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BCS-BEC crossover of atomic Fermi superfluid in a spherical bubble trap
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We present a theory of a two-component atomic Fermi gas with tunable attractive contact interactions
on a spherical shell going through the Bardeen-Cooper-Schrieffer (BCS)–Bose-Einstein condensation (BEC)
crossover, inspired by the realizations of spherical bubble traps for ultracold atoms in microgravity. The
derivation follows the BCS-Leggett theory to obtain the gap and number equations. The BCS-BEC crossover can
be induced by tuning the interaction, and the properly normalized gap and chemical potential exhibit universal
behavior regardless of the planar or spherical geometry. Nevertheless, the spherical-shell geometry introduces
another way of inducing the crossover by the curvature. The curvature-induced BCS-BEC crossover is made
possible by fixing the particle number and interaction strength while shrinking the sphere, causing a reduction to
the ratio of the pairing and kinetic energies and pushing the system toward the BCS limit. The saturation of the
superfluid density further confirms that the ground state is a Fermi superfluid.
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I. INTRODUCTION

Ultracold atoms have offered versatile platforms for study-
ing quantum many-body physics with precise controls and
broad tunability [1–8]. While Bose-Einstein condensation
(BEC) has been the foundation behind major research on
bosonic atoms [9,10], pairing between fermionic atoms intro-
duces the Bardeen-Cooper-Schrieffer (BCS)-BEC crossover,
which smoothly interpolates the behavior of fermionic and
bosonic superfluids [11–15]. On the BCS side of the crossover
at zero temperature, the pairing gap is small with respect to
the Fermi energy EF while the chemical potential μ is near
EF . On the BEC side, the gap is comparable to or larger than
EF while μ becomes negative due to the strong binding of
fermions. The mean-field BCS-Leggett theory [16] captures
the main feature of the ground state in the crossover.

Meanwhile, geometry has played an important role in the
study of cold atoms. For example, an atomic superfluid in a
harmonic trap carries angular momentum by forming vortices
[17], but an atomic superfluid in a ring-shaped trap carries
angular momentum by its circulating persistent current [18].
Another example is the realizations of two-dimensional (2D)
planar atomic systems, including 2D superfluids [19,20], 2D
BCS-BEC crossover [21,22], spin-orbit coupled superfluids
[23], phase transitions [24,25], scale invariance [26], along
with many theoretical works [27–32]. On the other hand,
spherical bubble traps for cold atoms have been proposed
[33,34] and recently realized in microgravity environment,
such as the outer space [35]. Shells of superfluid have also
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been observed in atomic Mott insulator-superfluid systems
[36] and relevant to neutron stars [37]. While there have been
theoretical studies of bosonic superfluid on a spherical shell
[38–44], showing enhanced transition temperature, vortices,
multicomponent mixtures, etc., fewer references can be found
on fermionic superfluid on a spherical shell.

Here we present an analysis of the BCS-BEC crossover
of a Fermi superfluid on a 2D spherical shell at the level of
the BCS-Leggett theory. The dispersion of an ideal Fermi gas
on a spherical shell already exhibits interesting features [45],
including degeneracy within an angular-momentum level and
jumps between adjacent levels. By considering a contact in-
teraction similar to that in nuclear matter [46], we obtain a
mean-field Hamiltonian describing pairing of the fermions on
a spherical shell. Implementing the Bogoliubov transforma-
tion [46], the gap and number equations on a spherical shell
are derived. The solution exhibits the signatures of the BCS-
BEC crossover as the attractive interaction increases. When
the gap and chemical potential are properly normalized, they
exhibit universal behavior that depends only on the interaction
but not the curvature, as long as the sphere is large so that the
scattering remains a local event.

Nevertheless, the curvature will be shown to influence the
Fermi superfluid and induce its own BCS-BEC crossover on
a sphere. This is because a bound state always exists in 2D
two-body scattering [47,48]. In contrast, a two-body bound
state in 3D only emerges beyond the unitary point [49]. The
binding energy is determined by the scattering length that
quantifies the interaction strength. In experiments, the size
of the spherical bubble trap is expected to be tunable with
the particle number fixed, so the particle density increases
with the curvature. Since the Fermi energy increases with the
particle density, the ratio of the pairing energy indicated by
the two-body binding energy and the kinetic energy indicated
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by the Fermi energy decreases as the spherical shell shrinks,
thereby pushing the Fermi superfluid toward the BCS limit
even when the interaction is fixed. The curvature-induced
BCS-BEC crossover is made possible by the 2D nature and the
compactness of the spherical bubble trap, and its realization
will offer another elegant example of geometric effects on
strongly interacting quantum systems. We remark that the
topology of a sphere is different from a plane as the Poincaré-
Hopf theorem [50] states that vector fields on the tangent
planes of a sphere must have singularities while those on
a plane may have none, and there is a recent study on the
XY model on a spherical shell [51].

