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Multiphonon quantum dynamics in cavity optomechanical systems
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The multiphonon quantum dynamics in laser-pumped cavity optomechanical samples containing a vibrating
mirror is investigated. Especially, we focus on dispersive interaction regimes where the externally applied
coherent field frequency detuning from the optical resonator frequency is not equal to the mirror’s oscillating
frequency or to its multiples. As a result, for moderately strong couplings among the involved subsystems,
the quantum dynamics of this complex system is described by multiphonon absorption or emission processes,
respectively. Particularly, we demonstrate efficient ways to monitor the phonon quantum dynamics via photon
detection. The possibility to extract the relevant sample parameters, for instance, the coupling strength between
the mechanical mirror and the electromagnetic field, is also discussed.
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I. INTRODUCTION

Cavity optomechanical systems that couple electromag-
netic field radiation with nanomechanical or micromechanical
motion of a vibrating component have proven their poten-
tial in numerous different applications, e.g., optical networks,
quantum memories, quantum metrology, quantum amplifiers,
quantum sensing, or gravimetry [1–7]. Many of these appli-
cations, whether advancing fundamental quantum physics or
being technological in nature, rely on the fact that the photon-
phonon coupling renders possible the quantum cooling of
quantized motion [8–13]. Cavity optomechanical systems
also allow the creation and control of quantum macroscopic
Schrödinger cat states in cavities with a moving mirror
[14,15]. Furthermore, the output of an externally pumped cav-
ity optomechanical system shows clear evidence of an elec-
tromagnetically induced transparency phenomenon, called in
this case optomechanically induced transparency [16–18].
Based on this effect, a photon switch effect was demon-
strated [19]. Transferred to a different frequency regime by
a proper optomechanical interface, optomagnetically induced
transparency may help to control the light-matter interaction
of x rays via optical photons [20].

Generally speaking, optomechanical systems may be
viewed as pumped optical resonators containing Kerr-like
nonlinear elements [21]. As a consequence, the cavity op-
tomechanical samples exhibit bi- or multistability, multiple
photon blockades, and various types of entanglement or
squeezing phenomena [21–28]. The photon blockade effect
in optomechanical systems, i.e., preventing multiple photons
from entering the cavity at the same time due to strong
photon-photon interactions, was considered from the theory
side in Ref. [29]. Cross-Kerr interactions between the optical
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and phonon modes lead to the generation of mechanical cat
states [30], for instance. Since photons typically do not mu-
tually interact, enhanced photon-photon interactions in these
systems would be of great interest in quantum computation
and quantum information processing [31–33]. Furthermore,
in the single-photon strong-coupling regime and good-cavity
limit, the cavity response shows several resolved resonances
at multiples of the mechanical frequency, respectively [34].
This effect can be used for instance to measure the mechan-
ical frequency if other involved parameters are known. Also,
strong laser driving in an optomechanical setup was analyzed
in Ref. [35], where a transition from sub-Poissonian to super-
Poissonian photon statistics was determined.

Most of the above-mentioned results were obtained un-
der the condition that the externally applied coherent field
frequency detuning from the optical resonator frequency is
equal or close to the mirror’s oscillating frequency. In con-
trast, here we shall focus on a different regime where the
above-mentioned resonance condition is not met. The laser
frequency detuning from the cavity one is considered unequal
to the frequency of the mirror’s vibrations or to its multi-
ples. In addition, we consider the mechanical frequency is
larger than the detuning and than the corresponding decay
rates in the sample, and is commensurable with but larger
than the coupling strength among the interacting subsystems.
We demonstrate that under these circumstances, the quantum
dynamics of the oscillating mirror has a multiphonon nature
in the sense that the quantities describing its evolution in
the steady state are characterized by absorption or emission
of many mechanical oscillation quanta. We show that in the
proposed setup the corresponding phonon dynamics, proper
to the mechanical part, follows that of the photon one. The
calculation of the mean phonon as well as mean photon num-
bers demonstrated that by detecting the leaking photons from
the optical cavity one can monitor the vibrations of the moving
subsystem. Correspondingly, the quantum nature of these pro-
cesses is established through second-order phonon-phonon or
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photon-photon correlation functions. Furthermore, our results
show that the sample’s parameters such as the phonon-photon
coupling strengths can be extracted from the multipeak struc-
ture of the mean photon number quantum dynamics. Finally,
the parameter range needed to observe this behavior is close
to those for the photon blockade effect in optomechanical
systems [29,34], and within reach of experiments [36–38].

