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The race to heuristically solve nondeterministic polynomial-time (NP) problems through efficient methods
is ongoing. Recently, optics was demonstrated as a promising tool to find the ground state of a spin-glass
Ising Hamiltonian, which represents an archetypal NP problem. However, achieving completely programmable
spin couplings in these large-scale optical Ising simulators remains an open challenge. Here, by exploiting the
knowledge of the transmission matrix of a random medium, we experimentally demonstrate the possibility of
controlling the couplings of a fully connected Ising spin system. By tailoring the input wave front we showcase
the possibility of modifying the Ising Hamiltonian both by accounting for an external magnetic field and by
controlling the number of degenerate ground states and their properties and probabilities. Our results represent
a relevant step toward the realization of fully programmable Ising machines on thin optical-platforms that are
capable of solving complex spin-glass Hamiltonians on a large scale.
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I. INTRODUCTION

Nondeterministic polynomial-time problems, also known
as NP problems, are tasks whose solve time scales exponen-
tially with the size of the input [1]. Such problems appear in
most domains, including the economy, society, science, and
cryptography [2]. Importantly, NP-complete problems can be
mapped onto each other, and solving one solves them all.
Among these, finding the ground state of an Ising spin system
represents one of the most well known examples in physics
[3–7].

Interestingly, Ising dynamics have been observed in numer-
ous quantum [8,9] and classical systems such as random lasers
[10,11], superconducting networks [12,13], polariton con-
densates [14,15], nonlinear wave propagation in disordered
media [16], and degenerate optical parametric oscillators
[17–29]. Therefore, all aforementioned systems represent
suitable platforms to implement NP problem solvers. For
example, coherent Ising machines using degenerate opti-
cal parametric oscillators find approximate solutions for the
ground state of spin systems, thanks to their inherent non-
linearity, with great control of their couplings. Although
optical parametric oscillators can now implement thousands
of spins [24], their scalability remains limited by electronic
circuits.

Recently, a second class of optical simulators based on
linear optics was demonstrated by exploiting spatial light
modulation [30–36]. In these Ising machines—where the
spins and their interactions are described by phase and am-
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plitude modulation [30–34] or by a properly engineered
gauge transformation on the optical wave front [35,36]—the
ground state is found by optimizing the detected intensity
via a recurrent electro-optical feedback. The advantage of
this approach relies on the instantaneous calculation of the
energy, as the necessary matrix products are encoded in light
propagation and are therefore independent of the number
of spins.

However, photonic Ising machines based on wave-front
shaping using free-space propagation are limited to the im-
plementation of a specific class of Hamiltonians, known as
Mattis models [37], where the couplings between spins are
correlated and an exact solution of the energy ground state
exists. Recently, a more general class of Hamiltonians, known
as Sherrington-Kirkpatrick spin glasses [38,39], in which the
couplings are all to all and random, was simulated by combin-
ing wave-front shaping and light propagation inside a random
medium [32,34]. Although this optical simulator is scalable
and can outperform conventional hardware for a large number
of spins [32], its applicability was limited to random all-to-all
couplings with zero average, as determined by the transmis-
sion matrix of a random medium.

In this article, we present various strategies to tune the
couplings of a spin-glass Ising simulator based on multiple
light scattering. We experimentally demonstrate the ability to
control the evolution of a system in a deterministic fashion
by exploiting the knowledge of the transmission matrix of the
scattering medium [40]. This allows us to observe the phase
transition from a disordered to a fully magnetized ground
state. Moreover, our work showcases the possibility of mod-
ifying the simulated Ising Hamiltonian by both introducing
an external magnetic-field term and controlling the number of
degenerate ground states.
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(a) (b)

FIG. 1. Concept of a tunable optical Ising simulator. (a) Schematics of the Ising machine based on multiple scattering. The spins are
encoded in a binary phase on the spatial light modulator. The ground state of the Ising Hamiltonian corresponds to the optimized binary phase
mask maximizing the transmitted intensity recorded by a camera. The all-to-all, random couplings of the spins are induced by multiple light
scattering during the propagation in the disordered medium, described by the transmission matrix T . (b) Measuring T determines the correct
bias ψi to add to the initial phase mask to tune the distribution of couplings. In the case of fully biased couplings (η = 0), the final state
corresponds to a fully magnetized degenerate ground state.

