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Signature of edge states in resonant wave scattering
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Particle beam scattering is a conventional technique for detecting the nature of matter. We studied the
scattering problem of a cluster connected to multiple leads. We established the connection between the eigenstate
of the topological scattering center and the transmission and reflection amplitudes for the resonant scattering
process. We discovered that, as an application, this approach enables the detection of the edge state in the
band gap for both Hermitian and non-Hermitian systems and the identification of the topology of a system. We
investigated two types of Su-Schrieffer-Heeger chains as examples. In addition, we proposed a dynamic scheme
through an evanescently coupled-waveguide array to detect the edge state on the basis of measured transmission
intensity. Numerical simulation revealed that pattern visibility can be the signature of the edge states.

DOI: 10.1103/PhysRevA.105.033501

I. INTRODUCTION

Studies on the integer quantum Hall effect have indicated
that edge modes exist in the topological phase with nonzero
Chern numbers [1]. According to band theory, the gap closing
between filled and empty bands will motivate the existence of
edge states [2] . The result is a robust feature for any form of
boundary, called the bulk-boundary correspondence [3]. The
only restriction is that, in cases where the topological invariant
relies on an underlying symmetry, this symmetry must be pre-
served also in the boundary region. A typical example is the
Su-Schrieffer-Heeger (SSH) model, in which chiral symmetry
is crucial [4]. Another key feature of the edge state is that its
wave function exponentially localizes on the boundary. The
almost-zero-energy eigenstates of the SSH model are odd and
even superpositions of states localized exponentially on the
left and right edges. This is a consequence of the exponentially
small overlap between the left and right edge states.

Photonic crystal is an excellent platform for the study of
topological physics [5]. Topological photonic devices have
been realized in microwave-scale magnetic photonic crys-
tals [6–9] and meta-atom structures [10], functioning at
optical and infrared frequencies in waveguide lattices [11]
and resonator lattices [12,13]. Theoretical proposals based on
modulated photonic crystal resonances [14], circuit quantum
electrodynamics systems [15,16], and metamaterial photonic
crystals [17] have also been developed. The key feature of
these devices is the existence of topologically protected elec-
tromagnetic edge states.
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A topological phase transition (TPT), which is caused by
changes in the topology of the bulk band structure, differs
considerably from common phase transitions such as the melt-
ing of a solid, which are characterized by broken symmetries
and sharp anomalies in thermodynamic properties [3]. Nu-
merous theoretical studies have demonstrated that TPTs can
be induced by tuning the band structure through chemical
substitution, strain, or pressure; via electron correlation ef-
fects [18–23]; and via laser or microwave pumping to produce
a nonequilibrium topological state or Floquet topological in-
sulator [24–32].

Topological states are characterized by topological invari-
ants [33]. In fermionic systems, conductance measurements
reveal these integer invariants. However, direct measure-
ment of these integers is nontrivial in bosonic systems,
mainly because the concept of conductance is not well de-
fined [34,35]. Whereas these integers have been measured
in one-dimensional (1D) bosonic systems [36–38], the two-
dimensional (2D) bosonic case has been realized in atomic
lattices [39] and photonic systems [40].

Recently, topological concepts have been applied to scat-
tering. Topological Fano resonance is immune to impurities,
although it remains sensitive to system parameters [41]. A
receiver protector was proposed and demonstrated employing
a topological interface state of the SSH lattice [42]. Scat-
tering methods to measure topological invariants have also
been developed. The winding number of scattering matrix
eigenvalues determines the number of edge states and topo-
logical invariants [43–48]. The relationships among surface
scattering properties, bulk band properties, and the formation
of interface states for a 1D centrosymmetric photonic crystal
have been revealed [49]. In addition, the phase of the reflection
coefficient can be used to measure the topological indices of a
photonic system [50,51].