The rest of the paper is organized as follows. Section II
shows a derivation of the BCS-Leggett theory of fermionic
superfluids in the BCS-BEC crossover on a spherical shell.
A comparison with the planar case is presented to show the
universal behavior. Section III presents the curvature-induced
BCS-BEC crossover as the spherical shell shrinks. Section IV
discusses theoretical and experimental implications of the
BCS-BEC crossover on a spherical shell. Finally, Sec. V con-
cludes our work. Some details and derivations are given in the
Appendix.

II. EFFECTIVE THEORY OF FERMIONIC SUPERFLUID
ON A SPHERICAL SHELL

A. Model Hamiltonian

We consider a two-component atomic Fermi gas with equal
mass and population confined in a spherical bubble trap. As-
suming the shell is thin, the gas thus lives on the surface of a
sphere. For a free Fermi gas confined on a spherical shell, the
energy dispersion is given by [45]

εl = h̄2

2mR2
l (l + 1), l = 0, 1, . . . . (1)

Here m is the mass of the atoms and R is the radius of the
sphere. In the following, we will set h̄ = 1 and kB = 1. l is
the quantum number of the orbital angular momentum. For
a fixed l , the magnetic quantum number takes the values
mz = −l, . . . , l , and σ =↑,↓ labels the two components.
Therefore, there are 2(2l + 1) degenerate states for the level
labeled by l .

After including a two-body interaction term modeling
atomic scattering, the Hamiltonian in the grand-canonical
ensemble is H = HK + HI , where HK = ∑

l,m,σ (εl −
μ)c†

lmσ
clmσ and

HI =
′∑

l1,m1,...

V1234c†
l1m1σ1

c†
l2m2σ2

cl3m3σ3 cl4m4σ4 . (2)

Here V1234 = 〈l1, m1; l2, m2|V |l3, m3; l4, m4〉, and c†
lmσ

(clmσ )
is the fermion creation (annihilation) operator. We also as-
sume equal populations of the two components, so μσ = μ.
Assuming the two-body interaction is rotationally invariant,
then nonvanishing matrix elements only occur if the magnetic
quantum numbers satisfy m1 + m2 = m3 + m4, as indicated
by the prime above the

∑
. For atomic gases, the interactions

are usually tunable via Feshbach resonance by an external
magnetic field [1,9,49]. Conventional superconductors are due

to phonon-mediated interactions [52]. In principle, one may
formulate mediated interactions on a sphere. The expressions
may be more complicated than those presented here, and
it may be challenging to tune those mediated interactions
through the BCS-BEC crossover.

In the conventional BCS theory, one only considers two-
body scattering from | ± k〉 to | ± k′〉, forming Cooper pairs
with zero total momentum [1,46]. Inspired by such a sim-
plification, we also focus on the initial and final states on
the spherical shell that can be coupled into |L = 0, M = 0〉
with a spin singlet, and we ignore other scattering processes.
The approximation then leads us to the reduced interaction
Hamiltonian HI = ∑

l1,m1,l2,m2
V12c†

l1m1↑c†
l1,−m1↓cl2m2↑cl2,−m2↓.

Here V12 = 〈l1, m1; l1,−m1|V |l2, m2; l2,−m2〉. The coupling
among the angular-momentum states gives |l, m; l,−m〉 =∑2l

L=0 |l, l; L, 0〉〈l, l; L, 0|l, m; l,−m〉. Here we only keep the
L = 0 state and use the fact that 〈l, l; L, 0|l, m; l,−m〉 =
(−1)l−m/

√
2l + 1. The interaction Hamiltonian then be-

comes HI = ∑
l1,m1,l2,m2

V12,0c†
l1m1↑c†

l1,−m1↓cl2m2↑cl2,−m2↓. Here

V12,0 = 〈l1, l1; 0, 0|V |l2, l2; 0, 0〉 (−1)l1−m1 (−1)l2−m2√
(2l1+1)(2l2+1)

. The factor

(−1)l1−m1 (−1)l2−m2 inside V12,0 can be removed by a
canonical transformation, given by clm → clm and cl−m →
(−1)l−mcl−m. After those calculations, the form of HI is now
suitable for a general mean-field approximation similar to the
BCS theory.