II. RESULTS

A system of N spins is described by the following Hamil-
tonian [38,39]:

H = −
N∑

i, j=1

Ji jσiσ j, (1)

where σ{i, j} and Ji j are the spins and their couplings, respec-
tively. For all-to-all random couplings, Ji j have independent,
identically distributed (i.i.d) random values, and finding the
ground state of Eq. (1), which is referred to as the Sherrington-
Kirkpatrick model [5], represents an NP-hard problem. This
specific problem can be mapped into light propagation in
disordered media, where the spins are encoded on a set of
input modes or pixels with a binary phase state of 0 and π ,
corresponding to ±1 spin states, respectively [32,34]. This
equivalence can be made explicit by writing the transmitted
intensity after a multiply scattering medium as [32]

IT =
N∑

i, j=1

Ji jσiσ j = −H, (2)

with Ji j = −∑M
m Re{timt jm}, where m runs on the output

modes and tim and t jm are transmission matrix T elements. T is
linked to the input modes on the spatial light modulator (SLM)
Ein and the output modes on the camera Eout via Eout = T Ein

[40].
Equation (2) shows that maximizing the light intensity over

the selected output modes allows us to retrieve the ground
state of the spin system (details on the numerical framework
used can be found in Appendix B) [32]. In particular, as
the distribution of couplings is Gaussian and centered around

zero, the ground state corresponds to an ensemble of randomly
oriented spins (mean magnetization m = ∑N

i σi = 0).
As shown in Fig. 1(b), the Ji j distribution can be modified

by acting on the initial phases on the SLM. Indeed, such an
operation leads to the following effective transmission matrix
T ′:

T ′ = T × diag(eiψi ), (3)

where ψi represents the bias associated with each spin. Equa-
tion (3) rewritten in terms of matrix coefficients becomes

t ′
im = timeiψi ; (4)

therefore, the resulting couplings, for simplicity still indicated
as Ji j , where Ji j = −∑M

m Re{t ′
imt ′

jm}, can be modified by tai-
loring the bias.

An efficient way to tune the couplings is to exploit the
knowledge of T . In particular, for a single output mode (M =
1), using as ψi the phase conjugation of the corresponding
single-row T [ψi = −arg(ti)] gives rise to a Ji j distribution of
only negative values. This results from the fact that after phase
conjugation T ′ is real valued. Figure 1(b) shows also that,
consistent with having a negative average coupling 〈Ji j〉, the
ground state of the spin network is no longer random, and it
exhibits a fully magnetized state with degenerate orientations
(m = ±1).

This result can also be understood in the framework of
wave-front shaping [41]. The introduced bias is the phase
mask that optimizes the detected intensity, of which the binary
spin mask represents an undesired perturbation. Therefore, the
optimal intensity is retrieved when the spin mask is reduced
to a uniform phase, which in terms of spins corresponds to a
fully magnetized ground state.
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FIG. 2. Tunable experimental spin-glass simulator (M = 1). (a) Schematics of the experimental setup. Recurrent feedback from the
measured intensity on a CCD updates the SLM configuration to reach the spin glass (SG) ground state. (b) Adding a bias to the spin system
(N = 256 spins) results in a more magnetized ground state. Inset: intensity focus on the CCD plane as the ground state is reached. (c) The
relatively low magnetization compared to the simulation value can be understood in terms of the finite detection sensibility of the CCD. The
spins which are not aligned with the dominant orientation [green (light gray) bars] are indeed those whose T amplitudes, and therefore intensity
contributions, are the lowest. (d) The degree of magnetization of the ground state can be readily tuned by adding artificial noise—a mask of
random phases of amplitude η—to the bias.

