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Quantum information scrambling in molecules
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Out-of-time-order correlators (OTOCs) can be used to probe how quickly a quantum system scrambles
information when the initial conditions of the dynamics are changed. In sufficiently large quantum sys-
tems, one can extract from the OTOC the quantum analog of the Lyapunov coefficient that describes the
timescale on which a classical chaotic system becomes scrambled. OTOCs have been applied only to a
very limited number of toy models, such as the Sachdev-Ye-Kitaev model connected with black hole in-
formation scrambling, but they could find much wider applicability for information scrambling in quantum
systems that allow comparison with experiments. The vibrations of polyatomic molecules are known to
undergo a transition from regular dynamics at low energy to facile energy flow at sufficiently high energy.
Molecules therefore represent ideal quantum systems to study scrambling in many-body systems of moderate
size (here 6 to 36 degrees of freedoms). By computing quantum OTOCs and their classical counterparts
we quantify how information becomes “scrambled” quantum mechanically in molecular systems. Between
early “ballistic” dynamics, and late “saturation” of the OTOC when the full density of states is explored,
there is indeed a regime where a quantum Lyapunov coefficient can be defined for all molecules in this
study. Comparison with experimental rate data shows that slow scrambling as measured by the OTOC can
reach the timescale of molecular reaction dynamics. Even for the smallest molecules we discuss, the Mal-
dacena bound remains satisfied by regularized OTOCs, but not by unregularized OTOCs, highlighting that
the former are more useful for discussing information scrambling in this type of moderate-size quantum
system.
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I. INTRODUCTION

At low excitation energy, molecules are described by good
quantum numbers. In contrast, at energies sufficient for chem-
ical reactions, it has long been thought that the dynamics
of molecules can be treated statistically. As early as 1919,
on the basis of the old quantum theory [1], Herzfeld argued
that the maximum rate of rearranging atoms in a thermal-
ized molecule was kBT/h. A related bound for the rate of
scrambling quantum information named after Maldacena [2]
has recently emerged from the study of black holes [3], string
theory [4], and many-body localization [5].

Determining the rate of quantum information scrambling
has been made precise by using out-of-time-order correlation
functions (OTOCs) [6]. Quantum OTOCs can be constructed
as analogs of the classical Lyapunov exponents that measure
the instability of classical trajectories arising from perturba-
tions in the initial conditions. In this paper, we use OTOCs
to quantify how rapidly quantum information is scrambled
in molecules. Molecular vibrations are attractive for build-
ing local random matrix models of quantum scrambling [7]
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because of their detailed connection with accurate experi-
ments [8,9], relative to more abstract models such as the
Sachdev-Ye-Kitaev (SYK) model [10], which currently lack a
direct connection with experiment. In addition, the dynamics
of molecules can be tuned from a regime described by well-
defined quantum numbers to the statistical regime by varying
the energy content or the size of the molecules being studied
[7,11–16]. The key question then becomes: Could slow or in-
complete scrambling, as measured by OTOCs, be slower than
the barrier-crossing or photodissociation time, and thus inter-
fere with statistical behavior in an atom-rearranging molecular
reaction? There are certainly experimental examples where
the inability to scramble quantum numbers sufficiently seems
to limit molecular reaction rates [17–21]. OTOCs then be-
come useful tools to determine when molecules can be treated
statistically. Here we compute OTOCs for several molecules
where quantum scrambling occurs through Fermi resonances,
higher-order anharmonic resonances, or Coriolis coupling
[22–29]. We compare the quantum dynamics with the clas-
sical limit using Lyapunov stability analysis [30,31], make
a connection between scrambling rates and experimental
bounds on reaction rates of molecules, and comment on how
the vibrational dynamics of molecules obeys the Maldacena
bound depending on the type of OTOC being used to assess
quantum scrambling.
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II. METHODS

A. Model Hamiltonian

Optical excitation of molecules deposits energy into
“bright states” with specific quantum numbers. The subse-
quent spreading of the wave function then populates the state
space [7,25]. Many of the f ≡ 3N−6 molecular vibrations of
a typical N-atom organic molecule are still in the quantum
limit at room temperature. Owing to the Born-Oppenheimer
approximation, the resulting potential surface is smooth, so
that these approximately harmonic vibrations are coupled
by individually weak nonlinearities whose strength decreases
with the order m of coupling, scaling approximately as φm =
(−1)mφ3γ

m−3 (m � 3, γ ≈ 0.1 to 0.3) [24] (see Appendix A
for details). The Fermi resonant term m = 3 was first noticed
in carbon dioxide [32]. Usually, the magnitude of φ3 lies in the
weak coupling limit (φ3 � 0.1ωi). Yet, molecular rate theories
generally assume that thermalization is very fast because most
molecules have many modes, such that statistical models can
be applied.