This paper is organized as follows. In Sec. II we describe
the analytical approach and the system of interest, while in
Sec. III we present and analyze the obtained numerical results.
The paper concludes with a summary and outlook in Sec. IV.

II. ANALYTICAL APPROACH

We describe our sample using the master equation ap-
proach under Born-Markov approximations where the cou-
pling of the relevant degrees of freedom to their environmental
counterparts is weak, whereas the photon and phonon memory
effects are negligible [1,39]. Appropriate unitary transfor-
mations performed further will allow us to follow the
multiphonon quantum dynamics of the mechanical part or the
corresponding photon dynamics as a function of the ratio of
the coupling strength g over mechanical oscillation frequency
ω. This way one can distinguish the corresponding quan-
tum dynamics of the photon-phonon subsystems, respectively,
when single or many phonons are involved.

The master equation describing a standard laser-pumped
cavity optomechanical setup, in the Born-Markov approxi-
mations and in a frame rotating at the external laser field
frequency ωL, is given by

d

dt
ρ + i

h̄
[H, ρ] = −κa

2
[a†, aρ] − κb

2
(1 + n̄)[b†, bρ]

−κb

2
n̄[b, b†ρ] + H.c., (1)

where ρ is the density matrix and the Hamiltonian H is given
by the expression

H = h̄�a†a + h̄ωb†b + h̄ε(a† + a) + h̄ga†a(b + b†). (2)

The coherent evolution of the examined system is described
by the second term in the left-hand side of the master equa-
tion (1). The damping effects of the involved photon and
phonon subsystems are characterized by the right-hand side
of this equation, with κa and κb being the corresponding
photon or phonon damping rates, respectively. Here, n̄ =
(exp[h̄ω/(kBT )] − 1)−1 is the mean phonon number due to
the thermal bath environment at temperature T and at the
vibration frequency ω of the mechanical resonator, while kB

is the Boltzmann’s constant. a† (b†) is the creation operator
of a photon (phonon), whereas a (b) is the corresponding
photon (phonon) annihilation operator, respectively, satisfy-
ing the standard bosonic commutation relations [a, a†] = 1,
[b, b†] = 1, and [b†, b†] = [b, b] = 0, [a†, a†] = [a, a] = 0.
The first and the second components from the Hamiltonian (2)
account for the free energies of the optical and mechanical res-
onators, respectively, with � = ωc − ωL being the detuning of
the optical cavity frequency ωc from the laser one. The third
term in (2) describes the laser pumping effects of the optical
resonator’s mode with ε being the corresponding amplitude.
The last term accounts for the interaction among the optical

and mechanical motion degrees of freedom characterized by
the coupling strength g.

In the following, we consider that ω > g > ε, and do not
yet impose any conditions on κa and κb. Note that when the
optomechanical coupling is comparable to or larger than the
optical decay rate and the mechanical frequency, the steady
state of the mechanical oscillator can develop a nonclassical
strongly negative Wigner density [40]. We proceed to perform
a unitary transformation

U = eχa†a(b−b† ), (3)

in the master equation (1) leading to the following new
bosonic operators,

b̄† = χ ā†ā + b†, b̄ = χ ā†ā + b, (4)

and

ā† = a†eχ (b̄−b̄† ), ā = ae−χ (b̄−b̄† ). (5)

Upon the unitary transformation (3), the master equation (1)
takes the form

d

dt
ρ̄ + i

h̄
[H̄ , ρ̄] = −κa

2
[ā†e−χ (b̄−b̄† ), āeχ (b̄−b̄† )ρ̄]

− κb

2
(1 + n̄)[(b̄† − χ ā†ā), (b̄ − χ ā†ā)ρ̄]

− κb

2
n̄[(b̄−χ ā†ā), (b̄† − χ ā†ā)ρ̄]+H.c.,

(6)

where

H̄ = h̄�ā†ā + h̄ωb̄†b̄ + h̄ε
(
āeχ (b̄−b̄† ) + ā†e−χ (b̄−b̄† ))

−ωχ2(ā†ā)2, (7)

with

χ = g

ω
. (8)

The last term in the Hamiltonian (7) describes the vibration-
induced Kerr-like nonlinearity effects. Furthermore, the mas-
ter equation (6) exhibits resonance conditions if � = ±kω,
{k = 1, 2, . . .}. In what follows, we shall focus on the case
when � �= ±kω, but rather ω > �.

