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Anomalous localization and transport behavior of amplifying periodic-on-average
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Optical amplification in a disordered system leads to modification of the localization properties and the relative
fluctuations of transport parameters. Here, we study the effect of gain on the localization properties and transport
parameters of Anderson-localized modes at critical disorder in a one-dimensional periodic-on-average random
amplifying system. We experimentally measured the inverse participation ratio (IPR) and localization length ξ to
quantify the localization behavior. At high disorder, IPR and ξ−1 exhibit a linear relationship, as expected from
theoretical studies. However, it shows an anomalous behavior below a critical disorder and transitions into a
near-quadratic relationship at weak disorder. We further study the mesoscopic conductance g′ and statistical
distributions of modal and integrated intensities to quantify the transport. The intensity distributions show
power-law tails whose exponents show atypical gain dependence across the critical disorder. Motivated by the
experimental results, we performed numerical studies using a model based on transfer matrices and laser rate
equations which endorses our experimental observations.
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I. INTRODUCTION

Conductive or localized transport of photons in disor-
dered media is a manifestation of wave interference [1]. In
a strongly scattering medium, transport is suppressed via
multiple scattering and leads to formation of spatially local-
ized resonances called Anderson-localized (AL) modes [2–7].
Introduction of optical gain to the system in the presence
of disorder-induced feedback results in the realization of
so-called random lasers [8–15]. In a localizing system, res-
onant AL modes provide the necessary feedback to realize
lasing in random cavities, creating an exciting subset of ran-
dom lasers [16–21]. Lasing over Anderson-localized modes
in periodic-on-average (PARS) systems allows us to study
the interplay between disorder and gain [22–24]. In one-
dimensional (1D) PARS systems, the erstwhile band gap of
the periodic system vanishes above certain disorder, called
critical disorder δcr [25–27]. The behavior of AL random
lasers shows an interesting transition across δcr [27].

The localization property of AL random lasers is char-
acterized by the inverse-participation ratio (IPR) and the
localization length ξ . IPR is defined as the second moment of
the spatial intensity distribution of the eigenfunctions [28,29].
In a completely Anderson localizing system (very high dis-
order), IPR and ξ are related by the relation IPR ∝ ξ−d ,
where d is the dimension of space [30,31]. However, there
have not been any reports on the relation between IPR and
ξ in the vicinity of δcr or in the weak-disorder regime. Apart
from IPR and ξ , the fluctuations in the relative intensity of
the eigenfunctions help to characterize the nature of trans-
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port in Anderson-localized systems [17,32–35]. The variance
of these fluctuations defines a dimensionless conductance
g′ = 2/3var(sa), where sa = I/〈I〉 is the normalized mode
intensity [35–38]. Anderson localization is achieved when
〈g′〉 < 1. In addition to 〈g′〉, the behavior of the full dis-
tribution of mode intensities P(I/I ) has been theoretically
reported in random-lasing systems [32,34]. The theoretically
predicted distributions for internal and output intensities of
lasing modes in a 1D random laser show power-law tails with
different exponents [34]. Experimental studies so far have fo-
cused on only amplifying systems at high disorder strengths.
The fluctuations are expected to show an interesting transi-
tional behavior in the vicinity of critical disorder. Here, we
study the fluctuations as a function of gain in different disorder
regimes across δcr. We use 1D arrays of amplifying micro-
droplets as a model system to study the localization properties
and fluctuations in the transport parameters of 1D AL lasers.
Over a large ensemble of eigenfunctions, we extract 〈IPR〉
and 〈ξ−1〉, which exhibit the anticipated linear dependence
above δcr but tend toward a hitherto unpredicted quadratic
behavior below δcr. We measure statistical distributions of
modal and integrated intensity and calculate the dimensionless
conductance g′ therefrom. The power-law exponents of the
two distributions and also g′ show anomalous gain dependence
across δcr. Our experimental results are followed and corrobo-
rated by computational studies using a numerical model based
on the transfer-matrix method and laser rate equations.