The shift of Ji j can be further controlled by adding a noise
mask (mask of random phases) to the phase-conjugation solu-
tion. This noise mask is modulated by an amplitude parameter
η controlling the shift of the couplings, as shown in Fig. 1(b).
A derivation of the effect of noise on the couplings is pre-
sented in Appendix C.

We tested experimentally our approach for controlling
the couplings of the spin simulator [Fig. 2(a) and Ap-
pendix A]. A laser (Coherent Sapphire SF 532, λ = 532 nm)
is directed onto a reflective phase-only, liquid-crystal SLM
(Meadowlark Optics HSP192-532, 1920 × 1152 pixels) di-
vided into N macropixels (spins). The modulated light is
projected on the objective back focal plane (OBJ1, 10×,
NA = 0.1) and focused on a scattering medium made of
Teflon (DIFF) 0.5 mm thick. The scattered light is col-
lected by a second objective (OBJ2, 20×, numerical aperture
NA = 0.4), and the transmitted intensity is detected by a
CCD camera (Basler acA2040-55μm, 2048 × 1536 pixels).
The spins and the desired bias are encoded by a SLM in
a phase pattern whose binary part is sequentially updated
until the ground state is reached. Note that for the opti-
mization any algorithm can be used; that is, the setup is
algorithm agnostic, as the advantage of the presented sim-
ulators resides in the parallel measurements of the energy
[32].

Figure 2(b) shows the results for a single output mode
(M = 1) on the detection camera (CCD). The ground state
agrees with the numerical predictions in Fig. 1(b), showing
a high magnetization. Figure 1(b) shows a typical ground
state averaged over thermal fluctuations [31] [see Fig. 5(a) for
single realizations].

The difference in numerical [see Fig. 1(b), |m| = 1] and ex-
perimental [see Fig. 2(b), |m| � 0.8] results can be explained
by the contributions that each SLM pixel bears. Indeed, as
shown in Fig. 2(c), the spins not aligned with the domi-
nant orientation correspond to SLM pixels with very small T
amplitudes; that is, they marginally contribute to the output in-
tensity and therefore cannot be detected over the optimization.
The limited sensitivity of the detection camera introduces an
experimental noise term, which allows the spins with small T
amplitudes to have any possible orientation. It is equivalent to
state that the experimental Ising simulator has an effective, fi-
nite temperature [32]. Figure 2(c) is corroborated by Fig. 5(b),
showing that the light intensity retrieved after optimization
is close to that obtained from phase conjugation even if the
magnetization does not reach its theoretical maximum.

Moreover, building upon T , it is possible to drive the op-
tical spin system over a phase transition. By adding artificial
noise, controlled by the amplitude η (see Appendix C), to the
phase-conjugated mask enables us to control the degree of
magnetization reached in the ground state [see Fig. 2(d)]. This
can also be understood in terms of couplings: as predicted in
Fig. 1(b), introducing artificial noise effectively tunes the Ji j

distribution.
Figure 2 summarizes the case of M = 1, which simplifies

Eq. (1) to the class of the Mattis Hamiltonian in which Ji j are
correlated [32,34,37]. However, such systems are described
by an Ising simulator in which light propagates in free space
[30,31,35,36]. Taking advantage of the all-to-all random cou-
plings introduced by the scattering medium is necessary to
focus on a higher number of output modes (M > 1). Max-
imizing the optical intensity on an area of multiple pixels
represents a more complex wave-front-shaping task because
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FIG. 3. Tunable experimental spin-glass simulator (M > 1).
Magnetization as a function of the number of output modes M on the
CCD. Using the first singular value decomposition (SVD) of T yields
a magnetization notably larger than that with phase conjugation (PC).
This can be understood by comparing the relative focus intensity
δI of the two methods: numerical simulations show that the SVD
outperforms the PC when M is increased, with a twofold enhance-
ment for a square T (N = M = 256). The inset displays the intensity
distribution on the CCD for the two approaches—for a square T the
SVD yields a less homogeneous intensity distribution compared to
PC.