B. BCS theory on a spherical shell

Following the BCS approximation, we make the
substitutions clm↑cl,−m↓ → 〈clm↑cl,−m↓〉 and c†

lm↑c†
l,−m↓ →

〈c†
lm↑c†

l,−m↓〉 in the interaction Hamiltonian and keep only up
to the quadratic terms. This leads to the BCS Hamiltonian

HBCS = HK +
∑
l,m

(−�l c
†
lm↑c†

l,−m↓ − �l clm↑cl,−m↓). (3)

Here the gap function is given by

� j = − 1

(2 j + 1)1/2

∑
l,m

Vjl
1

(2l + 1)1/2
〈clm↑cl,−m↓〉 (4)

and Vjl = 〈 j, j; 0, 0|V |l, l; 0, 0〉. The BCS Hamiltonian can
be diagonalized by the Bogoliubov transformation [46] with

clm↑ = ulαlm − vlβlm, c†
l,−m↓ = vlαlm + ulβlm. (5)

The coefficients are given by u2
l = 1

2 (1 + ξl

El
) and v2

l = 1
2 (1 −

ξl

El
), where ξl = εl − μ and El =

√
ξ 2

l + �2
l . The diagonal-

ized Hamiltonian has the form

HBCS =
∑
lm

(ξl − El ) +
∑
lm

El (α
†
lmαlm + β

†
lmβlm). (6)

In terms of the Bogoliubov transformation, the gap func-
tion becomes

� j = −1

(2 j + 1)1/2

∑
l

Vjl (2l + 1)1/2ulvl [1 − 2 f (El )]. (7)

Here f (x) = 1/[exp(x/T ) + 1] is the Fermi distribution func-
tion. We will further approximate the matrix element Vjl

before solving the gap equation. Meanwhile, the number
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equation can be derived from n = ∑
l,m,σ 〈c†

lmσ
clmσ 〉. Explic-

itly,

n =
∑

l

(2l + 1)

(
1 − ξl

El
+ 2

ξl

El
f (El )

)
. (8)

Solving the gap and number equations gives us � and μ of
the Fermi gas.

C. BCS-BEC crossover on a spherical shell

We begin with a brief review of the mean-
field description of the BCS-BEC crossover on
a 2D plane, following Refs. [27,32]. To han-
dle the bound state from the 2D two-body
scattering, a regularization introduces a binding energy
εb = −h̄2/(ma2), where a is the 2D two-body s-wave
scattering length. Combining the binding energy with the
renormalization of the contact interaction, the coupling
constant is expressed in terms of the scattering length via
1
g = ∫

d2k
(2π )2

1
2εk+|εb| . Here εk = h̄2k2/(2m) is the free-fermion

dispersion. The gap and number equations can be simplified
to ∫

d2k

(2π )2

[
1 − f (Ek )

2Ek
− 1

2εk + |εb|
]

= 0,

n =
∫

d2k

(2π )2

(
1 − ξk

Ek
+ 2

ξk

Ek
f (Ek )

)
. (9)

Solving the equations gives � and μ once the values of a and
T are given.

In a previous study of bosonic atoms in a spherical-shell
potential [38], a contact interaction has been implemented.
To simplify the BCS theory on a spherical shell, we
also implement an approximation of the matrix element
Vjl by considering only a short-range attractive interac-
tion. A choice is a two-body contact interaction of the
form V = −gδ(1 − cos θ12), where cos θ12 = cos θ1 cos θ2 +
sin θ1 sin θ2 cos(φ1 − φ2). As one will see shortly, the choice
renders a constant gap function. The coupling constant g will
be related to the 2D scattering length in a discussion later.
After using a generalization of the Wigner-Eckart theorem
[46] as explained in Appendix A, the matrix element becomes
Vjl = −g

√
(2 j + 1)(2l + 1). We remark that the contact po-

tential has an infinitesimal interaction range. When we expand
the contact potential by spherical harmonics, the expansion
coefficients are similar in magnitude for all angular momen-
tum l , leading to the simplified expression of the matrix
elements. If a different interaction potential is considered, the
dominant contributions may come from those with small l ,
and the strength decays as l increases.

The gap equation is then reduced to � j = g
∑

l (2l +
1) �l

2El
[1 − 2 f (El )]. Since the right-hand side does not depend

on j, we conclude that � does not depend on j explic-
itly. Hence, the gap equation reduces to 1

g = ∑
l

2l+1
2El

[1 −
2 f (El )]. Since El ∝ l (l + 1), the dominant terms in the sum-
mation will behave like

∑
l

2l+1
2El

∼ ∑
l

2l+1
l (l+1) → ∞ due to the

contact-interaction approximation. A systematic renormaliza-
tion scheme, similar to the one in flat space, can be applied to
render meaningful physical results.
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FIG. 1. Universal behavior of interaction-induced BCS-BEC
crossover: The normalized gap (left) and chemical potential (right)
as a function of − ln(kF a) on a 2D plane according to Eq. (9) (red
circles) and on the shell of a unit sphere according to Eq. (10) (blue
squares) at zero temperature.