Figure 1 shows the measurement scheme and the sensitiv-
ity of the measurement of lasing-mode profiles. Figure 1(a)
shows a representative CCD image of a one-dimensional mi-
crodroplet array, made from a 50:50 mixture of methanol
and ethylene glycol with an effective refractive index of
1.38. Complete technical details of the formation of the ar-
ray are given in Ref. [21] and also in Appendix A. Gain is
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FIG. 1. Experimental measurements. (a) A small portion of the
one-dimensional lattice array made of spherical microresonators.
(b) Schematic of the experimental setup. (c) Computed transmission
spectrum of a passive periodic structure, with peaks enumerating
the band-edge modes. (d) Corresponding computed passive-mode
profiles of the first three band-edge modes. (e) Experimental
lasing-mode profiles of the first three band-edge modes. Four char-
acteristic lasing modes in the localized domain: (f) simulated and (g)
experimental.

introduced by adding Rhodamine 6G (0.5 mM). The disorder
δ is quantified by using the size measurements made from
their whispering-gallery modes and is defined as

δ = nAσ + nBσ,

where the refractive indices of the air gap and microresonator
are nA = 1.0 and nB = 1.4 respectively, and σ is the standard
deviation in the size distribution of micro-resonators.

In our system, δ can be systematically varied in a controlled
manner from a few nanometers to a few hundred nanome-
ters. The schematic of the excitation and emission geometry

from the array is shown in Fig. 1(b). The array with 60 unit
cells is illuminated by a nanosecond pulsed laser (pump) at
λ = 532 nm with a repetition rate of 2 Hz, which excites
Anderson-localized lasing modes longitudinally along the ar-
ray. The spectrally resolved spatial intensity distribution of
the Anderson-localized modes is measured in the transverse
direction via a spectrometer coupled with an intensified CCD.
This provides a direct measurement of spatial eigenmodes.

We model our system as a 1D multilayer with gain. The
justification for a 1D approximation is given in Appendix B.
Briefly, the excited lasing modes are the collective longitu-
dinal modes of the array. Due to large DnB/λ (where D =
15 μm is the diameter and λ = 560 nm), light sees the droplets
as quasiplanar layers. Photons scattered in the transverse di-
rection do not experience any feedback and hence do not
participate in the formation of any nonlongitudinal collec-
tive modes. In our model, we first compute the spatial-mode
profiles of the 1D passive multilayer using transfer-matrix
simulations. Thereafter, we employ coupled emitter-cavity
rate equations to simulate gain [21,23,39]. See Appendix C for
details of the theoretical model. The model yields the spatial
profile and spectral position of the lasing modes.

To characterize the control and measurement sensitivity
of our system, we set out to measure the band-edge lasing
modes. The band-edge modes exhibit their squared-sinusoidal
intensity profiles only in periodic or very close to periodic
arrays. At even smaller disorders, the modes begin to exhibit
asymptotic exponential tails. Figure 1(c) shows the com-
puted transmission spectrum of a periodic multilayer (60 unit
cells), enumerating first three band-edge modes. Figure 1(d)
represents the computed passive spatial-mode profiles with
the number of intensity maxima equaling the mode number,
where z represents the spatial coordinate and Lsys is total
length of the system along the longitudinal direction of the
array. Figure 1(e) shows the experimentally measured spatial
profiles of the first three band-edge lasing modes, in excellent
agreement with the computed profiles. The slight exponential
tail in the experimental modes arises from very small inherent
disorder. This illustrates the fine control in the system. For the
subsequent measurements of localized modes, we increase the
degree of disorder by moving away from the optimized oper-
ating conditions of the array generator. Figures 1(f) and 1(g)
represent computed and experimental lasing-mode profiles,
respectively, in the localized domain. These modes show high
diversity in terms of localizing parameters such as localiza-
tion length, peakedness, etc. The modes also show a strong
variation in their spatial profiles.