T now has a size of M × N and the number of accessible input
is N . The corresponding spin couplings satisfy rank(Ji j ) = N ,
which implies a NP optimization problem for the ground-state
search [32].

In the following, we exploit two approaches to choose the
optimal bias for M > 1 modes: (i) carrying out the phase
conjugation (PC) of the sum of the T rows and (ii) performing
the singular value decomposition (SVD) of T and using the
argument of the first right singular vector, i.e., the vector as-
sociated with the largest singular value [42–44]. More details
on approaches (i) and (ii) are given in Appendix A. The SVD
results are more effective in inducing a magnetization as the
size of T increases [see Figs. 3 and 6(a) for experimental and
numerical results, respectively].

Indeed, the SVD mask leads to a higher focus enhancement
than the PC one, with a twofold enhancement for a square T
(N = M = 256), and it produces a more marked shift of the
Ji j distribution (see the inset in Fig. 3 and also Fig. 7).

A decrease of the magnetization as a function of M can
again be understood in terms of T amplitudes. Figure 6(b)
shows that for M = 256 a correlation between the alignment
of the spins and their T amplitudes is observed. However,
compared to M = 1 (see Fig. 2), the T amplitudes are more
homogeneously distributed and decrease in value, meaning
that more spins make a marginal, experimentally undetectable
contribution to the intensity.

In Figs. 2 and 3 we demonstrate that, by measuring T , a
magnetized ground state can be promoted in a spin system
with all-to-all couplings. Importantly, the presented approach
can also be used to generalize Eq. (1), accounting for an exter-
nal magnetic field. In particular, as derived in Appendix C, by
selecting a given portion of the SLM to stay fixed to a specific
phase (β) defined before the optimization, i.e., by defining m
SLM modes with phases b1, b2, . . . , bN = b, Eq. (2) becomes

IT =
N∑

i, j=1

Ji jσiσ j + B
∑

i

σi, (5)

where B ∝ Re{eiβ} represents the added external field, defined
from a fixed phase, β ∈ [0, 2π ).

This term represents a constant external magnetic field,
driving the spins towards a specific sign of magnetization.
In the two limiting cases β = 0, π the machine is expected
to settle a nondegenerate ground state that depends on the
value of β [see Fig. 4(a)]. Note that the bias is applied also
to the area of the SLM dedicated to the external field to
effectively drive the evolution of the spins. Moreover, β tunes
the intensity of the magnetic field and therefore the transition
between the two degenerate spins’ orientations [see Fig. 4(b)],
The sharpness of this transition is defined by the ratio between
the number of SLM pixels allocated to the spins and those
describing the magnetic field (see Fig. 8).

Remarkably, the ground state found by the spin-glass sim-
ulator can be further modified by adding a tailored, binary
shift to the T bias γ . With this modification, the system
will converge to the defined shift pattern [see Fig. 4(c)].
Figure 4(c) shows that a ground state resembling an antifer-
romagnetic system is obtained by defining γk = (1 − eiπk )
,
with 
 ∈ [0, 2π ]. The fidelity of the ground state, quantified
in terms of staggered magnetization m′ [45], is close to what
was observed in Fig. 1(b). Moreover, Fig. 4(d) shows that by
varying the angle associated with the additional shift mask 
,
the energy landscape of the system can be affected. Without
any additional shift, the ground state is fully magnetized, as
already shown in Fig. 1(b). When 
 = π

2 , the system has an
additional equiprobable ground state which becomes dom-
inant when 
 = π . The form this shift and corresponding
ground state take can be extended to any arbitrary mask
(Fig. 9).