Following the planar case, the regularization on a 2D spher-
ical shell can be modified as 1

g = ∫
dl 2l+1

2εl +|εb| . We assume

εb = −h̄2/(ma2) due to its localized nature. The two-body
scattering length can be measured experimentally to charac-
terize the interaction strength [1,49]. After the regularization,
we obtain the gap and number equations as∫

dl (2l + 1)

[
1 − 2 f (El )

2El
− 1

2εl + |εb|
]

= 0,

n = 1

4πR2

∫
dl (2l + 1)

(
1 − ξl

El
+ 2

ξl

El
f (El )

)
. (10)

We mention there is another regularization scheme summa-
rized in Appendix B that produces qualitatively the same
results. Moreover, we have approximated the summations by
integrals, and a comparison in Appendix D shows that there
is no observable difference between the results from the sum-
mations and the integrals for reasonably large l .

Numerical results of the BCS-BEC crossover on a 2D
spherical shell at zero temperature are shown in Fig. 1, along
with the results of the 2D planar case. We plot � and μ as
a function of − ln(kF a) for both cases. For the 2D planar
case, EF and kF are the Fermi energy and Fermi wavevec-
tor of a noninteracting Fermi gas with the same density.
For the spherical-shell case, we take EF and kF = √

2mEF

from a noninteracting Fermi gas with the same total particle
number. Assuming the largest occupied shell has angular mo-
mentum Lm for a free Fermi gas, the total particle number
is N = 2Lm(Lm + 1), so EF = Lm (Lm+1)

2mR2 and n = N/(4πR2).
As −ln(kF a) increases, the gap increases while the chemical
potential decreases, showing the signature of the BCS-BEC
crossover. While the BCS-BEC crossover is not a sharp tran-
sition, the crossover may be identified as the regime where
μ changes sign. Since the scattering length reflects the ef-
fective interactions between the fermions, Fig. 1 shows the
interaction-induced BCS-BCS crossover in two different 2D
geometries.

Importantly, when normalized according to their respec-
tive intrinsic quantities like EF and kF , the results of the 2D
plane are indistinguishable from those of the spherical shell.
This is because the pairing from the contact interaction is a
local property of the Fermi gas. As a consequence, properly
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normalized quantities reflect the same local behavior from the
mean-field theory and fail to differentiate the global geometry.
For the spherical case, taking different values of N , Lm, and R
produces the same universal results of �/EF and μ/EF . The
universal behavior can also be confirmed by the resemblance
of the equations of state, Eqs. (9) and (10), when written in
the normalized quantities. The details can be found in Ap-
pendix C. We remark that by using dimensionless quantities
such as �/EF and μ/EF , the theory can be applied to systems
with different species of atoms and different sizes or numbers
to extract universal behavior.

III. CURVATURE INDUCED BEC-BCS CROSSOVER

The universal behavior of Fig. 1 may lead to a false im-
pression that the curvature of the sphere, 1/R2, does not play
a significant role. However, one may envision that the radius
of the spherical bubble trap is tunable and consider a different
scenario where the particle number, not the local density, is
conserved and compare the physical quantities with different
curvatures but the same interaction strength. As the curvature
increases, the surface area shrinks and the local particle den-
sity increases if the total particle number is fixed. Since EF

increases with the density, it is tempting to claim that the
gap will increase with the curvature if �/EF is roughly the
same. A careful analysis, however, reveals the opposite and
establishes a BEC-BCS crossover induced by the curvature.

To demonstrate the curvature effects, we plot μ and � as
functions of the curvature with fixed particle number and scat-
tering length. As the radius of the sphere shrinks from R0, one
can see that the gap becomes smaller with respect to the gap
at R0. The reason is that as 1/R2 increases, the Fermi energy
becomes larger. Meanwhile, the effective two-body binding
energy is fixed by the scattering length, which is controlled by
an external magnetic field. The ratio |εb|/EF thus decreases
with the curvature, resulting in a situation in which the kinetic
energy dominates the pairing energy and thereby driving the
system into the BCS limit as the radius of the spherical shell
shrinks. Again, a sign change of μ indicates the occurrence of
the BCS-BEC crossover.