Subsequently, we describe the critical disorder δcr [25]
and study the localization behavior with respect to δcr. The
critical disorder demarcates two regimes of weak disorder
below and above which transport parameters vary differently
in the passband and band gap. One acknowledged signature of
criticality is the crossing of the profiles of mean transmittance
and variance of transmittance as a function of disorder [25].
Therefore, we compute the transmission of weakly disordered
arrays of passive cavities using the transfer-matrix simula-
tions, with parameters being the same as in experiments.
Figure 2(a) represents the average transmittance 〈T 〉 and its
variance at the center of the band gap versus disorder strength
δ over an ensemble of 4000 configurations. In this case, the
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FIG. 2. (a) Computed mean transmittance (black rectangles) and
its variance (pink solid circles) over 4000 samples as a function of
disorder δ in logarithmic scale. Critical disorder was measured at
δcr = 65 nm. Inset: Mean density of states ρ (blue solid line) and
its slope (cyan dotted line) at the center of the photonic band gap
(λ0 = 559.3 nm) as a function of degree of disorder. (b) Mean IPR
vs inverse localization length (2Lsys/ξ ): experimental (circles) and
computed (squares) for low (red, empty) and high (magenta , solid)
disorders. Black curves represent fit to the function y = Axγ . (c)
Experimental (red circles, right y axis) and computationally (green
squares, left y axis) calculated values of γ as a function of disorder.

critical disorder, δcr = 65 nm, was found at the crossing of the
two curves, as illustrated by the arrow. Above δcr, the system
makes a transition to a regime where fluctuations in the trans-
mission become larger than their mean values [25–27]. We
can also define δcr in terms of the photonic band gap (PBG).
Near δcr, the density of states ρ at the center of the erstwhile

PBG (λ0 = 559.3 nm) tends to zero as δ decreases. The inset
in Fig. 2(a) shows ρλ0 as a function of δ. ρλ0 shows a transi-
tion towards zero about the critical disorder δcr = 65 nm. We
identified the transition point by the extremum of the slope of
ρ, as shown by the dotted vertical line.

Having established the measurements and critical disor-
der δcr, we set out to study the property of the individual
modes. In this regard, we study the normalized localization
length (ξ/2Lsys) and the IPR. IPR is given by the relation

IPR = N
∑N

i=1 I2
i

(
∑N

i=1 Ii )2 , where Ii is the intensity of the mode at the

ith spatial point and N is the total number of spatial points.
An IPR value of 1 means a completely delocalized mode,
whereas a value of N means a maximally localized mode. ξ

is measured from the fit to the exponentially decaying tail of
the mode (for details see Appendix D).

Figure 2(b) shows the experimental and computational
plots of mean IPR vs 2Lsys/ξ at two different disorder
strengths of 20 and ∼300 nm (scatterplots of IPR vs 2Lsys/ξ of
individual modes are shown in Appendix E). The circles show
the experimental results, with red (empty) and magenta (filled)
circles corresponding to δ = 20 nm and δ = 300 nm, respec-
tively. Similarly, the squares show the computed results, with
red (empty) and magenta (filled) squares corresponding to δ =
20 nm and δ = 300 nm, respectively. The black curve in each
case is a fit to the function y = Axγ . In Anderson-localized
systems, in a d-dimensional space, IPR ∝ ξ−d [30,31]. Thus,
in one dimension, IPR ∝ ξ−1. Figure 2(c) shows the variation
of γ with the degree of disorder δ. The error bars are fit errors
to the data. In both the experiment and computation, we get
γ ∼ 1 at higher disorder, i.e., δ � 100 nm. However, at lower
disorder, γ is much higher than 1. In the experiment (red solid
sphere), γ = 1.7 at δ = 20 nm, which then decreases with an
increase in δ and saturates to a value of approximately 1 at
high disorders. The computed γ (green squares) also shows
a value of 1.91 at δ = 20 nm and decreases with increasing δ

and then saturates to a value γ ≈ 1.
Next, we study the generalized conductance g′ which quan-

tifies transport within the system. g′ is measured from the
spatial-mode intensity values as discussed earlier. Figure 3(a)
depicts the measured g′ as a function of pump power at three
disorder strengths, δ = 45 nm (red squares), 60 nm (blue tri-
angles), and 160 nm (green solid circles). Lines are guides to
the eye. The measured g′ value is found to decrease mono-
tonically with excitation power at high disorder and drops
below 1.0 at 1 mW. At low disorder (red squares), g′ initially
increases with power and saturates at high power. At the
intermediate disorder (blue triangles) g′ fluctuates between
1.0 and 1.1. We note that, at high pump power, g′ tends to
saturate; however, the output intensity Iout does not show any
saturation with the pump (see Appendix F), which means that
these observations are not related to the gain saturation.