III. CONCLUSION

In conclusion, we reported an approach to tailor the Hamil-
tonian of all-to-all coupled spin systems implemented on a
spatial photonic Ising machine. In contrast to previous works,
our method controls the couplings by shifting their distribu-
tion. Such tunability was obtained by exploiting the complex
coefficients of the transmission matrix and tuning the num-
ber of output modes. In particular, knowing the transmission
matrix allows us to map a Sherrington-Kirkpatrick spin-glass
model with tunable couplings and an external field term
through a copropagating reference on the input wave front.
Finally, we demonstrated that greater control over the energy
landscape—and hence the possible ground states and their
likelihood—can be obtained by introducing a tailored binary
phase shift.
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FIG. 4. Modifying the Hamiltonian of an Ising simulator to control the ground state of a spin system. (a) A constant external magnetic
field is implemented by fixing a section of the SLM. The angle associated with the fixed area β determines the final state of the spin system.
(b) Tuning β allows transitioning between the two magnetized states with opposite orientations. (c) Adding a binary pattern γi to the bias
is possible to determine the spatial distribution of the spins in the ground state. In particular, by using a checkerboard with binary values of
0 and π results in an antiferromagneticlike ground state, whose fidelity to the bias was quantified in terms of staggered magnetization |m′|.
(d) Changing the value of 
 in the checkerboard part controls the probability of obtaining a ferromagnetic (|m| = 1) or an antiferromagneticlike
(m = 0) ground state. Remarkably, when 
 = π/2, the Ising Hamiltonian presents three ground states, with a degenerate probability for the
ferro- and antiferromagnetic states.

The accuracy of the Ising machine, quantified in terms
of magnetization and transmission matrix amplitudes, can be
improved by reducing the experimental noise of the setup.
However, to target specific couplings a different approach is
required. In particular, we foresee two possible routes: (i)
developing algorithms that take advantage of the huge number
of pixels of both the SLM and the camera to choose or group
them to redefine a spin system with the target couplings and
(ii) replacing the random medium with an engineered system
that maps the desired couplings. Although computationally
and experimentally challenging, these strategies may unlock
the ability to have a fully tunable spin-glass Hamiltonian.
Moreover, the performance of the Ising machine could be fur-
ther improved by replacing the electro-optical feedback in the
ground-state search with an all-optical, wave-front-shaping
approach [46]
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FIG. 5. (a) Magnetization values of different experimental realizations. Averaging the spins’ optimal mask allows us to account for thermal
fluctuations and obtain a reliable ground state [as shown in Fig. 1(b) in the main text] to compare to the corresponding theoretical zero-
temperature solution. A noise-driven annealing approach does not improve the performance of the optimization. (b) Comparison between the
focus intensity obtained via optimization and from phase conjugation of the TM for M = 1. The relative focus intensity δI is close to unity,
showing that the optimization correctly reaches the highest focus intensity.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Transmission matrix calculation and ground-state search

The transmission matrix (TM) of the scattering medium
was estimated as in [40]. In detail, each row of the TM can
be reconstructed by monitoring how the intensity on a given
CCD pixel changes when a phase modulation is applied to the
input patterns on the SLM. The TM is sensitive to translations
and rotations of the scattering medium as well as to the input
and detection hard- ware. In this work, we define the stability
as a variation within 10% of its original value. The time is
long enough to run our experiments, but for larger systems
one would need more stable architectures.

The ground-state search is conducted sequentially by
means of the recurrent digital feedback. Computation starts
from a random configuration of N binary macropixels (spins)
on the SLM. The measured intensity distribution determines
the feedback signal. At iteration, an arbitrary batch of spins
is randomly flipped if it increases the intensity at a chosen
output mode. The batch size decreases over the optimization
procedure, going from 12% of the pixels to a single pixel for
the last ∼600 iterations. Note that our simulator is agnostic to
the optimization algorithm used.