Thus, there are two ways to sweep a Fermi superfluid
across the BCS-BEC crossover on a spherical shell, one by
tuning the interaction and the other by tuning the geometry.
The first one is an analog of the 2D planar case, where the
particle density is fixed and the scattering length is tuned via
magnetic or optical means. The second one requires a compact
2D geometry, where the particle number and scattering length
are fixed but the ratio between the two-body binding energy
and the Fermi energy is tuned by the geometry. We remark
that the latter is possible in 2D because the two-body binding
energy is always present [47,48], different from the general
3D case where the binding energy is finite only on the BEC
side. Therefore, shrinking a 3D bulk Fermi superfluid cannot
push the system to the BCS regime. We also caution that
the calculation of the two-body scattering length assumes the
system is locally flat, and the assumption breaks down when
the curvature is too large, or when R ∼ O(a). Moreover, we
note that the BCS-Leggett theory does not take into account
the induced interaction [1] and Hartree-Fock energy [53]. The
former reduces the transition temperature by a factor in the
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FIG. 2. Curvature-induced BCS-BEC crossover on a spherical
shell at zero temperature. Top panels: Gap as a function of (R0/R)2

normalized to EF (left) and �0 (right). Bottom panels: Chemical
potential as a function of (R0/R)2 normalized to EF (left) and μ0

(right). �0 and μ0 on the right panels are the gap and chemical
potential of N = 220 fermions on the shell of a reference sphere with
radius R0 satisfying − ln(kF a) = −0.1. Then a and N are fixed while
(R0/R) varies.

3D case, and the latter shifts the chemical potential. As a first
attempt to develop the BCS-Leggett theory of Fermi superflu-
ids on a spherical shell, we leave those effects for future, more
refined studies.

Furthermore, we evaluate the superfluid density given by

ns = n − 1

4πR2

∫
dl 2(2l + 1)

l (l + 1)

2mR2

[
− df (El )

dEl

]
.

(11)

A derivation based on linear response theory is shown in
Appendix E. As T → 0, − df (x)

dx approaches the δ function.
Since El is positive, the δ function can never be satisfied.
Therefore, ns/n = 1 at T = 0 across the whole interaction-
induced BCS-BEC crossover, so the ground state is indeed
a Fermi superfluid. Nevertheless, in the curvature-induced
crossover, the density increases with the curvature because the
total particle number is fixed, leading to an interesting sce-
nario where ns increases while � decreases with the curvature
according to the upper-right panel of Fig. 2. The disparity of
the dependence of ns and � on the curvature has its root in
the fact that � is associated with thermodynamics while ns is
from linear response to perturbations.

IV. IMPLICATIONS

After characterizing the ground-state properties of atomic
Fermi superfluids on a spherical shell, we investigate the
mean-field theory away from zero temperature by solving the
gap and number equations at finite temperatures. In Fig. 3,
we show � and ns as functions of T . The mean-field tran-
sition temperature T ∗ is the point above which � vanishes.
As the system moves towards the BEC limit, T ∗ increases
without bound and indicates the pairing energy scale. The
2D Berezinskii-Kosterlitz-Thouless (BKT) transition [54–56]
temperature separates the superfluid and normal phase, which

033324-4



BCS-BEC CROSSOVER OF ATOMIC FERMI SUPERFLUID … PHYSICAL REVIEW A 105, 033324 (2022)

0 0.1 0.2 0.3 0.4 0.5
T/EF

0

0.2

0.4

0.6

0.8

��
E F

0 0.1 0.2 0.3 0.4 0.5

 T/EF

0

0.2

0.4

0.6

0.8

1

n s/n T
BKT

FIG. 3. Gap (left) and superfluid density (right) as functions of
T/EF of a Fermi superfluid on the shell of a unit sphere. Here
− ln(kF a) = −1.35 and N = 220. T ∗/EF ≈ 0.42 is where � ap-
proaches zero. The vertical dashed line indicates TBKT/EF ≈ 0.29,
above which ns is expected to drop to zero.

may be estimated by

kBTBKT

h̄2ns(TBKT)/m
= π

2
. (12)

For the case shown in Fig. 3, TBKT is below T ∗, so the BKT
transition will preempt the mean-field transition and cause ns

to jump to zero.
The BCS-Leggett theory only provides a qualitative de-

scription of the crossover at finite temperatures. It has been
shown [11–15] that the preformed pairs, which are the analog
of thermal bosons in a Bose gas, lead to a substantially lower
Tc on the BEC side. There have been studies of 2D planar
Fermi superfluids that include pairing fluctuations [22,31,32]
and studies of the 2D BKT transition in Fermi superfluids with
fluctuation effects [27,57]. In the BEC limit, the tightly bound
pairs resemble composite bosons. The BEC temperature of a
noninteracting Bose gas on a sphere is given by [38]

kBTBEC =
2π h̄2

mB
nB

h̄2

mBR2kBTBEC
− ln(eh̄2/mBR2kBTBEC − 1)