In this paper, we investigated the relationship between the
transmission coefficients of multiple output channels scat-
tering in the resonance process and the edge state of the
topological scattering center, which can be used to intuitively
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FIG. 1. Illustration of the multitransmission channel scattering
system for detecting in-gap eigenstates. The orange area indicates
N-site topological scattering center Hc, and each site |l〉c in the
scattering center is connected to lth transmission chain (l ∈ [1, N]).
The incident and transmission chains are both tight-binding chains,
and coupling strength |J| � 1.

detect the edge state. The proposed method is insensitive
to system perturbation. We also developed a method of
measuring real eigenenergy by determining whether perfect
transmission occurs in a two-lead scattering system. We
demonstrated the effectiveness of this method by applying
it to detect an edge state in an SSH model and designed
a corresponding experimental platform through a system of
waveguide arrays. Through numerical simulation, we show
that the proposed scattering system can be used to distinguish
different phase regions from the visibility and reflection. We
also show that our proposed scattering formalism can be used
to detect the eigenfunctions of non-Hermitian systems with
real energy spectra.

The remainder of this paper is organized as follows. In
Sec. II, we design a multitransmission channel scattering
system and find the relationship between transmission coef-
ficients and the eigenfunction of the topological scattering
center. In Sec. III, we take an SSH chain as scattering center
and prove that our conclusion is applicable to detect the edge
state. In Sec. IV, we provide the scheme to experimentally
detect the edge state via a system of waveguide arrays, and
investigate the visibility and reflection to identify different
phase regions by numerical simulations. In Sec. V, we con-
sider a non-Hermitian SSH chain by adding the imaginary
potential ±iγ , and we show the transmission probability
in each lead is conformed to its eigenfunction, which is a
sinusoidal function. Finally, we summarize the results and
conclude in Sec. VI.

II. GENERAL FORMALISM

In this section, we provide the general scattering formalism
for the detection of in-gap eigenstates. The transmission coef-
ficients for the on-resonance input when all output channels
are weakly connected to the scattering center approximately
indicate the eigenstates of the scattering center. Figure 1
presents the structure of the proposed scattering system. The
Hamiltonian of the system reads

H = Hc + Hin + Hout + Hjnt, (1)

where Hc represents the topological scattering center, namely,
an N-site lattice, and each site is attached to one output chan-
nel. The channels are semi-infinite tight-binding chains with

uniform coupling strength J . We only considered cases with
single input channels. The Hamiltonian of the input channel is

Hin =
∞∑
j=1

(J|− j〉0〈− j − 1|0 + H.c. + μ|− j〉0〈− j|0), (2)

where | j〉0 is the single-particle basis of the input leads at site
j. Hout represents transmission channels and reads

Hout =
N∑

l=1

∞∑
j=1

(J| j〉l〈 j + 1|l + H.c. + μ| j〉l〈 j|l ), (3)

where | j〉l is the basis at site j in the lth output lead. The joint
Hamiltonian is

Hjnt = J|−1〉0〈1|c + J
N∑

l=1

|1〉l〈l|c + H.c., (4)

where |l〉c denotes the basis of scattering center Hc connected
to the lth transmission channel. Here, J denotes the hopping
strength and μ denotes the chemical potential for each lead.
The entire scattering system consists of the scattering center
and the input and output leads. Energy exchange between the
leads and the scattering center is enabled by weak couplings.

The wave function for the input lead is represented by
ψk

0 , and the lth output lead is represented by ψk
l , where k

is the dimensionless wave vector. The incoming plane wave
is reflected and transmitted by the scattering center, and only
outgoing plane waves are present in all output leads. The wave
functions in the leads are given by

ψk
0 ( j) = eik j + re−ik j, j < 0

(5)
ψk

l ( j) = tl e
ik j, j > 0,

where r and tl are the reflection and transmission coefficients
for the input and lth output leads, respectively. The corre-
sponding wave function in the scattering center is represented
by ψk

c ( j) ( j ∈ [1, N]). According to the continuity condition
of the wave function of a discrete quantum system, ψk

c (1) =
1 + r and ψk

c (l ) = tl (l ∈ [1, N]) because of Eq. (5). Thus,

1 + r = t1. (6)

The leads are tight-binding chains with a uniform hopping
strength and identical chemical potential. Dispersion rela-
tion Ek = 2J cos k + μ can be obtained from the Schrödinger
equations for lead Hamiltonians Hin and Hout.