2. Focusing on multiple output modes: Phase conjugation and
singular value decomposition

The ideal option to perfectly focus through a medium
would be to be able to invert the transmission matrix. But this
is extremely hard to do; in practice we use only the phase-
conjugated matrix. Each element of this matrix is defined as a
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FIG. 6. (a) Simulation of the expected magnetization as a function of the number of output modes for both SVD and PC biases. (b) TM
amplitudes associated with the SLM spins when considering M = 256. As in Fig. 2, a correlation between the alignment of the spins and their
TM amplitudes is observed. Compared to M = 1, the TM amplitudes are more homogeneously distributed and significantly decrease in value,
leading to a lower experimental magnetization.
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FIG. 7. Coupling distributions for systems with M = N = 256.
In the case of SVD, the distribution results are more shifted than
when using PC. This is in agreement with what is observed in Fig. 3
of the main text in terms of magnetization of the ground state.

complex element that has a magnitude of 1 and an argument
equal to the opposite of that specific element in the initial
transmission matrix; that is, if θ is the argument of an element
in the TM, then −θ is the argument of the corresponding
conjugated matrix.

For several output modes, one first needs to sum over the
rows of the initial TM and then extract the arguments. Indeed,
we control only N degrees of freedom thanks to the SLM,
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FIG. 8. Allocating a larger area of the SLM to the magnetic field
results in a sharper phase transition.

M=1 M=N=256

FIG. 9. Modifying the energy landscape to control the ground
state of an Ising simulator. Examples show the spin ground state
obtained using an additional binary bias showing the initials of
Laboratory Kastler-Brossel.

but for several output modes the TM is N × m. Once this is
done, we can actually use the opposite angle to counteract the
disorder medium. The larger the matrix is, the harder it is to
actually get a proper focus.

The second method is based on the singular value decom-
position (SVD). It is defined as follows: any given matrix
A ∈ C of dimensions m × n can be factorized as U�V † = A,
where the columns of U (V ) represent the left (right) singular
vectors, and the diagonal matrix � represents the singular
values ranked by descending order; that is, the most repre-
sentative vectors of A are the first ones in each matrix. In
this particular nomenclature, the matrix V (U ) encodes for
the output (input) modes. One can therefore use the opposite
of the arguments of the first right singular vector (V here) to
act as a phase-conjugation substitute. Indeed, the first singular
vector is the one with the biggest singular value and therefore
is the one that represents the most the actual matrix.

APPENDIX B: NUMERICAL DETAILS

The numerical model used in this work is a generalization
of what was described in [32]. The optical spin glass (SG) is
numerically simulated by forming N pixel blocks (the SLM
plane). The initial optical field has a constant amplitude, and
its phase is a random configuration of N binary phases, φi =
0, π . A transmission matrix T with random complex numbers
is generated. At each iteration, a randomly selected single spin
is flipped. The input phase updates if the output total intensity
increased after the linear propagation of the field. The bias in
the numerical framework is calculated as in the experiment by
starting from the knowledge of T .

Numerical evaluation of IT corresponds to a measurement
with a detector in a noiseless system. In general, within this
scheme, ∼10N iterations are sufficient for good convergence,
i.e., when focus intensity reaches a plateau. All codes were
implemented in MATLAB on an Intel processor with 14 cores
running at 3.7 GHz and supported by 64 GB of RAM.

APPENDIX C: DETAILS OF THE
ANALYTICAL CALCULATIONS

1. Noise bias

In addition to the context of having the spins superimposed
with the SVD-retrieved angles to compensate for the medium,
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one can define a random mask superimposed on top of this
which reads eiθη, where θ is a random value in [0, 2π ] and
η ∈ [0, 1] is a global parameter which defines how strong this
noise is compared to the SVD angles (η = 1 means the noise
is strong and therefore the situation is equivalent to not having
retrieved any angles at all). Consequently, the intensity of one
output mode m reads

IT =|
∑

i

timEi|2 =
(∑

j

t jmE j

)(∑
i

timEi

)

=
∑
i, j

timt jmEiE j = 1

2

(
2

∑
i, j

timt jmEiE j

)
,

where tim = Aie−iψ̃i are the TM coefficients and Ei =
eiφi eiψi eiηθi . The intensity and resulting couplings can there-
fore be rewritten as