The molecular vibrational Hamiltonian describes the inter-
change of energy among the f modes of a molecule. It can be
expressed using a Fock space representation in terms of the
occupancy of these modes as H = H0 + V , where

H0 =
f∑

i=1

εi(n̂i ), V =
∑

m

∏
i

φmâ
† m+

i
i â

m−
i

i . (1)

H0 describes the uncoupled motion of a set of oscillators
with mode energies εi, while V describes the anharmonic cou-
plings between them. The unperturbed modes may be allowed
to be anharmonic themselves through εi(n̂i ). âi and â†

i are the
ladder operators for mode i. The index m gives quantum
number differences m+

i and m−
i between anharmonically cou-

pled states, which add up to the order m of the coupling (see
Appendix A for details). For one of our molecular models, we
also include the effect of Coriolis couplings, which could lead
to additional scrambling due to vibration-rotation interactions
on timescales longer than the vibrational scrambling of inter-
est here [33–35].

B. OTOCs and Lyapunov coefficients

We compute the whole quantum Lyapunov spectrum,
which reflects the Kolmogorov-Sinai entropy of the dynamics
[36] and its classical counterpart. From these one can extract
the largest exponent at early time. Suppose phase space is
described by coordinates x and their conjugate momenta p ,
where zi(i = 1, . . . , 2 f ) denotes x or p in general. In classical
mechanics, the sensitivity to initial conditions is captured by
the Lyapunov spectral matrix Lcl

i j given by the Poisson bracket
matrix Mcl

i j as

Lcl
i j (t ) = [(Mcl )

†
(t )Mcl (t )]i j with Mcl

i j (t ) ≡ ∂zi(t )

∂z j (0)
. (2)

The quantum analogs can then be defined as an out-of-
time-order correlation,

L̂i j (t ) = [M̂†(t )M̂(t )]i j with M̂i j (t ) ≡ [ẑi(t ), ẑ j (0)], (3)

FIG. 1. The largest eigenvalue s of Lcl
i j (t ) (black curve) and

L̂i j (t ) [red (gray) curve] for the SWW model. Initial state:
(2, 2, 3, 2, 2, 2), anharmonic coupling = 7 cm−1. The inverse of
the largest classical Lyapunov coefficient extracted from the plot
is t0 = 1 ps. We see s1(t ), scl

1 (t ) agree well up to 1.3t0. Inset:
Largest classical (black curve) and largest quantum [red (gray) curve]
Lyapunov exponent extracted from scl

1 (t ) and s1(t ). The classical
Lyapunov coefficient levels off more slowly than the quantum one.
Note that the decay of λcl

1 (t ) to a smaller asymptote is not due to
a finite �zi(t = 0), but due to exploration of a less chaotic region
as time grows. This is also true in Figs. 2(a) and 3. The ballistic
regime (τb) merges into the Lyapunov regime (slope λ1 = τ−1

λ ) at
the leftmost vertical dashed line. The Lyapunov regime merges into
the scrambling regime (τs) at the rightmost vertical dashed line.

where the classical Poisson brackets have become commu-
tators and a variety of averages can be employed. We find
that reformulating M̂i j in terms of ladder operators associ-
ated with zi yields the best concordance for our systems
between the quantum and classical pictures (see Appendix B
for details). We diagonalize both L̂i j (t ) and Lcl

i j (t ) to obtain
time-dependent Lyapunov eigenvalues si(t )(i = 1, . . . , 2 f )
[or scl

i (t )]. This representation of the OTOC is convenient
because the Heisenberg relation provides the normalization
si(0) = 1, so growth can be monitored relative to the initial
condition. For si(t ) we consider three timescales: The first
timescale,τb, is the “ballistic time” required to initiate scram-
bling classically, or quantum mechanically for the survival
probability P(t) to go outside its initial quadratic phase P ∼
1−at2 which arises from the coupling of discrete levels [37].
The second timescale, τλ = λ−1

1 , is the inverse of the largest
Lyapunov coefficient, the rate at which the initially encoded
information of the system gets scrambled. The last timescale,
τs, is the “scrambling time,” at which the largest eigenvalue
s1(t ) levels off and the quantum system has reached max-
imum scrambling. (Three timescales are indicated in Fig. 1
for a specific model.) The Lyapunov exponents λi(t ) [and by
analogy λcl

i (t )] can then be defined as λi(t ) = 1
2∂ln[si(t )]/∂t

in the region τb < t < τs, where we evaluate the derivative
using a smoothing spline fit to si(t ).