Accordingly, the Schrödinger equation for scattering center
Hc is

(Hc − Ek )

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t1

t2
...

tN−1

tN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= −J

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(e−ik + reik ) + t1eik

t2eik

...

tN−1eik

tN eik

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

which connects the eigenproblem of Hc to the scattering prob-
lem. For a given explicit form Hc, r and tl can be obtained.
This analysis is not restricted to a Hermitian Hc. We focused
on obtaining a solution with k ∈ [0, π ] and real μ, which
requires that the corresponding eigenenergy be real.
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Equation (7) reduces to the secular equation of Hc,

(Hc − Ek )(t1, t2, · · · , tN−1, tN )T = 0, (8)

in the limit of zero J . When the input plane wave is in res-
onance with the eigenenergy of Hc, transmission coefficient
tl approaches the eigenfunction of Hc; otherwise, if it is not
a resonant scattering process, all transmission coefficients tl
vanish, and the reflection coefficient r becomes −1 in accor-
dance with Eq. (6). Therefore, we established the relationship
between the scattering coefficients and the eigenfunction of
the scattering center.

This method is particularly suitable for detecting edge
states in topological systems. The in-gap eigenstate expo-
nentially localizes on the boundary, and the wave function
in the first unit cell is the largest. If the input channel is
connected to the site at which the wave function is the largest,
then the transmission probability of the first output channel
will be much larger than the other output channels, and the
reflection probability will be the lowest according to Eq. (6).
The reflection should be as small as possible to observe large
transmissions. In addition, this helps distinguish nonresonant
cases, which have total reflection and zero transmission. In
the following, we used 1D topological models as examples to
demonstrate edge state detection.

III. DYNAMIC DETECTION OF THE EDGE STATE

The previous section demonstrated that the eigenfunction
can be obtained by using transmission probabilities with
eigenenergy known. In this section, we consider an SSH chain
as a scattering center to demonstrate the proposed method.
The SSH model is a prototypical 1D topological model with
typical edge state features and robustness to disorder. In ad-
dition, the SSH model is also the core of numerous other
topological models, including the SSH ladder [52–54], the
second-order topological insulator [55–57], and the SSH-
Hubbard model [58,59]. Therefore, we used the SSH model
as an example without loss of generality. The Hamiltonian Hc

is

Hc =
N/2∑
m=1

v|2m − 1〉c〈2m|c +
N/2−1∑
m=1

w|2m〉c〈2m + 1|c + H.c.,

(9)

and Fig. 2 presents the scattering system. We only focused
on cases in which μ = 0 and k = π/2. At large N limits, the
system occupies a topological phase when v < w, which has
an in-gap zero-energy edge state in the form of

|φ0〉 = (1 − q2)1/2
N/2∑
j=1

(−q) j−1|2 j − 1〉c (10)

(q = v/w) and a trivial phase when v > w, for which the edge
state is absent. In Appendix A, we used another scattering
system to demonstrate the zero mode existing in a topological
phase and vanishing in a trivial phase. In the next, we will
show that the wave function of edge states can be detected
using the amplitudes of outgoing waves in a topological phase,
and the amplitudes are zeros in a trivial phase.

FIG. 2. A SSH model scattering center (dashed orange box) with
intracell hopping v (thin lines) and intercell hopping w (thick lines).
Even (odd) channels are placed on the left (right). In the left channels,
lead site j ∈ [−∞, −1], and in the channel on the right lead site
j ∈ [1,∞]. The transmission probability in each lead is a geometric
sequence for topological states (v < w) and to be zero for trivial
states (v > w).

For numerical simulation, the initial state was used as the
Gaussian wave packet, given by

|ϕ(0)〉 = �
−1/2
0

∑
j

e−( j−Nc )2/2σ 2
eikc j | j〉0, (11)

where �0 = ∑
j e−( j−Nc )2/σ 2

is the normalization factor, kc

is the central wave vector of the Gaussian wave packet, and
the full width at half maximum of the intensity of the Gaus-
sian wave packet is 2