In order to further corroborate the experimental results,
we performed computational studies as discussed earlier. The
time evolution of spatial-mode profiles with the variation of
the excitation pump rate Rp is measured by solving the cou-
pled emitter-cavity rate equations and then is averaged over
time to get the final effective mode profiles. The compu-
tation was performed over 1000 configurations. Figure 3(b)
shows the computed g′ versus pumping rate Rp for four levels
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FIG. 3. (a) Experimental and (b) computational measured gener-
alized conductance g′ as a function of pump power at three different
disorder strengths: δ = 45 nm (red squares), 60 nm (blue triangles),
and 160 nm (green solid circles).

of disorder strengths, δ = 45 nm (red squares), 60 nm (blue
triangles), and 160 nm (green solid circles). The computa-
tional results agree with the prior experimental results. One
feature noted from the above experimental [Fig. 3(a)] and
computational [Fig. 3(b)] results is that, as we approach the
high disorder values, g′ tends to decrease monotonically with
pump power, which does not happen at lower disorder. The
continuous monotonic decrease in g′ values with pump power
is obtained as disorder becomes larger than the critical value
(δ > δcr).

The statistics of lasing intensity shed further light on the
transport behavior. As we have seen, depending upon the
relative disorder strength with respect to δcr, the addition of
gain to such a system modifies the confinement of light. We
further investigated the effect of gain on Anderson localization
using two kinds of intensity distributions, namely, the modal
intensity distribution P(I/I ) and total integrated intensity dis-
tribution P(Itot/I tot ). The modal intensity I is defined as the
intensity at each spatial point of the mode, and the distribution
P(I/I ) is obtained by combining the modal intensity from a
large ensemble of modes. The integrated intensity Itot of a
mode is obtained by summing the intensity at each spatial
point of the mode, and the distribution P(Itot/I tot ) is obtained
by collecting these values from a large ensemble of modes.
About 2000 experimentally measured modes were used to
obtain the distribution. Both the distributions are normalized
by their own ensemble average.

FIG. 4. The inset in (a) shows the probability distribution P(I/I )
of spatial-mode intensities (black line) and integrated mode intensi-
ties (purple solid spheres) in log-log scale. The purple dashed line is
a power-law fit to the tail of the distribution P(x) = Ax−α , x = I/I
(offset for better visibility). The main plots in (a) and (b) show α and
β calculated from the power-law fit as a function of pump power at
disorders of 45 nm (red squares) and 160 nm (green solid circles),
respectively.

Next, we discuss the statistical behavior of modal inten-
sity and the total integrated intensity. The inset in Fig. 4(a)
represents the distributions on logarithmic scales. Both dis-
tributions exhibit power-law asymptotic behavior in the tail,
an observation that is in excellent agreement with existing
theory [34]. As an illustration, the power-law fit to the tail
of the total integrated intensity distribution is shown by the
purple dotted line (offset from the data for better visibility).
We fit the function Ax−exponent to the tail of the distributions
at different pump powers, with α and β being labels for
the modal intensity distribution and the integrated intensity
distribution, respectively. The value of the exponent quanti-
fies the fluctuations in the distributions. A small exponent
indicates a long tail and hence strong fluctuations and vice
versa. Figure 4(a) shows α as a function of pump power
for two representative disorder strengths, one below δcr at
45 nm (red rectangles) and another above δcr at 160 nm
(green solid circles). For δ = 45 nm < δcr, α increases with
the increase in pump power and saturates to a value of 3.0 at
high pump powers. On the other hand, for δ = 160 nm > δcr,
α decreases with the increase in pump power and saturates
to a value of 1.9 at high pump powers. Next, in Fig. 4(b) we
plot β as a function of pump power for the same two disorder
strengths. Interestingly, β also shows the same distinction in
the pump-power dependence with respect to δcr, although the
form of the dependence is reversed. β decreases (increases)
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with increasing pump power for disorders below (above) δcr

and saturates to β = 1 at high pump powers. Our experimen-
tal results are also corroborated by the computations. The
computed results are shown in Appendix G. We therefore
observe that the pump-power dependence of the intensity
distributions exhibits opposite behaviors in two different dis-
order regimes with respect to δcr. This directly traces out the
anomalous transport behavior in our system at the critical
disorder.