For the parameter regime of interest, we can proceed by
expanding the exponents in Eqs. (6) and (7) in the Taylor
series using the small parameter χ � 1,

e±χ (b̄−b̄† ) =
∞∑

n=0

(±χ )n

n!
(b̄ − b̄†)n. (9)

Further, using the bosonic operator identity

(A + B)n =
n∑
k

n!

k!( n−k
2 )!

(−C/2)
n−k

2

k∑
r=0

(
k

r

)
ArBk−r, (10)

where [A, B] = C and [A,C] = [B,C] = 0, whereas k is odd
for an odd n and even for an even n, respectively, one can
simplify expression (9) depending on the assumed approxi-
mations. Performing a unitary transformation

V = exp[i(�ā†ā + ωb̄†b̄)t], (11)
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in the master equation (6) and avoiding any resonances in the
system, i.e., � ± kω �= 0, {k = 1, 2, . . .}, one can neglect then
all time-dependent terms ∝ e±ikωt in the master equation. This
approximation additionally requires that ω � {κa, κb}. We
keep those terms oscillating at e±i�t , which accounts to further
assuming that �/ω � 1. As a result, the exponent expression
(9), which enters in the Hamiltonian (7), for instance, takes

the following form in this case:

e±χ (b̄−b̄† ) =
∞∑

n=0

n∑
m=0

(−1)mχ2n

(m!)2(n − m)!

b̄mb̄†m

2n−m
. (12)

Respectively, the exponent expression entering in the opti-
cal resonator’s damping in Eq. (6), i.e.,

eχ (b̄−b̄† )āρ̄ā†e−χ (b̄−b̄† ) =
∞∑

n1n2=0

(−χ )n1χn2

n1!n2!
(b̄† − b̄)n1 āρ̄ā†(b̄† − b̄)n2 ,

acquires the form

eχ (b̄−b̄† )āρ̄ā†e−χ (b̄−b̄† ) =
∞∑

n1n2=0

n1∑
k1

n2∑
k2

(−χ )n1χn2

k1!k2!

(1/2)(n1−k1 )/2(1/2)(n2−k2 )/2

[(n1 − k1)/2]![(n2 − k2)/2]!

k1∑
r1=0

×
k2∑

r2=0

(−1)r1+r2

(
k1

r1

)(
k2

r2

)
b̄r1 b̄†k1−r1 āρ̄ā†b̄r2 b̄†k2−r2 ei(k1−2r1 )ωt ei(k2−2r2 )ωt , (13)

where again ki, {i = 1, 2}, is odd for an odd ni and even for
an even ni, respectively. It is easy to observe that the above
expression is time independent if

k1 − 2r1 + k2 − 2r2 = 0. (14)

Expressions (12)–(14) have to be introduced in the master
equation (6) and one can already recognize the multiphonon
nature of the cavity optomechanical dynamics in the off-
resonance situation considered here.

Once we have arrived at a time-independent master equa-
tion, we can obtain the corresponding equation for the
photon-phonon distribution function, namely, Pn1n2,m1m2 =
〈n1, m1|ρ̄|m2, n2〉, where indices n(m), {n, m = 0, 1, 2, . . .},
refer to the photon (phonon) subsystem, respectively, with
|n(m)〉 being the corresponding Fock state. Actually, that
equation is diagonal with respect to phonon degrees of free-
dom [see Eq. (6) with expressions (12)–(14) and (A1)].
Therefore, the final distribution function will be represented
as Pn1n2,mm = 〈n1, m|ρ̄|m, n2〉. Furthermore, the N-phonon
processes are described by terms proportional to χ2N (see
Appendix A). In the presence of corresponding damping
effects, we can calculate the photon-phonon distribution func-
tion Pn1n2,mm numerically in the steady state.

From the master equation (6), modified based on relations
(12)–(14), one obtains an infinite number of equations for the
photon-phonon distribution function Pn1n2,mm. In order to solve
the infinite system of equations for Pn1n2,mm, we truncate it
at a certain maximum value {n = nmax, m = mmax} so that a
further increase of its value, i.e., {nmax, mmax}, does not modify
the obtained results if other involved parameters are being
fixed. Thus, using the operator relations (4) and (5) and keep-
ing the time-independent terms only, the optical resonator’s
steady-state mean quanta number can be expressed as

〈a†a〉 =
nmax∑
n=0

mmax∑
m=0

nPnm, (15)

while the mechanical vibrational mean phonon number is

〈b†b〉 =
nmax∑
n=0

mmax∑
m=0

(m + χ2n2)Pnm. (16)