To compute L̂i j (t ) for a given initial state, we numeri-
cally solve the time-dependent Schrödinger equation using
the shifted-update-rotation (SUR) algorithm [38]. To compute
the classical Lyapunov spectrum, we use the Bulirsch-Stoer
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algorithm [39] to integrate Hamilton’s equations of motion.
For each molecular system, we calculate classical trajectories
starting from 100 randomly chosen angles (θi), but with action
value (Ji ), that correspond to the quantum numbers {n} of
the initial state used to compute the quantum OTOC (see Ap-
pendix C for computational details and convergence checks).

III. RESULTS

A. OTOCs for four molecular systems

We first study the Schofield-Wyatt-Wolynes (SWW)
Hamiltonian [40]. Its f = 6 anharmonically coupled Morse
oscillators stylistically represent the pairwise-coupled local
C-C stretches in a benzene ring [41,42] (see Appendix D
for details). To simplify computation of z(t ), here we set
the self-anharmonicity to 0 and work with anharmonically
coupled harmonic oscillators. For illustration we choose the
state with quantum numbers (2, 2, 3, 2, 2, 2) at 13 000 cm−1

as the initial state and φ3 = 7 cm−1. (We use E/hc units
throughout, conventional in vibrational spectroscopy.) While
the model is in the weak coupling limit, the near degeneracy of
modes facilitates efficient scrambling. Figure 1 compares the
largest eigenvalues of the L matrices and the corresponding
Lyapunov exponents (shown as an inset) for the quantum and
classical cases. At early times (0.3 ps < t < 1.5 ps) the slopes
of scl

1 (t ) and s1(t ) correspond closely. Thus, we observe a clear
quantum-classical correspondence for this model in the weak
coupling regime.

We next study an f = 8 model with strong stretch-
bend resonances that describes the CH stretches and HCH
bending overtones of the molecule cyclopentanone in the
2900 cm−1 region. This model manifests a strong reso-
nance with φ3 = 25 cm−1, and includes up to fourth-order
couplings (see Appendix D for details). Such vibrational res-
onances play an important role for onset of chaos in the
Arnold web [43,44]. We study the OTOC for two initial
states, (1, 1, 1, 0, 0, 1, 0, 0) at ∼9500 cm−1 where the
system is weakly coupled, and (2, 2, 3, 2, 2, 2, 2, 2) at
∼43 700 cm−1 where the system is strongly coupled. For the
weakly chaotic low-energy case shown in Fig. 2(a), there is
good agreement between Lyapunov exponents λcl

1 (t ), λ1(t ),
as was the case for the SWW Hamiltonian. For the second
example, scl

1 (t ) very quickly deviates from s1(t ), even before
s1(t ) reaches its plateau. At this higher energy, most invariant
tori have been destroyed and classical trajectories very quickly
enter the chaotic region of phase space, whereas the quantum
system undergoes quantum localization [7,11] that prevents
growth of s1(t ) As energy spreads throughout the modes, the
energy per mode of the high-frequency modes is reduced,
resulting in weaker coupling of the effectively more harmonic
modes [13]. A similar instability of classical motion compared
to its quantum counterpart was discussed in [45].

We also computed the Lyapunov spectrum for two full-
dimensional models of vibrating molecules, cyclopentene
with all of its 33 modes [46] and cyclopentanone with its
36 modes [47] (see Appendix D for details). These begin to
approach in size SYK model numerical simulations. In an
analysis of quantum beat experiments, Bigwood et al. [22]
have shown that cyclopentene and cyclopentanone display
an onset of facile energy flow near the energy of the C-H

FIG. 2. Hamiltonian taken from [22]. (a) Main figure: scl
1 (t )

(black curve) and s1(t ) [red (gray) curve] for the eight-mode
cyclopentanone based model in the weakly chaotic (low-energy)
region. T0 ≡ 1/ λ = 0.2 ps. Initial state: (1, 1, 1, 0, 0, 1, 0, 0).
Similar to Fig. 1, we see agreement for scl