In summary, we have studied the effect of amplification
on the localization properties and fluctuations in the transport
parameters of a 1D Anderson-localizing system in different
disorder regimes both experimentally and numerically. IPR
and ξ−1 show a linear interdependence at high disorders, as
expected; however, the relationship tends to quadratic below
critical disorder. Mesoscopic conductance g′ and the statistics
of modal and integrated intensity were measured to quan-
tify transport behavior. The modal and integrated intensity
distributions show power-law tails, with exponents α and β,
respectively. g′, α, and β show anomalous excitation power
dependence across the critical disorder δcr. We followed
the experimental investigations by numerical studies using
a model based on the transfer-matrix method and coupled
emitter-cavity equations which corroborate the experimental
findings. Our results thus unveil the anomalous statistical be-
havior of a 1D Anderson-localizing system in the presence of
gain across δcr.

These studies reveal the rich physics of Anderson-
localizing systems and the consequences introduced by the
realization of amplification therein. Importantly, the data bring
out the intricacies of Anderson localization at weak disorder.
As discussed in the seminal theoretical works [40], this regime
relies on the delicate interplay of order and disorder due to
which the reinterpreted Ioffe-Regel criterion essentially in-
corporates the inverse of the fluctuation in the wave vector
from the Bragg plane. The resulting macroscopic resonances
play the role of lasing cavities in the presence of gain, man-
ifesting a synergy between coherent amplification and wave
confinement [19]. As seen from our results, this synergy
leads to unexpected behavior in Anderson-localization-based
lasers.
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APPENDIX A: METHOD OF GENERATING THE
MICRO-RESONATOR ARRAY

A one-dimensional array of microresonators (CCD image)
is generated using a microcapillary tube, which is based on
the vibrating-orifice aerosol-generator technique. The orifice
diameter (output end) of the capillary is about 10 μm. It is
connected to a piezoelectric gate coupled with a signal gener-
ator which creates perturbation via vibration in the orifice, as
shown in the Fig. 5. The liquid chamber is filled with a solu-

FIG. 5. Schematic explaining the formation of the array.

tion made of methanol, ethylene glycol, and Rhodamine 6G
dye (gain). The solution inside the chamber is forced through
the orifice, which results in the formation of cylindrical jets.
Under the appropriate periodic perturbation (amplitude, fre-
quency, etc., of the signal from the signal generator), the jet
breaks up into periodically placed homogeneous droplets. The
diameter of the droplets is measured using their Mie modes,
called whispering-gallery modes. Disorder is introduced in the
array by slightly changing the perturbation frequency from
the prescribed frequency, which results in the formation of a
nonhomogeneous array of microresonators.

APPENDIX B: JUSTIFICATION OF THE 1D
APPROXIMATION OF OUR SYSTEM

Our system is essentially a 1D linear chain of cavities.
However, given that the diameters of the cavities are of the
order of 15 μm, the curvatures of the spherical surfaces are
rather large compared to the wavelength. To be precise, λ ∼
560 nm, neff = 1.38, and diameter D ∼ 15 μm, so Dneff/λ ∼
37. Thus, effectively, the light sees quasiplanar layers that
realize the multiple reflections.

Next, given the linear configuration, the periodicity exists
only in the Z direction. Hence, the mode is set up only along
the longitude of the array. The slight curvature of the inter-
faces (slight because D ∼ 37λ) of the spherical resonators
results in scattering of the mode into the space outside. This
light does not reenter the system as there are no scatterers to
feed this light back from outside of the chain. The intensity

FIG. 6. Intensity distribution of the mode showing one-
dimensional propagation.
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FIG. 7. Spatial intensity profiles in semilogarithmic scale. Left:
Two representative mode profiles with an exponentially decaying
fit (black lines). Right: Averaged mode profile over 1000 samples.
Each mode profile is fitted with an exponential decay function e−2z/ξ ,
where ξ is the localization length (decay length).

distribution of the longitudinal mode is shown in Fig. 6. This
is calculated from a finite-element computation. The inten-
sity distribution clearly shows that the mode propagating in
one dimension has almost planar wave fronts. The transverse
extent of the mode is much narrower than D, as seen in
Fig. 6, and hence can be considered to be reflected off the pla-
nar interfaces. The red rectangle is emphasized, showing the
near-planar wave fronts of light, endorsing the 1D multilayer
approximation.