Here, Pnm ≡ Pnn,mm = 〈n, m|ρ̄|m, n〉 with

nmax∑
n=0

mmax∑
m=0

Pnm = 1. (17)

The second-order photon-photon correlation function [41] is
defined as

g(2)
a (0) = (1/〈a†a〉2)

nmax∑
n=0

mmax∑
m=0

n(n − 1)Pnm, (18)

whereas the second-order phonon-phonon correlation func-
tion is calculated via the expression

g(2)
b (0) = (1/〈b†b〉2)

nmax∑
n=0

mmax∑
m=0

[m(m − 1) + 4χ2mn2

+χ4n4]Pnm. (19)

We note here that in a cavity optomechanical setup, second-
order phonon-phonon correlation functions are measured
experimentally, as demonstrated, e.g., in Ref. [42].

III. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1 we present the numerical results of the steady-
state mean photon and phonon numbers for a generic system
with parameters within the considered regime with χ = 0.1,
ε/ω = 0.02, κa/ω = 2 × 10−3, and κb/ω = 2 × 10−5. These
parameters are accessible experimentally. For instance, a sim-
ilar set with ω ∼ 1 MHz, g ∼ 0.3 MHz, κa ∼ 0.2 MHz, and
κb ∼ 150 Hz was reported in Ref. [36]. For our case, also a
good-cavity regime with ω � κa would be of interest, since
a too strong photon loss washes out the predicted features.
Furthermore, we considered here only a one-phonon process,
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FIG. 1. (a) The steady-state optical cavity mean photon number
〈n〉 ≡ 〈a†a〉 as well as (b) the corresponding mechanical resonator
mean phonon number 〈m〉 ≡ 〈b†b〉 as a function of �/ω. Here, χ =
0.1, ε/ω = 0.02, κa/ω = 2 × 10−3, and κb/ω = 2 × 10−5, and only
single-phonon processes were included. Also, n̄ = 1 for solid lines,
while n̄ = 0 for short-dashed lines, respectively.

which corresponds to keeping terms up to χ2 in Eq. (6),
respectively. A few interesting features can be observed: (i)
In these parameter ranges, the steady-state phonon dynam-
ics is quite sensitive to external temperature variations, (ii)
the photon dynamics follows that of the phonon one (see
Appendix B), and vice versa, though with a different magni-
tude, and (iii) the peak frequency intervals equal the Kerr-like
nonlinearity ωχ2 [see Hamiltonian (7)]. The latter result
can be intuitively understood from the free-photon Hamil-
tonian plus the Kerr-like contribution, i.e., H̄0 = h̄ā†ā(� −
ωχ2ā†ā), from where it follows that the effective detuning
vanishes at �k = kωχ2 or |�k − �k±1| = ωχ2 ≡ g2/ω. This
reveals that the induced Kerr nonlinearity shifts the frequency
of the corresponding photon Fock states, which can be de-
tected by scanning the frequency of the cavity photons. Thus,
the mean phonon number dynamics can be extracted via
detection of the mean photon number’s quantum dynamics,
while the coupling constant g can be estimated if the mechan-
ical motion frequency ω is known (or vice versa).

Figure 2 shows the corresponding second-order correlation
functions. The photon statistics changes from sub-Poissonian
[g(2)

a (0) < 1] for �/ω � 0.05, to super-Poissonian [g(2)
a (0) �

2] in the interval 0.06–0.08 and to quasicoherent features
[g(2)

a (0) � 1] for �/ω > 0.08. On the other hand, the phonon
statistics exhibits quasithermal to super-Poissonian properties.
Also in this case, the curves are characterized by a multipeak
structure. For smaller and negative �/ω, the lines in Figs. 1
and 2 remain flat. Notice that in the absence of vibrations,
i.e., when g = 0, the cavity mean photon number and its
correlation function are given by the following expressions in
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FIG. 2. The steady-state second-order correlation function for
(a) photons, g(2)

a (0), and (b) for phonons, g(2)
b (0), as a function of

�/ω. The solid lines are for n̄ = 1, while the short-dashed one for
n̄ = 0, respectively. Other parameters are as in Fig. 1.
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FIG. 3. The steady-state behaviors of (a) the mean phonon num-
ber 〈m〉 as well as (b) the second-order phonon-phonon correlation
function g(2)

b (0) as a function of χ = g/ω. The dashed blue line is
plotted for a single-phonon process whereas the green solid one is for
three-phonon processes, respectively. Here, �/ω = 0.09 and n̄ = 1
while other parameters are as in Fig. 1.

the steady state:

〈a†a〉 = ε2/[�2 + (κa/2)2],

and

〈a†2a2〉 = ε4/[�2 + (κa/2)2]2,

leading to g(2)
a (0) ≡ 〈a†2a2〉/〈a†a〉2 = 1. For an independent

boson mode in thermal equilibrium with its surrounding ther-
mal bath we obtain

〈b†b〉 = n̄ and 〈b†2b2〉 = 2n̄2,

with g(2)
b (0) ≡ 〈b†2b2〉/〈b†b〉2 = 2.