√
ln 2σ . For the simulation of plane

waves, the width of the incoming wave packet must be large;
otherwise, the dynamics are mixed with the dynamics near
kc. Initially, the Gaussian wave packet was centered at site
Nc, within the input lead. The evolved state is computed as
follows,

|ϕ(t )〉 = e−iHt |ϕ(0)〉, (12)

which yields the probability summations in each channel:

pl =

⎧⎪⎨
⎪⎩

∑
j=1

|〈ϕ(T )|+ j〉l |2, odd l∑
j=1

|〈ϕ(T )|− j〉l |2, even l
(13)

(l ∈ [1, N]), where T is the time at which the scattering pro-
cess finishes. Relations p0 = |r|2 and pl = |tl |2 (l > 0) should
be observed. Because the entire scattering system is Hermi-
tian, it satisfies the conservation of probability. Therefore, for
the input Gaussian wave packet,

pl =

⎧⎪⎨
⎪⎩

[1 − q2/(2 − q2)]2ql−1, odd l

[q2/(2 − q2)]2, l = 0

0, even l �= 0

(14)

should be observed for v < w, whereas

pl =
{

1, l = 0

0, l > 0
(15)
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FIG. 3. Profile of trajectory and final state for the injected Gaussian wave packet with several typical sets of scattering center parameters.
The system consists of a 40-site scattering center (20 unit cells) and 41 200-site tight-bounding chains. The plots present only the first 20
channels, and the transmission probabilities of the last 20 channels are almost zero. A Gaussian wave packet is initially centered at site
Nc = −100. The wave vector for the Gaussian wave packet is kc = π/2, σ = 20, and μ = 0 to ensure Ek = 0 and resonance with the in-gap
eigenmode. We set coupling strength J = −0.1. (a–d) w = 4 and v = 2, 3, 5, and 6, respectively. (1) and (2) correspond to the trajectory
and final state for each parameter. The overall structure is similar to that in Fig. 2. The vertical axis represents the channel number, and the
horizontal axis represents the left and right leads with 200 sites. (3) is a comparison of transmission probabilities (red empty circle) and
the eigenfunction (black line for odd sites), and the eigenfunction has been renormalized using Eq. (14). The transmission probability is a
geometric series for the topological case and almost zero for the trivial case.

should be observed for v > w. Appendix B presents the
derivation of the analytical results. To demonstrate our predic-
tion, we plotted the numerical results for several typical sets
of parameters in Fig. 3. A comparison between the analytical
and numerical results revealed that the wave packet can be
used to demonstrate the conclusion on the plane wave. Our
conclusion is invalid near topological phase transition point
v = w because the zero mode is absent in small finite SSH
chains. The outputs from the left (right) channel in the numer-
ical simulations yield the left (right) edge state.

IV. DYNAMIC DETECTION OF THE PHASE REGION

This section provides a scheme to experimentally detect
edge states through a system of waveguide arrays. Recently,
numerous studies have experimentally demonstrated SSH
models in photonic systems [5,60]. It is based on the anal-
ogy between light propagating through a photonic crystal
and a tight-binding Hamiltonian. Topological effects in some
electronic systems can be observed in their photonic coun-

terparts [13,61,62]. On a photonic platform, a single-particle
state can be amplified by a large population of photons. This
enables a high degree of control over the system parameters.

In the following we present a scheme to experimentally
demonstrate pl for Hc through a 2D array made of (N + 1) ×
M equal straight waveguides, which are assumed to be weakly
coupled. The waveguides can be fabricated through the direct
laser writing method, and numerous 2D topological lattice
systems have been implemented using this technique [63–65].
Figure 4 presents the geometry of the scattering system, which
is uniform in the direction of light propagation z. The input
and each output lead are separated to prevent the quantum
tunneling effect. According to coupled-mode theory [66–68],
light propagation can be described by Schrödinger-like equa-
tions, which are typically used to mimic the dynamics of a
tight-binding system.