. (13)

By setting mB = 2m and nB = n/2 for the composite bosons,
we estimate the ideal BEC temperature of the composite
bosons in the BEC regime. For 3D Fermi superfluids in the
BEC limit, pairing fluctuations via the Nozieres-Schmitt-Rink
and other methods show that the transition temperature ap-
proaches TBEC [12,14,58] due to the composite bosons, and the
same mechanism should apply to 2D systems. Figure 4 shows
T ∗, TBKT, and TBEC as functions of the interaction strength.
On the BCS and BEC sides, the BKT and BEC tempera-
tures limit where superfluid and condensate can be observed,
respectively, while the mean-field T ∗ shows where pairing
energy enters the excitation spectrum. The three temperatures
provide upper bounds for the transition temperatures, and a
full treatment of the finite-temperature BCS-BEC crossover
on a spherical shell will be worth another publication. We
remark that the BCS, BKT, and BEC transitions are defined in
the thermodynamic limit. For a finite system, the transitions
will lose the sharpness due to finite-size effect.

Trapping of single-species atomic bosons in a spherical
shell has been achieved by having three hyperfine states in
a spherical harmonic potential with energy levels split by
a magnetic field [35]. A radiofrequency (rf) excitation only
couples the hyperfine states at a given radius due to the
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FIG. 4. T ∗/EF and TBKT/EF as a function of − ln(kF a). Here
N = 220. The dashed line indicates the ideal TBEC/EF in the BEC
regime.

inhomogeneity from the harmonic trap and inverts the poten-
tial inside. The combination of the potentials for the dressed
states thus resembles a shell at specific radius determined by
the harmonic trap, magnetic field, and rf excitation. There-
fore, the shell size can be tuned by the background harmonic
potential or radiofrequency. The method should in principle
work for fermionic atoms. However, to have two components
of fermions in a spherical shell, more hyperfine states with
selected rf excitations among them may be needed. High-
component atomic Fermi gases have been realized [59], and
they may be suitable for the realization of two-component
Fermi gases in a spherical shell in the future. Figure 5 illus-
trates the setup for a spherical bubble trap for two-component
fermionic atoms.

In this work, a contact interaction has been implemented
to model the atomic collisions. Numerical calculations have
shown that short-range interactions describe atomic inter-
actions reasonably [60], and one may consider finite-range
interactions to include corrections beyond the low-energy
limit [61,62]. We also remark that when the spherical-shell
size shrinks too much, the continually increasing density will
lead to strong three-body loss [49]. Moreover, finite-range

FIG. 5. Illustration of a bubble trap for two-component atomic
Fermi gases. By using radiofrequency (rf) photons (rf1 and rf2) to
couple two pairs of hyperfine states |↑, ±〉 and |↓, ±〉 in a harmonic
trap with a magnetic field, the resulting minimum in the upper branch
of the potential for the two-component Fermi gas (indicated by the
black dots) corresponds to a spherical shell in 3D.
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corrections to the interaction may become observable when
atoms are closely packed. Therefore, while the increasing of
the chemical potential and decreasing of the gap function
due to the curvature-induced BCS-BEC crossover should be
observable as the radius decreases, the behavior of the system
may start to deviate from the mean-field description as the
trap size gets too small. Reference [35] shows 104 atoms
confined in a shell potential with linear size of the order of
100 μm. For a spherical shell of similar size, this gives a
surface density of about 1011/m2. If a Feshbach resonance
is sufficiently far away from others, the scattering length
almost covers the range (−∞,∞) in 3D [49]. When the
finite thickness of the atomic cloud is considered, the system
gradually deviates from the 2D case and eventually becomes
3D when the thickness is comparable to the scattering length.
For the curvature-induced BCS-BEC crossover, the interac-
tion is assumed to be fixed while the radius changes. Thus,
the thickness of the cloud should be roughly the same to keep
the scattering properties fixed.

We remark that the spherical-shell trap is not the only
way to realize compact 2D geometries for cold atoms. One
may, for example, confine planar 2D atomic gases in a fi-
nite regime. The distortion of the condensate wave function
near the boundary is determined by the healing length [46],
which depends on the interaction and density. One may also
envision wrapping a rectangle into the surface of a torus to
eliminate boundary effects. The 2D torus has two different
principal curvatures while the sphere has the same curvature
everywhere. It has been shown [63] that the Ginzburg-Landau
theory on the surface of a torus exhibits a size-dependent
transition temperature. However, a torus-surface trap for cold
atoms may be more challenging.