1 (t ) and s1(t ) before quan-
tum OTOC reach its plateau at t = 2T0. Inset: λcl

1 (t ) (black curve) and
λ1(t ) [red (gray) curve]. We see λ1(t ) and λcl

1 (t ) are in good agree-
ment at t < 2T0. (b) scl

1 (t ) (black curve) and s1(t ) [red (gray) curve]
for the cyclopentanone-based model in the strongly chaotic (high-
energy) region. T0 = 0.01 ps. Initial state: (2, 2, 3, 2, 2, 2, 2, 2).
We see scl

1 (t ) grows rapidly and deviates from s1(t) before s1(t )
reaches a plateau not very different from the lower-energy state.

overtone. At our chosen energy of ∼17 500 cm−1, above this
overtone energy, we verified that the initial states satisfy the
energy flow criterion deduced by Logan and Wolynes [7], and
that P(t ) = |〈0|t〉|2 rapidly decays to a small inverse partic-
ipation number or “dilution factor” N−1

p = σ (see Table I in
Appendix D for this and all other model systems). In their
theory, the transition to facile energy flow is not determined
by the total density of states ρtot , but rather by the criterion
ρlocVanh > 1, where Vanh is the local anharmonic coupling
strength, and ρloc is the “local” density of states that are di-
rectly coupled by the Vanh terms in the Hamiltonian; when the
criterion is satisfied, energy flows freely because the spacing
of locally coupled energy levels becomes comparable to the
local anharmonic coupling.

Like the SWW model, simulation of scrambling in these
organic molecules shows good agreement between Lcl (t ) and
L̂(t ) for τb < t < τs in Fig. 3, but the OTOCs for the quantum
systems level off at the scrambling time (τs ≈ 0.05 ps).

In near-integrable systems, the Kolmogorov-Arnold-Moser
(KAM) theorem dictates that the motion for the majority of
initial conditions (the “regular set”) will be along invariant
tori [48–50]. Chaotic islands are rare and lie at resonance
junctions in phase space. This phenomenon has been observed
in simulations of the Arnold web for several molecular
Hamiltonians [26,44,51–53], and we illustrate this case with
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FIG. 3. (a) Main figure: scl
1 (t ) (black curve) and s1(t ) [red (gray)

curve] for cyclopentene at E = 17 569 cm−1. Inset: λcl
1 (t ) (black

curve) and λ1(t ) [red (gray) curve]). T0 ≡ 1/ λ = 0.05 ps. λ(t ) is
in units of ps−1. (b) Main figure: scl

1 (t ) (black curve) and s1(t ) [red
(gray) curve] for cyclopentanone at E = 17 357 cm−1. Inset: λcl

1 (t )
(black curve) and λ1(t ) [red (gray) curve]. T0 ≡ 1/ λ = 0.05 ps. We
see that in these two large organic molecules, quantum and classical
Lyapunov exponents are close to each other until t = T0.

the small organic molecule SCCl2, whose Arnold web has
been studied [43,54]. The f = 6 mode Hamiltonian for
SCCl2 is taken from [35]. In contrast to what was seen for
the large molecules cyclopentene and cyclopentanone, the
classical simulations of SCCl2 are regular in most regions,
while the quantum Lyapunov spectrum shows early growth.
Classical simulations for SCCl2 starting initially with actions
(Si/h) = (6, 5, 1, 3, 5, 3), along with 100 randomly

chosen initial angles, were used to find the average and largest
values of scl

1 (t ), which are compared with their quantum
counterpart s1(t ) in Fig. 4(a) (see Appendixes C and E for
details). The OTOCs L̂i j (t ) and Lcl

i j (t ) for SCCl2 behave quite
differently: The growth of the classical stability eigenvalue is
delayed initially, until the molecule escapes from the regular
region, and then the OTOC grows very rapidly. The quantum
wave packet samples more state space initially, so that L̂i j (t )
rapidly inflates at early times but then levels off at long times,
when the quantum system exhausts the accessible states.

Figure 4(b) shows the thermal OTOC for SCCl2, indi-
cating scrambling on times of the order 0.5–25 ps. This
range of timescales is comparable to barrier crossing times
for thermal chemical reactions at temperature ranging from
those of reactions in interstellar clouds at 50 K [55] to typ-
ical laboratory reactions at 200 °C; specifically for SCCl2,
stimulated emission pumping above the predissociation limit
near 20 000 cm−1 shows that dissociating states have lifetimes
>8 ps [56], and would be sensitive to the incomplete quantum
scrambling in Fig. 4(b). Even when the quantum scrambling
of vibrational modes of photochemically excited molecules
is very fast (see Fig. 6 in Appendix D), it generally remains
incomplete due to the existence of nearly conserved quantum
numbers (so-called polyads) [28,57–59].