For a coupled-waveguide array with length L, the corre-
sponding equations are

i
∂u(z)

∂z
= Hu(z), (16)
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FIG. 4. Illustration of waveguide arrays for experimentally de-
tecting the edge state. The yellow dot represents the incident chain,
the green dot represents the transmission chain, and the red dot
represents the SSH chain of the scattering center. Each dot represents
a waveguide of length L, which should be designed to finish the
scattering process in accordance with Eqs. (16) and (17). Coupling
strength J in the leads should be much smaller than coupling v and
w in the scattering center. The bottom right and top right represent
the initial and final states, respectively.

for z ∈ [0, L], with u(z) = [ul,i(z), uc, j (z)]T representing the
vector, u0,i(z) (i ∈ [1, N]) denoting the mode amplitude in
the input waveguide, ul,i(z) (l ∈ [1, M], i ∈ [1, N]) denoting
the mode amplitude in the output waveguide, and uc, j (z) ( j ∈
[1, M]) denoting the mode amplitude in the center waveguide.
Accordingly, for a given initial wave function u(0),

u(L) = e−iHLu(0). (17)

If u(0) is used as a Gaussian function, as defined in Eq. (11),
and light propagation distance z is used as time t , then u(L)
corresponds to the numerical results in Fig. 3. This demon-
strates that detecting edge states is possible in arrays of
coupled waveguides.

We investigated the visibility and reflection to distinguish
the topologically nontrivial and trivial phases. According to
the theoretical analysis, the light intensity distribution in the
output waveguide array (see Fig. 3) is q dependent, thus obey-
ing Eq. (14). The value of q determines the visibility of two
odd neighbor waveguides, defined as

V (η) =
∣∣∣∣
∑

i |u2η+1,i(L)|2 − ∑
i |u2η−1,i(L)|2∑

i |u2η+1,i(L)|2 + ∑
i |u2η−1,i(L)|2

∣∣∣∣, (18)

where η ∈ [1, M/2 − 1]. The visibility in the region q < 1
obeys

V (η) = (1 − q2)/(1 + q2). (19)

Visibility V (η) in region of q > 1 is not well defined because
all scattering chains are off-resonant with the energy levels of
the scattering center and then all transmission approach zero.

0 0.5 1 1.5 2
0

0.5

1

0

0.5

1

FIG. 5. V (1) (black) and |r|2 (red) as functions of q. The lines
were obtained from the analytical results of Eqs. (19) and (20),
and the empty circles were obtained from the numerical simulations
for an incident wave packet. A nonanalytical point was observed
at q = 1, which is the topological phase transition point, and our
theory adequately explained all q values except those near the phase
transition point.

Reflection |r|2 obeys

|r|2 =
{

q4/(2 − q2)2
, q < 1

1, q > 1
, (20)

which can be obtained from the analytical results. In Fig. 5
we plotted V (1) and |r|2 as functions of q, and the results
indicate that there is a nonanalytical point at q = 1. It seems
that the observation of the reflection can be the witness of
the phase transition. However, the zero mode vanished near
q = 1, and our theory was not applicable. In addition, by
measuring the visibility in the output waveguide array and the
light intensity in the input waveguide array, the corresponding
q of the topological region can be measured in the experiment.
To verify our prediction, we performed numerical simulation
and computed V (1) and |r|2 as a function of q, for an incident
wave packet. Figure 5 presents the numerical results with
empty circles, in comparison with the analytical solutions
(solid line). As expected, the values of V (1) and |r|2 deviated
from the analytical results as q approached 1. In other regions,
the theoretical results perfectly fit the numerical simulation
results.

V. NON-HERMITIAN SSH CHAIN

In this section, we consider a non-Hermitian SSH chain as
a scattering center. The non-Hermiticity arose from opposite-
site imaginary potential ±iγ . The scattering system is similar
to that in Fig. 2, with only the staggered gain and loss
presented as the on-site term of the scattering center. The
Hamiltonian of the non-Hermitian scattering center is

Hc = Hc + iγ
N∑

m=1

(−1)m|m〉c〈m|c, (21)

where Hc is the Hamiltonian of the Hermitian SSH model in
Eq. (9). For this case, we used a strong dimerization limit,
namely, v 	 w, and it has been shown in Ref. [69] that the
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FIG. 6. Profile of trajectory and final state for the injected Gaussian wave packet with several resonance energies. A Gaussian wave packet
was initially centered at the site Nc = −100 and σ = 20. The parameters of the scattering center were v = 40, w = 2, and γ = 10. The system
consists of an eight-site scattering center and 9 200-site tight-bounding chains. We set coupling strength J = −0.1. (a–d) n = 1, 2, 3, and 4,
respectively. (1) and (2) correspond to the trajectory and final state for each eigenenergy, respectively. (3) is a comparison of the transmission
probabilities (red empty circle) and the eigenfunction (black line for odd sites and magenta for even sites), and the eigenfunction has been
renormalized to fit the transmission probabilities. The transmission probability is a sinusoidal function with different periods, determined by
energy level n.