IT =
∑

i, jJ̃i jσiσ j, (C1)

J̃i j = − Re{timeiψi eiηθi t jme−iψ j e−iηθ j }. (C2)

2. External magnetic field

To derive the effective external field, one needs to separate
the SLM into two parts: one portion encodes for the spins,
optimized by the algorithm, and one portion encodes for the
external field, fixed during optimization. Therefore, consid-
ering the case where half the SLM is allocated to the spins
σi = eiφi as well as to the external field h j = eiβ j , one can
divide the usual sum into two terms:

IT = |
∑

i

timEi|2

=
(

N/2∑
j=1

t jmE j +
N∑

j=N/2+1

t jmE j

)

×
(

N/2∑
i=1

timEi +
N∑

i=N/2+1

timEi

)

=
∑
i, j

t jmtimE jEi +
∑
i, j

t jmtimE jEi

+
N/2∑
j=1

N∑
i=N/2+1

t jmtimE jEi +
N/2∑
i=1

N∑
j=N/2+1

t jmtimE jEi,

where Ei = eφi+ψi or eβi+ψi , depending on whether it corre-
sponds to the spin area or the field area, respectively.

The first term is the one derived earlier which represents
the classical Hamiltonian. The second one is simply a constant
term based on the field value, which will not change during
optimization and will be neglected in the coming equations.
Acting on the index order, we obtain

IT =
∑
i, j

Ji jσiσ j +
N/2∑
j=1

N∑
i=N/2+1

t jmtimE jEi

+
N/2∑
i=1

N∑
j=N/2+1

t jmtimE jEi

= −H (σ ) +
N/2∑
i=1

N∑
j=N/2+1

(t jmtimE jEi + timt jmEiE j )

= −H (σ ) +
N/2∑
i=1

N∑
j=N/2+1

(t jmtimh je
−iψ j σie

iψi

+ timt jmh je
iψ j σie

−iψi )

By definition, σi = eiφi , and since the spins are binary
(φi = 0, π ), σi = 1,−1, and therefore, σi = −σi. Writing out
the TM coefficients as tim = Aieiψ̃i and the field as h j = eiβ j ,
we get

IT = −H (σ )

+
N/2∑
i=1

N∑
j=N/2+1

(Aje
iψ̃ j Aie

−iψ̃i e−iβ j e−iψ j eiψiσi

+ Aje
−iψ̃ j Aie

iψ̃i eiβ j eiψ j e−iψiσi )

= −H (σ )

+
N/2∑
i=1

N∑
j=N/2+1

Re{e−i(ψ j−ψ̃ j )ei(ψi−ψ̃i )eiβ j }AiAjσi︸ ︷︷ ︸
(∗)

.

Now, ψi, j are, by definition, the phase-conjugated angles of
the TM, which implies that in the case of an ideal phase con-
jugation ψi = ψ̃i. Considering the field is uniform, meaning
β j = β, this last term can therefore be rewritten as

(∗) = 2
∑

i

∑
j

Re{eiβ j }AiAjσi

= 2Re{eiβ}
∑

j

A j

∑
i

Aiσi

= 2Re{eiβ}
(∑

j

A j

) ∑
i

Aiσi.

We therefore obtain

IT =
∑
i, j

Ji jσiσ j + B
∑

i

Aiσi,

where B = 2Re{eiβ} ∑
j A j describes the effective external

field.

APPENDIX D: ADDITIONAL FIGURES

The figures in this Appendix expand on the discussion in
the main text. Figure 5 shows magnetization values for dif-
ferent experimental realizations and a comparison of different
focus intensities. Figure 6 shows the expected magnetization
as a function of the number of output modes and TM ampli-
tudes associated with the SLM spins for M = 256. Figure 7
illustrates coupling distributions for systems with M = N =
256. Figure 8 shows what happens when a larger area of the
SLM is allocated to the magnetic field. Finally, the modifica-
tion of the energy landscape to control the ground state of an
Ising simulator is illustrated in Fig. 9.
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