We also tested the effect of rotation-vibration coupling on
SCCl2 dynamics. Thiophosgene has moments of inertia and
Coriolis coupling coefficients typical of small- to medium-
sized organic molecules [35]. Up to J = 40, which lies above
the most probable angular momentum quantum number of
SCCl2 at room temperature (Jmp ≈ 32), the effect of Corio-
lis coupling is negligible on the timescale of the vibrational
anharmonicity. (See Fig. 7 in Appendix E.)

B. Thermal quantum OTOC and comparison
with Maldacena bound

To compare the rate of scrambling in molecules directly
with the Maldacena bound 2πkBT/h̄ [2], we carried out
thermal averaging by using the density-matrix-based
FEAST algorithm [60], as well as by exploiting quantum

FIG. 4. (a) The Lyapunov eigenvalues s for initial state (6, 5, 1, 3, 5, 3) of thiophosgene, SCCl2. Here (scl
1 )L (t ) (dashed curve) is the largest

scl
1 (t) among 100 trajectories with different initial angle variables; 〈scl

1 (t )〉 (dash-dotted curve) is the average of scl
1 (t ) over 100 trajectories with

random angle variables. Five typical scl
1 (t ) used for computing the average are shown as gray curves near the dashed and dash-dotted curves.

s1(t ) [an arrow points at the red (gray) solid curve] is the quantum mechanical result. Deviation between quantum and classical OTOCs is
due to delayed delocalization of classical trajectories. Figure 7 shows the same calculation with Coriolis coupling (constants for SCCl2 are
taken from Ref. [35]), which does not play a large role up to room temperature. (b) Regularized thermal Lyapunov exponents λ(T ) for SCCl2

molecule for T in the range from 50 to 500 K.
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FIG. 5. (a) Regularized thermal Lyapunov exponents scaled by
the Maldacena bound for the “all modes” models of SCCl2 (circles)
and 33 mode cyclopentene (squares) at 1 and 500 K. The expo-
nents obey the Maldacena bound over the whole temperature range.
(b) Similar plot for the unregularized thermal Lyapunov exponents
scaled by the Maldacena bound. These exponents do not obey the
Maldacena bound at low temperature, as discussed in the text. Lya-
punov exponents λ are scaled by λM = 2πkBT/h̄, and time is scaled
by 1/λM.

typicality [10,61,62] to reduce the thermal average
to a simple expectation value (see Appendix F for
details). Here we compare the thermal Lyapunov spectra
derived from the unregularized OTOC L̂{unreg}(t ) =
Tr(−[xi(t ), p j]2e−βH ) to those from the regularized OTOC
L̂{reg}(t ) = Tr(−[xi(t ), p j]e−βH/2[xi(t ), p j]e−βH/2). Results
for “all modes” SCCl2 and cyclopentene are shown in Fig. 5.

The two OTOCs show quite distinct behavior at the low
temperature, perhaps due to finite size effects. The Lyapunov
exponents computed from s1(t )reg obey the Maldacena bound
at all temperatures we studied, whereas those computed from
s1(t )unreg do not. This point is most clearly manifested when
one evaluates 〈g|−[xi(t ), p j]2|g〉 for the ground state |g〉. In
that case s1(t )reg shows no growth, reflecting the quiescence
of the dynamics near absolute zero, whereas s1(t )unreg has
unphysical exponential growth.

At higher temperature, where the Logan-Wolynes facile
flow criterion ρlocVanh > 1 is satisfied, the Lyapunov exponent
of the unregularized OTOC approaches those of the regular-

ized one, in harmony with what has been seen in the SYK
model [10]. This can be seen in Fig. 5 for the Lyapunov
exponents at 500 K and in Fig. 8 in Appendix F.

The question of which thermal Lyapunov spectrum gives a
better measure of scrambling has been discussed in the liter-
ature [63,64], where the regularized OTOC has been argued
to be more appropriate in field theory because it enforces
the appropriate Hermiticity properties of the operator and can
be brought into correspondence with the Boltzmann many-
particle transport equation. It appears that for molecules, the
regularized thermal OTOC at low temperature does agree bet-
ter with Maldacena’s bound and with Herzfeld’s notion, based
on old quantum theory, of a maximum rearrangement rate.
Several of the molecules we examined approach, in the num-
ber of degrees of freedom, those used in SYK simulations.
Thus, molecules can be experimentally testable benchmarks
for the applicability of OTOCs to many-body quantum sys-
tems of moderate size.