V. CONCLUSION

We have presented a generalization of the BCS-Leggett
theory of atomic Fermi superfluids on a 2D spherical shell
undergoing the BCS-BEC crossover, relevant to future exper-
iments using spherical bubble traps in microgravity. Although
the highly degenerate levels and jumps between the levels
of an ideal Fermi gas on a spherical shell make the spec-
trum different from that on a 2D plane, the pairing gap and
chemical potential of a Fermi superfluid after proper normal-
ization exhibit universal behavior transcending the underlying
geometries. Therefore, the conventional interaction-induced
BCS-BEC crossover of Fermi superfluid is also present on
a spherical shell. Nevertheless, the spherical geometry intro-
duces the curvature-induced BCS-BEC crossover by fixing
the interaction strength and particle number while reducing
the size of the spherical shell. The latter type of crossover
is due to a suppression of the ratio between the pairing
and kinetic energies by the curvature. Our work paves the
way toward a systematic investigation of Fermi superfluids
with compact geometries, exemplified by the spherical bubble
traps.
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APPENDIX A: CALCULATION OF V

The two-body contact interaction V = −gδ(1 − cos θ12)
allows an expansion by the Legendre polynomials and spher-
ical harmonic functions as

V = −g
∑

L

(2L + 1)PL(cos θ12)

= −4πg
∑
LM

(−1)MYLM (θ1, φ1)YL,−M (θ2, φ2). (A1)

Here we treat YLM as an irreducible tensor operator, so the
summation ∑

LM

(−1)MYLM (θ1, φ1)YL,−M (θ2, φ2) (A2)

is actually a tensor product of two irreducible tensor operators,
which results in a scalar operator.

According to a more general version of the Wigner-Eckart
theorem shown in Eq. (B.33) of Ref. [46], we find that

〈l1l100|V |l2l200〉

= −4πg
∑

L

(−1)l1+l2

{
0 l1 l1
L l2 l2

}
〈l1‖YL‖l2〉2. (A3)

Here the 6 j symbol is given by{
0 l1 l1
L l2 l2

}
= (−1)l1+l2

1√
(2l1 + 1)(2l2 + 1)

(A4)

and the reduced matrix element is

〈l1‖YL‖l2〉

= (−1)l1

√
(2l1 + 1)(2L + 1)(2l2 + 1)

4π

(
l1 L l2
0 0 0

)
.

(A5)

In the above equation, the large parentheses denote the 3 j
symbol, not to be confused with the 6 j symbol. After col-
lecting all the results, we find that

〈l1l100|V |l2l200〉 = −g
∑

L

√
(2l1 + 1)(2l2 + 1)

× (2L + 1)

(
l1 L l2
0 0 0

)2

. (A6)

Moreover, the normalization condition of the Clebsch-Gordan
(CG) coefficients leads to

∑
L

(2L + 1)

(
l1 L l2
0 0 0

)2

=
∑

L

〈l1l200|l1l2L0〉2 = 1.

(A7)

After some algebra, the matrix element takes the form

〈l1l100|V |l2l200〉 = −g
√

(2l1 + 1)(2l2 + 1). (A8)
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APPENDIX B: ALTERNATIVE RENORMALIZATION
SCHEME

There is another way of regularizing the gap equation of
a Fermi superfluid on a 2D plane. This has been shown in
Eq. (12) of Ref. [48] as follows:

1

g
= lim

q→0

[
− m

2π
ln(

aqeγ

2
) −

∫
d2k

(2π )2
P 1

2(εq − εk )

]
.

(B1)

Here γ is the Euler constant and P denotes the Cauchy prin-
cipal value. Combining with the gap equation of the 2D Fermi
superfluid, one finds

− m

2π
ln

(
aqeγ

2

)
=

∫
d2k

(2π )2

1 − f (Ek )

2Ek

+
∫

d2k

(2π )2
P 1

2(εq − εk )
. (B2)

The drawback of this method, however, is that one has to
assume an infrared (IR) cutoff q. We have verified that this
alternative regularization gives qualitatively the same results
as those presented in the main text.