APPENDIX C: THEORETICAL MODEL

In order to model the time-dependent gain process under
pulse excitation, we employ coupled emitter-cavity rate equa-
tions based on two level lasers [21,23,39]. Our model is a
1D bilayer system which is discretized into multiple spatial
points. At each spatial point, the time evolution of the photon
numbers is described by two coupled rate equations:

dni j

dt
= Ki jN2, j (ni j + 1) − γc,ini j, (C1)

dN2, j

dt
= Rp −

∑

i

Ki jN2, jni j − γ2N2, j . (C2)

Here, ni j is the photon number in the ith mode at the spatial
location j of the cavity, which has a decay rate of γc,i. N2, j

is the upper-level population at the same position, Rp is the
pumping rate, and γ2 is the spontaneous decay rate to lower
levels. Ki j is the coupling coefficient between the emitter and
the ith mode at position j. The final output intensity in the ith
mode is given by nout,i = ∑

j γc,ini j . The cavity parameters

FIG. 8. Scatterplots of IPR vs localization length at weak (red)
and high (pink) disorders: (a) experimental and (b) simulated results.

FIG. 9. Lasing output intensity Iout from the coupled microres-
onator array as a function of input pump power.

required in the model are computed from the transfer-matrix
method for a dielectric-air bilayer, which is a common tech-
nique for one-dimensional systems.

APPENDIX D: MEASUREMENT OF THE LOCALIZATION
LENGTH

We measured the localization length (spatial extent) ξ by
imaging the spatial intensity distribution of the mode. Figure 7
shows spatial-mode profiles in semilogarithmic scale. The
left and right panels represent two individual and ensemble-
averaged mode profiles, respectively. The profiles clearly
exhibit a tight exponential decay in the wings which is used
to characterize ξ . In order to calculate ξ , each wing of the
mode (either right or left) is fitted with an exponentially
decaying function e−2z/ξ , as shown in Fig. 7. In Fig. 7, we
have normalized the spatial dimension z by total system length
L. The mean ξ of the system can also be measured from
the ensemble-averaged mode profile (right panel), showing

FIG. 10. (a) Distribution P(I/I ) of spatial-mode intensities.
(b) Exponent α as a function of pump rate Rp. (c) Distribution
P(Itot/I tot ) of integrated mode intensities. (d) β vs Rp.
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exponential decay on either side. In this case, the measured
ξ/2L are 0.19 (left wing) and 0.18 (right wing).

APPENDIX E: IPR VERSUS LOCALIZATION LENGTH

Figure 8 shows the scatterplots of IPR vs ξ of individual
modes for the δ = 25 nm (red) and δ = 230 nm (pink) dis-
orders. Figures 8(a) and 8(b) are experimental and computed
results, respectively.

APPENDIX F: DEPENDENCE OF LASING-MODE
INTENSITY ON PUMP POWER

In order to see the gain-dependence behavior, we looked at
the output intensity of the lasing modes. Figure 9 shows the
output lasing intensity Iout as a function of input pump power.
The plot shows an almost linear behavior with pump power.

APPENDIX G: COMPUTED INTENSITY DISTRIBUTIONS
P(I/I) AND EXPONENTS α AND β

Figure 10(a) shows the computed distribution of spatial-
mode intensities P(I/I ) in log-log scale. The distribution
shows power-law behavior in the tail, as shown by the fit dot-
ted line. The fit distribution function is given by P(x) = Ax−α ,
x = I/I . Figure 10(b) shows exponent α as a function of pump
rate Rp at two disorder values: δ = 25 nm (red rectangles)
and δ = 230 nm (dark yellow circles). Figure 10(c) shows
the probability distribution P(Itot/I tot ) of integrated mode in-
tensities. Again, the distribution shows power-law behavior
P(x) = Ax−β . Exponent β as a function of pump rate Rp is
plotted in Fig. 10(d) for two disorder values: δ = 25 nm (red
rectangles) and δ = 230 nm (dark yellow circles). All these
computational observations show good agreement with our
experimental results.
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