IV. CONCLUSION

Our numerical explorations reveal both similarities and dif-
ferences between the classical and quantum Lyapunov spectra
for molecules in the size range from f = 6 to f = 36 de-
grees of freedom. Clearly one should exercise caution when
assuming scrambling in molecules due to purely vibrational
couplings. The three timescales manifested in the OTOC give
an indication of when scrambling is good enough so that
reactions may be treated statistically. For reactions faster than
the ballistic time, statistical models of reaction rates cannot
be employed. Only for sufficiently slow chemical reactions is
a statistical treatment advised. When reactions occur during
the Lyapunov and scrambling regimes, statistical theories that
can take into account energy flow rates can be employed
[12,21,65,66].

The quantum OTOC levels off and deviates from its
classical counterpart because of quantum interference [67],
ultimately reducing the number of participating states Np be-
low the value corresponding to the full density of states. This
type of deviation has been rationalized using the semiclas-
sical phase-space formulation [6,68], in which operators are
translated into their phase-space counterparts using Wigner
transforms and the Moyal expansion of the equations of mo-
tion [6]. On the other hand, both for stronger coupling (Fig. 2)
or when the molecule’s classical phase space contains only
small chaotic islands [Fig. 4(a)], the classical and quantum
OTOCs can differ substantially. The quantum system can un-
dergo localization due to the finite value of h̄ even when the
classical system is chaotic (Fig. 2) or, conversely, the quantum
system can sample chaotic regions early on while classical
trajectories still remain trapped near invariant tori [Fig. 4(a)].
These effects are visible in the small isolated quantum systems
considered here, but are less apparent in macroscopic systems
due to rapid quantum decoherence [69].

All these examples highlight that one must be cautious
in assuming that “classical simulation is good enough for
molecules with enough degrees of freedom at room tem-
perature.” Our computational results suggest that even at
chemical energy and with dozens of vibrational degrees of
freedom, many molecules scramble information about their
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initial state slowly. Molecules could also provide a practical
pathway for testing different implementations of the OTOC
experimentally: The measurement of molecular OTOCs may
be facilitated using entangled photons [70,71]. The forward-
backward control loop proposed by Rabitz and Zhu [72] along
with the quantized Ulam control conjecture [73] then open up
the possibility for quantum control while the OTOC remains
sufficiently small [74].
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APPENDIX A: EQUATIONS OF MOTION FOR QUANTUM
AND CLASSICAL DYNAMICS

We adopt the scaling Hamiltonian in [24], H = H0 + V ,
where

H0 =
N∑

i=1

(n̂i + 1/2)h̄ωi =
∑

i

εi(n̂i ), (A1)

and

V = V 0

∑
m

∏
mi

(−1)mi [ γ ( f i/ f 0)1/2]mi (âi + â†
i )mi . (A2)

Here the quantum number vector is defined as m =
{m1, m2, · · · }. H0 describes the uncoupled motion of a set
of (harmonic) oscillators with mode energies εi, while V
describes the anharmonic couplings between the oscillators.
The mode frequencies are fi, with f0 being median mode
frequency in our model. γ is the anharmonic scaling factor in
our model. In Fock space, the index m gives the quantum num-
ber differences mi

+ and mi
− between anharmonically coupled

states (e.g., for two states |73〉 and |65〉, m1
+ = 0, m1

− = 1,
m+

2 = 2, and m−
2 = 0). The sum of all differences mi

+ and
m1

− gives the total order of the coupling m. m � 3, except
when the sum is 1 (corresponds to an m = 3 cubic coupling)
or 2 (corresponds to m = 4 quartic coupling). The two states
|73〉 and |65〉 in the example are coupled by an m = 3 cubic
coupling.

We can write the above Hamiltonian in terms of (Ji, θi ) in
classical phase space:

Hcl = Hcl
0 + V clHcl

0 =
N∑

i=1

ωi(Ji + 1/2), (A3)

where

V cl = V0

∑
m

∏
mi

(−1)mi [γ ( fi/ f0)1/2]mi (2
√

Ji/h̄ cos θi )
mi .

(A4)

We then simulate the classical equations of motion for Hcl

using the Bulirsch-Stoer algorithm, and the time-dependent

Schrödinger equation in state space for H using the SUR
algorithm.