In Fig. 3 we investigate the mean phonon number and its
statistics as a function of χ = g/ω for a fixed ratio �/ω =
0.09. As can be seen in Fig. 1, for the particular coupling
strength g chosen (χ = 0.1) the mean quanta numbers are
quite small at this detuning. Figure 3 compares the case
of single-phonon processes, i.e., keeping terms up to χ2 in
Eq. (6), with the case of three-phonon processes, for which
we consider all terms up to χ6 in Eq. (6). As a first obser-
vation, we notice that the mean phonon number increases
with the ratio g/ω. The peaks are slightly higher for three-
phonon processes, but the differences are barely noticeable in
Fig. 3(a). Furthermore, the maxima occur at χk = √

�/(kω),
which, for �/ω = 0.09, give k = 6, 5, 4, and 3. Also, the
steady-state mean phonon number is direct proportional to
the mean thermal phonon number n̄ due to the environmental
reservoir (see Appendix B). The second-order phonon-phonon
correlation function changes accordingly and exhibits qua-
sithermal features for n̄ = 1. In this case, single-phonon and
three-phonon processes become distinguished at higher ratios
of g/ω [see Fig. 3(b)]. Thus, multiphonon processes occur for
higher ratios of g/ω. It can be shown that also in this case the
mean photon number dynamics is following the mean phonon
number dynamics, albeit with a smaller scaling. Finally, we
have also calculated higher-order phonon correlation func-
tions [43,44], i.e., g(k)

b (0) = 〈b†kbk〉/〈b†b〉k as a function of
�/ω with k ∈ {3, 4}. Our numerical results show that these
curves closely follow the ones of g(2)

b (0), however with a larger
magnitude. For instance, the peak at �/ω = 0.07 appears for
the third-order (fourth-order) correlation function at the same
position, but with a value of approximately 7.6 (39).

Our results confirm that the presence of a vibrating mir-
ror changes significantly both the photon’s as well as the
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phonon quantum dynamics of an off-resonant pumped cavity
optomechanical system. Moreover, the parameter range re-
quired to observe this behavior is within experimental reach
[36–38] and is close to those for the photon blockade ef-
fect predicted in optomechanical systems [29,34]. Finally, the
analytical approaches proper to cavity optomechanics with a
moving mirror equally apply to other related samples, such as,
e.g., hybrid metal-dielectric cavities [45], plasmon-excitonic
polaritons [46], superconducting qubits and quantum cir-
cuits [47], or other types of nanomechanical resonators [48],
respectively, rendering our developed analytical approach rel-
evant also for these systems.

IV. CONCLUSIONS

We have investigated a cavity optomechanical setup
where the detuning of the external coherent electromagnetic
field frequency from the optical resonator’s one is different
from the frequency (or its multiples) of the one of the
vibrating mirror. As a result, the quantum dynamics
of this complex system is accompanied by multiple
phonon absorption and emission processes. We have
computed the mean quanta numbers and the corresponding
second-order correlation functions and described their
properties. Particularly, we have found that the interpeak
frequency intervals observed in the quantum dynamics of
the photon and phonon subsystem as a function of detuning
equal the vibration-induced Kerr-like nonlinearity. The
photon mean number dynamics follows that of the mean
phonon one which is convenient for monitoring the phonon

quantum dynamics by photon detection. The corresponding
second-order correlation functions also exhibit a multipeak
structure and are completely different from the fixed-mirror
case. The photon-photon correlation function may exhibit
sub-Poissonian to super-Poissonian photon statistics. The
corresponding correlation function for phonons lies within
quasithermal to thermal phonon statistics, characterized by
super-Poissonian features. Furthermore, the second-order
phonon correlation function can be used to distinguish among
the one- and few-phonon processes for stronger coupling
strengths among the involved interacting subsystems. For a
more detailed investigation of nonclassical signatures, future
work could focus on the Wigner function for representative
parameter sets, or on so-called bundle correlation functions,
g(2)