eigenstates are approximately given by

|ψc
κ〉 =

√
2

N/2 + 1

N/2∑
m=1

(−1)m sin (κm)
|2m − 1〉c − i|2m〉c

1 − ie−iϕκ
,

(22)

with eigenenergy given by

εκ =
√

(v − w cos κ )2 − γ 2, (23)

where tan ϕκ = γ /εκ and κ = (n + 1)π/(N/2 + 1), n ∈
[0, N/2 − 1]. In Appendix A, we verified the corresponding
eigenenergy. We only considered cases with real values for εκ .
Spectrum εκ was nondegenerate. The conclusion we obtained
in the previous section was applicable for finite N in the
limit of zero J . For an incident plane wave with wave vector
kc = π/2, chemical potential μ can be adjusted to εκ . The
transmission coefficients in each lead are a sinusoidal function
given by

|t2m−1|2 = |t2m|2 ∝ sin2 (κm), m ∈ [1, N/2]. (24)

Different resonant μ values result in different distribution of
|tl |2, which is determined by n.

To test this prediction, numerical simulations were per-
formed in accordance with the procedure in the previous
section. The numerical results for several typical sets of pa-
rameters are plotted in Fig. 6. A comparison between the
analytical and numerical results revealed that our scattering
formalism for detecting eigenfunctions was applicable to non-
Hermitian topological models with real-value edge states.

VI. DISCUSSION AND SUMMARY

The prototypical SSH model was employed to demonstrate
the proposed method of edge state detection. If Hamiltonian
Hc is a high-order degenerate topological system with degen-
erate edge states at the boundary of the lattice, the resonant
transmission in the scattering dynamics will yield the linear
superposition of the edge states for the high-order degen-
erate edge states (more than one pair of degenerate left or
right edge states). The proposed method can still be used to
identify nontrivial topology, where transmissions in the leads
exponentially decay in the topologically nontrivial phase and
approach zero for all leads in the trivial phase. The method
can also be applied to other topological models, including
the Rice-Mele model, the Aubry-André-Harper model, and
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their generalizations, and the edge states can be detected using
resonant transmission.

We developed a method to detect eigenstates in the band
gap by using multichannel scattering. The connection between
the eigenstate of the scattering center and the transmission
and reflection amplitudes of the resonant scattering process
was established at the isolated energy level. The method is
applicable to both Hermitian and non-Hermitian scattering
centers if the isolated energy level is real and can be used to
detect the eigenstates of a system through resonant scattering.
We demonstrated that the edge state in an SSH chain can
be detected using photon probability in the output leads. We
also proposed a scheme to demonstrate these results through
a system of waveguide arrays.
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APPENDIX A: DETERMINATION OF EIGENENERGY

This Appendix demonstrates the detection of the eigenen-
ergy of a cluster through the measurement of resonant
transmission. We designed another scattering system with two
leads shown in Fig. 7(a). The Hamiltonian of the output lead
in system H reduces to

Hout = −J
∞∑
j=1

(| j〉〈 j + 1| + H.c.) + μ

∞∑
| j|=1

| j〉〈 j|. (A1)

The joint Hamiltonian is represented by

Hjnt = −J (|−1〉〈α| + |1〉〈α|) + H.c.,

where α represents an arbitrary site in cluster Hc connected to
the left and right leads. N-site scattering center Hc is defined
as

Hc =
N∑

n=1

εn|φn〉〈φn|. (A2)

Hc is expressed by the eigenenergy representation. |φn〉
denotes the eigenstate of Hc with energy εn [if Hc is non-
Hermitian, 〈φn| in Eq. (A2) should be replaced by 〈ϕn|, where
|ϕn〉 denotes the eigenstate of H†

c with energy ε∗
n]. We con-

sidered a case in which Hc has an isolated energy level at εq,
satisfying

εq = −2J cos k + μ. (A3)