APPENDIX B: QUANTUM LYAPUNOV SPECTRUM

We compute the Lyapunov spectrum as described in [36].
For our system, we reformulate the M̂i j in terms of ladder
operators â, â† associated with coordinates and momentum
{x, p} using the relation:1

x̂ =
√

h̄

2mω
(â + â†), (B1a)

i p̂ =
√

mωh̄

2
(â − â†). (B1b)

Here M̂i j (t ) = 1
ih̄ [ẑi(t ), ẑ j], and zi(i = 1, . . . , 2N ) =

{x, p} can be proved equivalent to the following expression
after a unitary transformation:

M̂(t ) =

⎛⎜⎝[âi(t ), âj] . . . [â†
i (t ), âj]

. . . . . . . . .

[âi(t ), â†
j ] . . . [â†

i (t ), â†
j ]

⎞⎟⎠. (B2)

We denote the Lyapunov spectral matrix L̂i j evaluated with
state |{ n}〉 as L̂{n}

i j (t ).We evaluate L̂{n}
i j (t ) by inserting a set of

states | { n′}〉 between M̂i j (t ):

L̂n
i j (t ) = 〈{n}

∣∣∣∣∣∑
k

M̂∗
ki(t )M̂k j (t )

∣∣∣∣∣{n}〉

=
∑
{n′}

[∑
k

〈{n}|M̂∗
ki(t )|{n′}〉 〈{n′}|M̂k j (t )|{n}〉

]
.

(B3)

〈{n′}|M̂k j (t )|{n}〉 are computed by solving the time-
dependent Schrödinger equation for states |{n}〉 and |{n′}〉:

〈{n′}|M̂k j (t )|{n}〉
= 〈{n′}|[âk (t ), â j]|{n}〉
= (〈{n′}|eiHt ) âk (e−iHt â j |{n}〉)

− (〈{n′}|â je
iHt )âk (e−iHt |{n}〉). (B4)

Owing to the local nature of the anharmonic couplings, we
can limit this solution to the exploration of the Fock space
starting from initial states n = {n1, n2, . . . , nN } to nearby
states n′ = {n′

1, n′
2, . . . , n′

N } where the difference |n − n′| is
limited in size. We impose a 1-norm distance cutoff in state
space ||n||1 = ∑N

i=1 |ni − n(1)
i | � R to construct the computa-

tional basis set of states {n(1)} as a local basis set. A similar

1We find that choosing vibrational action-angle coordinate (Ji, θi )
with approximately conserved actions as conjugate variables to com-
pute the OTOC is not as enlightening for molecules: the classical
OTOCs Lcl

i j grows as t2 at early time and exponentially later, but the
quantum OTOC L̂i j(t) only shows t2 growth before it levels off to a
small number of participating states Np for moderate-sized molecules
at the scrambling time, and no exponential growth can be observed.
Defining M̂i j in terms of the ladder operators does produce rapid
growth of the quantum operator as well.
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cutoff ||n′||1 = ∑N
i=1 |ni − n′

i| � R′(R′ < R) is imposed for
choosing initial states {n′} [in Eq. (B3)] which we use to
compute the average L̂i j (t ). We find that choosing R′, R = 4 to
5 is sufficiently large to ensure the convergence of the L̂i j (t ).

The time-dependent Schrödinger equation is solved using
the shifted-update-rotation (SUR) algorithm [38]. The SUR
algorithm belongs to the family of symplectic propagators
[75] that explicitly show the correspondence of classical and
quantum time evolution. We also confirmed the accuracy of
L̂i j (t ) computed in this way by propagating initial states using
the Chebyshev propagator [76]. The OTOCs computed using
these two methods are in excellent agreement with each other.

APPENDIX C: CLASSICAL LYAPUNOV SPECTRUM

To compute the classical Lyapunov spectral matrix Lcl
i j (t ),

we use the Bulirsch-Stoer algorithm to integrate the classical
Hamiltonian equations of motion. For classical simulations,
this algorithm for time propagation is less prone to phase er-
rors than encountered using symplectic propagators, for which
numerical errors in propagation can lead to an overestimate
of the amount of scrambling. Convergence was monitored
as a function of integration step size. As mentioned in the
main text, for each molecular example system, we calculated
classical trajectories starting from 100 initial conditions start-
ing with random angles (θi), but with action value (Ji ), that
correspond to the quantum numbers {n} of the initial state
used to compute the quantum OTOC.

APPENDIX D: MODELS

1. Schofield Wyatt Wolynes (SWW) model

The SWW Hamiltonian is shown in [40]. It consists of six
anharmonic oscillators with similar frequencies, ∼1000 cm−1,
coupled by a cubic coupling. For the present computation,
instead of working with explicitly anharmonic oscillators as
did SSW, we set the self-anharmonicity to 0 and work with
anharmonically coupled pure harmonic oscillators. See Table
II of [40] for parameter values. The weakly chaotic regime

corresponds to a cubic anharmonic coupling strength φ(3) =
7.

