (r1,r2 )+�2
yx (r1,r2 )+�2

xy (r1,r2 )
2Im(Bxy )�2

xy (r2,r2 )[�2
xx (r1,r1 )+�2

yy (r1,r1 )]
�2

xx (r1,r2 )+�2
yy (r1,r2 )+�2

yx (r1,r2 )+�2
xy (r1,r2 )

⎤
⎥⎥⎥⎦

T

, (48)

q21 = exp
(−|�r|2

δ2

)

×

⎡
⎢⎢⎢⎢⎣

�2
xx (r1,r2 )−�2

yy (r1,r2 )+|Bxy|2[�2
xy (r1,r2 )−�2

yx (r1,r2 )]
�2

xx (r1,r2 )+�2
yy (r1,r2 )+�2

yx (r1,r2 )+�2
xy (r1,r2 )

2Re(Bxy )�2
xy (r1,r1 )[�2

xx (r2,r2 )+�2
yy (r2,r2 )]

�2
xx (r1,r2 )+�2

yy (r1,r2 )+�2
yx (r1,r2 )+�2

xy (r1,r2 )

2Im(Bxy )�2
xy (r1,r1 )[�2

xx (r2,r2 )+�2
yy (r2,r2 )]

�2
xx (r1,r2 )+�2

yy (r1,r2 )+�2
yx (r1,r2 )+�2

xy (r1,r2 )

⎤
⎥⎥⎥⎥⎦

T

(49)

for q12 and q21. While the two previously considered classes
of GSM beams could be expressed in terms of a single co-
herence Poincaré vector, this example shows the situation for
q12 �= q21. In this case the difference in the two coherence
Poincaré vectors naturally arises from the assumed difference
between σx and σy. The connection between the two coherence
vectors and the polarization state is now more involved than
in the previous examples. Nonetheless, they describe the state
of the two singular vectors related to the largest singular
value of the CSD. Figure 2 displays the behavior of q12

FIG. 2. Behavior of the coherence Poincaré vectors with respect
to the intensity width ratio σy/σx of anisotropic GSM beams for r1 =
(0.1σx, 0), r2 = (0.15σx, 0), δxx = δyy = δxy = 0.1σx , |Bxy| = 0.95,
and arg(Bxy ) = π/2 (A), arg(Bxy ) = 0 (B), and arg(Bxy ) = 3π/2 (C).
Starting from σy/σx = 0.1, the beam’s coherence state is displayed
by two vectors q12 (red square head) and q21 (blue triangle head)
which point at separate directions. The red dashed line and the blue
dotted line show the change in these directions as the intensity ratio
approaches a value of unity. When σx = σy, the beam is a rotationally
symmetric GSM beam, and a single vector q12 = q21 (green circle
head) shows the situation within the coherence Poincaré sphere.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

FIG. 3. Evolution of the normalized central angle θ12/π with
respect to the intensity width ratio σy/σx of anisotropic GSM beams.
The value arg(Bxy ) = 3π/2 was used, and the other parameters are
as in Fig. 2.

(red arrows) and q21 (blue arrows) on the coherence Poincaré
sphere as a function of the ratio σy/σx for the beam parameters
δxx = δyy = δxy = 0.1σx and |Bxy| = 0.95. The cases A, B,
and C correspond to the values of arg(Bxy) = π/2, arg(Bxy) =
0, and arg(Bxy) = 3π/2 at two points r1 = (0.1σx, 0), r2 =
(0.15σx, 0). The arrows indicate the case of σy/σx = 0.1, and
the corresponding dashed lines represent the path that the
vector tips draw as the width ratio increases. When the ratio
attains unity, the green vector referring to q12 = q21 is ob-
tained, and the situation reduces to the case of a rotationally
symmetric GSM beam. This is confirmed also in Fig. 3, where
the change in the central angle θ12 defined in Eq. (28) is
shown as a function of σy/σx with other beam parameters
corresponding to case C of Fig. 2. The evolution of θ12 shows
at once the geometric similarity between the coherence states
of q12 and q21. The coherence information in the two vectors
is the same when σy is close to zero or equal to its orthogonal
counterpart, σy = σx.

V. CONCLUSIONS

In conclusion, we established a rigorous interpretation for
the coherence Poincaré sphere construction in the context of
partially nonuniformly polarized electromagnetic beams in
the space-frequency domain. This work can be viewed as an
extension of the formalism in [10] to cover general partially
polarized light beams. The main result is that in the context
of partial polarization, two coherence Poincaré vectors are
needed whose directions are specified by the state of spatial
coherence via the singular vectors related to the larger singular
value of the CSD matrix. The two vectors have the same
length, which equals unity for fully coherent beams and zero
for completely incoherent beams or fields which are purely
unpolarized (or can be transformed into this type by unitary
transformations at two points). In the case of full polariza-
tion the formalism of [10] is encountered, and when the two
points coincide, the traditional polarization Poincaré formal-
ism is recovered. In addition, we demonstrated the sphere
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representation of spatial coherence with examples including
paraxial blackbody radiation as well as GSM beams.

The results of this work may find use in visualizing the
coherence-polarization state of light in various situations in-
volving partially polarized beams. These might include the
polarization and coherence changes induced by, e.g., the scat-
tering of electromagnetic plane waves from localized objects
[22], beam propagation in turbulence [23] or through ABCD
systems such as optical fibers [24], free-space propagation of
beams from nonuniformly correlated [25] or multi-Gaussian

Schell-model [26] sources, and twisted beams with rotating
polarization properties [27].
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