2 (τ ) = 〈b†2(0)b†2(τ )b2(τ )b2(0)〉/〈(b†2b2)(0)〉〈(b†2b2)(τ )〉
[43,44], which could reveal highly correlated phonon
behavior.
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APPENDIX A: EXPANDING THE EXPONENTS UP TO χ4

In order to demonstrate the multiphonon nature of the
combined quantum dynamics, let us expand the exponents in
expression (13), i.e., eχ (b̄−b̄† )āρ̄ā†e−χ (b̄−b̄† ), up to χ4 and keep
the time-independent terms only, that is,

eχ (b̄−b̄† )āρ̄ā†e−χ (b̄−b̄† ) = āρ̄ā† +
{

āρ̄ā†

[
χ2

2!
(1 − 2b̄b̄†) + χ4

4!
(6b̄2b̄†2 − 12b̄b̄† + 3)

]
+ H.c.

}
+ χ2(1 + χ2)(b̄āρ̄ā†b̄†

+b̄†āρ̄ā†b̄) − χ4

2
(b̄āρ̄ā†b̄b̄†2 + b̄†āρ̄ā†b̄2b̄† + H.c.) + χ4

4
[b̄2āρ̄ā†b̄†2 + (1 − 2b̄b̄†)āρ̄ā†(1 − 2b̄b̄†) + b̄†2āρ̄ā†b̄2]. (A1)

When considering the photon-phonon distribution function
Pn1n2,mm, then from (A1) one can observe that terms propor-
tional at least to χ2 contribute to single-phonon processes,
whereas those proportional to χ4 to two-phonon processes,
respectively. For instance, the last term from the first line of
expression (A1) accounts for single-phonon processes where
the phonon number changes by ±1, i.e., m ± 1. On the other
side, the last term from (A1) describes two-phonon processes
where the phonon number modifies by ±2, m ± 2. Thus,
expression (A1), expanded up to χ4 terms, describes simulta-
neously single- and two-phonon processes, respectively. Also,
single-phonon processes are influenced by the second-order
ones, i.e., there is a contribution to single-phonon processes
coming from χ4 terms.

Generalizing now, one can state that N-phonon processes
are described by terms proportional to χ2N . There is a
contribution to N-phonon processes which arises from higher-
order terms proportional to χ2(N+1). This way, depending
on a certain power of χ , one can investigate the multi-

phonon quantum dynamics of the cavity optomechanical
system.

APPENDIX B: RELATIONSHIP AMONG THE OPTICAL
AND PHONON MODES

In what follows, we shall give details on how the mean
cavity photon and mean phonon numbers are interconnected
in the dispersive interaction regime investigated here. The
master equation (6), containing terms up to χ2 for simplicity
and in the considered approximations, reads

d

dt
ρ̄(t ) + i

h̄
[H̄ , ρ̄]

= −κa

2
(ā†āρ̄ − eχ (b̄−b̄† )āρ̄ā†e−χ (b̄−b̄† ) )

−κb

2
(1 + n̄)([b̄†, b̄ρ̄] + χ2[ā†ā, ā†āρ̄])

−κb

2
n̄([b̄, b̄†ρ̄] + χ2[ā†ā, ā†āρ̄]) + H.c., (B1)
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where

H̄ = h̄�ā†ā + h̄ωb̄†b̄ + h̄ε(ā + ā†)[1 − χ2(b̄†b̄ + b̄b̄†)/2]

−ωχ2(ā†ā)2. (B2)

The exponent term from the first line of the damping part of
the above master equation can be obtained from (A1) while
setting χ4 → 0. Then, in the steady state, from the master
equation (B1) one can easily show that

〈b̄†b̄〉 = n̄ + χ2 κa

κb
〈ā†ā〉, (B3)

while from Eqs. (4), one finally arrives at the relationship
among the steady-state mean phonon and photon numbers,

namely,

〈b†b〉 = 〈b̄†b̄〉 + χ2〈ā†2ā2〉
= n̄ + χ2 κa

κb
〈ā†ā〉 + χ2〈ā†2ā2〉. (B4)

One can observe here that there is an almost linear depen-
dence between the mean phonon and cavity photon numbers,
respectively, since the last term may give little contribution as
long as χ � 1. In addition, we have assumed that κa/κb � 1.
Thus, detecting the cavity photons, one can estimate the mean
phonon number and vice versa.
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