State |ψk〉, calculated using

|ψk〉 =
{

eik j | j〉, | j| � 1

c〈m|φq〉|m〉, m ∈ [1, N]
, (A4)

is an eigenstate of H with energy εq. Here {|m〉} denotes
the set of indices for the sites of the scattering center, and c
is a complex number, calculated using 〈α|φq〉 = c−1, which
implies that 〈α|φq〉 must be nonzero. We observed that a
perfect transition occurs without reflection under resonance,
which satisfies Eq. (A3). Under nonresonance, a reflected
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FIG. 7. Schematic of the system for determining the eigenen-
ergy of a cluster and its corresponding numerical results.
(a) Schematic of the scattering system with two leads. (b)–(e) Nu-
merical results of the Hermitian SSH model. The parameters for the
scattering center were the same as those in Fig. 3. (f) Numerical
results of the non-Hermitian SSH model. The parameters for the
scattering center were the same as those in Fig. 6. For all numerical
results, coupling strength J = 1, and wave vector k = π/2. The
black lines are reflections with different μ values, and the red empty
circles are the corresponding eigenenergy of the scattering center.
The green asterisk in panel (f) represents the analytic eigenenergy in
Eq. (23).

wave appears after scattering. This result can be used to de-
tect the eigenenergy for Hc by switching off all leads of a
multichannel scattered system (Fig. 1) except 0 and 1, which
is essentially an infinite chain sharing a single site with the
scattering center. Because perfect transmission (r = 0) corre-
sponds to on-resonance, resonant energy can be determined by
scanning μ and measuring the reflection. The scattering center
can be Hermitian or non-Hermitian, but the corresponding
eigenenergy must be real. The coupling strength J of the two
leads is not limited; this differs from the requirement that the
coupling strength be sufficiently low for the measurement of
the eigenfunction through multichannel scattering.

To determine the validity of the method of detecting
eigenenergy, we used an SSH chain and non-Hermitian SSH
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chain as scattering centers to measure the reflection of differ-
ent μ values. The numerical results for several typical sets
of parameters are plotted in Figs. 7(b)–7(f). A comparison
between the exact eigenenergy and the numerical results in-
dicated that all the μ values with zero reflection corresponded
to eigenenergy, which suggested that our scattering method
for detecting eigenenergy was applicable to both Hermitian
and non-Hermitian clusters with real values. For the non-
Hermitian SSH model, the eigenenergy obtained by numerical
calculation corresponds to the analytic expression Eq. (23).
Therefore, we can experimentally detect the corresponding
eigenenergy by determining whether the reflection is zero in
the proposed system in Fig. 7(a).

APPENDIX B: ANALYTICAL SOLUTIONS OF THE
TRANSMISSION REFLECTION IN THE SSH MODEL

The transmission coefficients of each channel are the non-
normalized eigenfunctions of the edge state. The transmission
coefficients of two adjacent odd transmission channels are
−q times different and all transmission coefficients of even
transmission channels are zero:

tl =
{

t1(−q)( j−1)/2, odd

0. even
. (B1)

We supposed that the number of unit cells in the scattering
center was sufficiently large. This would guarantee that the
eigenenergy of the in-gap eigenmode would be zero, thus
satisfying the resonance condition, and that the transmission
coefficients would converge, enabling the use of the infinite
series summation formula:

N∑
l=1

|tl |2 = |t1|2(1 + q2 + q4 + · · · ) = |t1|2
1 − q2

. (B2)

Because the Hamiltonian of the entire scattering system is
Hermitian, the unitary scattering and probability current is
conserved:

|r|2 +
N∑

l=1

|tl |2 = 1. (B3)

The continuity condition Eqs. (6) and (B2) can be introduced
into Eq. (B3), and we can solve that

t1 = 2(1 − q2)

2 − q2
, r = − q2

2 − q2
. (B4)

In the numerical simulations, the probability summations in
each channel pl reflect reflection |r|2 and transmission |tl |2.
Therefore, analytical solutions for transmission reflection can
be obtained, as shown in Eq. (14).
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