APPENDIX C: UNIVERSAL BEHAVIOR

The universal behavior of the gap and chemical potential
in the interaction-induced BCS-BEC crossover comes from
the equations of state. We let b = − ln(kF a), which is equiv-
alent to a = e−b/kF . For the 2D-plane case, EF = k2

F when
h̄ = 1 and 2m = 1. The particle number per unit area of a
noninteracting Fermi gas is given by N = 2(πk2

F )/(2π )2, or
n/k2

F = 1/(2π ). Therefore, the gap and number equations of
Fermi superfluid on a 2D plane can be written as∫

dy

[
1 − f (Ek/EF )

2Ek/EF
− 1

2y2 + 2e2b

]
= 0,

1

2π
=

∫
dyy

2π

(
1 − ξk/EF

Ek/EF
+ 2

ξk/EF

Ek/EF
f (Ek/EF )

)
.(C1)

Here y = k/kF , and only �/EF and μ/EF show up in Ek/EF

and ξk/EF .
Meanwhile, for a noninteracting Fermi gas on a sphere

filled up to the angular-momentum state Lm, we have n =
N/(4πR2), N = 2Lm(Lm + 1), EF = N/(2R2), and EF = k2

F
with 2m = 1. Again, let b = − ln(kF a). The equations of state
of Fermi superfluid on a spherical shell thus become∫

dz

(
z + 1

2Lm

)[
1 − f (El/EF )

2El/EF
− 1

2z2 + 2e2b

]
= 0,

1

2π
=

∫
dz

2π

(
z + 1

2Lm

)(
1 − ξl/EF

El/EF
+ 2

ξl/EF

El/EF
f (El/EF )

)
.

(C2)

Here z = l/Lm, and only �/EF and μ/EF show up in El/EF

and ξl/EF . When Lm � 1, which is usually the case in many-
body systems, the two sets of equations of state, Eqs. (C1)
and (C2), are identical and give the universal behavior of the
normalized gap and chemical potential.
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FIG. 6. Gap and chemical potential as functions of − ln(kF a)
from Eq. (10) (red circles) using the integral and from Eq. (D1) (blue
squares) using the summation. Here N = 220 and kF R = 10.5.

APPENDIX D: INTEGRAL VERSUS SUMMATION
IN THE EQUATIONS

Here we compare the results from the gap and number
equations using summation over the angular momentum ver-
sus the approximation using integration. The equations with
explicit summations are

LM∑
l=0

(2l + 1)

[
1 − 2 f (El )

2El
− 1

2εl + |εb|
]

= 0,

N =
LM∑
l=0

(2l + 1)

(
1 − ξl

El
+ 2

ξl

El
f (El )

)
. (D1)

Here LM is some cutoff level, which is much larger than
the highest occupied shell Lm. We present an example with
LM = 100 and lm = 10, which is the counterpart of Fig. 1.
After solving the gap and μ using summations, we plot the
results in Fig. 6 along with the results from the integrals. One
can see that they are virtually identical, thereby justifying the
approximation of replacing the summation over the angular
momentum with integration.

APPENDIX E: DERIVATION OF SUPERFLUID DENSITY

The superfluid density on a spherical shell can be deduced
from the expression of the 2D planar case. We remark that the
superfluid density is derived from linear response theory [46]
instead of thermodynamics. Explicitly, ns can be extracted
from the London equation jμ = − ns

m Aμ, where jμ and Aμ

denote the current and four-potential. From linear response
theory, the current of a homogeneous system can be written
as

jμ(k, ω) = −Kμν (k, ω)Aν (k, ω), (E1)

Kμν (k, ω) = n

m
δμν − i〈[Jμ(k, ω), Jν (−k,−ω)]〉.

Here Jμ(k, ω) is the current operator and 〈· · · 〉 denotes the en-
semble average. The current-current correlation function can
be obtained by analytical continuation from the corresponding
Matsubara formula. In the static and uniform limit with ω = 0
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and k → 0, the result is simplified to

lim
k→0

−i〈[Jμ(k, 0), Jν (−k, 0)]〉 = 1

m2

∑
k

k2 ∂ f (Ek )

∂Ek
δμν.

(E2)

After collecting all the above results, we find the ns of BCS
theory on a 2D plane as

ns = n −
∑

k

εk

[
− ∂ f (Ek )

∂Ek

]
. (E3)

To generalize the expression to the spherical case, we make
the following replacements:

∑
k

→ 1

4πR2

∫
dl 2(2l + 1), εk → l (l + 1)

2mR2
. (E4)

Afterwards, we arrive at ns = n − 1
4πR2

∫
dl 2(2l +

1) l (l+1)
2mR2 [ − df (El )

dEl
] as shown in the main text. If the sphere is

too small, the discreteness of the energy spectrum cannot be
ignored. Then one has to replace the integral by an explicit
summation of l .
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