2. Cyclopentanone-based model

The simplified model contains the eight vibrational
modes of the molecule cyclopentanone in the 2900 cm−1

region of CH stretches and HCH bending overtones [47]:
f = (2210, 2222, 2966, 2945, 2130, 2126, 2880, 2880 )
cm−1. We use the scaling Hamiltonian based on Eqs. (4) and
(5) in Ref. [22].

Vii′ ≈
∏

k

Rnk
k , (D1a)

Rk ≈ 30501/Q

270
ω

1/2
k v

1/2
k . (D1b)

This Hamiltonian has scaling factors Rk that scale with
vibrational frequency ωk and mean occupation number νk .
A least-squares fit to directly computed sample potential sur-
faces of the molecules in [24] is in good agreement with the
numerical relation above. For reference, a typical third-order
coupling strength is φ3 = 25 cm−1 and scaling factor γ ≈ 0.2.

3. Cyclopentene and cyclopentanone full-dimensional
vibrational models

All 33 vibrational frequencies with a1, a2, b1, b2 symme-
try for cyclopentene are shown in Table II in [46]. The 36
vibrational frequencies with A, B symmetry for cyclopen-
tanone are shown in Table 4(a) in [47]. We use the scaling
Hamiltonian which is Eqs. (4) and (5) in [22] and we include
cubic and quartic anharmonic couplings. When constructing
the anharmonic coupling, we make use of the symmetry of the
molecules’ vibrational motion. For example, cubic coupling
allows symmetry combination (a1, b1, b1) but (a1, b1, b2) is
not allowed. For these relatively large organic molecules, we
only managed to compute the Lyapunov spectrum for low-
lying energy states, and we had to restrict the range of the
1-norm distance cutoff to R′ = 1 instead of the value R′ = 4
used in all other simulations.

FIG. 6. Microcanonical OTOC for SCCl2. (a) OTOC for SCCl2 molecules for states with energy E ∈ [500, 20 000] cm−1. (b) Lyapunov
exponent λ for SCCl2 molecules with OTOC shown in (a).
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TABLE I. Dilution factor σ and the Logan-Wolynes facile flow criterion. The Logan-Wolynes facile flow criterion ρlocVanh > 1 can be found
in Eqs. 4.12(a)–(4.12c) in Ref. [81]. The dilution factor σ = limt→∞P(t ) is the long-time limit of survival probability: P(t ) = |〈ψ (0)|ψ (t )〉|2.

SWW Eight mode Eight mode Cyclopentene Cyclopentanone SCCl2

(13 000 cm−1) cyclopentanone (9500 cm−1) cyclopentanone (43 700 cm−1) (17 569 cm−1) (17 357 cm−1) (15 000 cm−1)

σ 0.058 0.1 0.03 0.03 0.005 0.004
ρlocVanh 3.1 2.5 4.2 1.84 10.5 5.5

For cyclopentene we focused on the state (1 0 0 0 0 1 0 0
0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1) with energy
E = 17 569 cm−1.

For cyclopentanone we focused on the state (1 0 0 0 0 1 0
0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0) with
energy E = 17 357 cm−1.

4. SCCl2 molecule

We employed the Hamiltonian for SCCl2 that was fitted
from the spectroscopy data in Ref. [35]. We find that most re-
gions (Ji � 5) show regular dynamics in classical simulation;
however, we observed exponential growth of the Lyapunov
spectrum in our quantum simulation. We singled out state
(6, 5, 1, 3, 5, 3) with an energy of 15 000 cm−1 to compute
the quantum and classical Lyapunov spectra. For the classical
Lyapunov spectrum, we used 100 points with random initial
angles for the average. The points that exhibit the largest clas-
sical Lyapunov exponent lie at resonance junctions and can
be found by using the Lyapunov weighted sampling technique
[77,78].

APPENDIX E: LYAPUNOV WEIGHTED SAMPLING
TECHNIQUES

We followed the method described in [77,78]: Instead of
computing the full Lyapunov spectrum, which is expensive,

FIG. 7. Effect of Coriolis couplings on scrambling in SCCl2.
Largest Lyapunov eigenvalue s with and without Coriolis coupling
in SCCl2 is shown. The red (gray) curve plus dots corresponds to
J = 40, M = 0, near the maximum rotational population at room
temperature. The Coriolis Hamiltonian from Ref. [35] was used for
the calculations. The black curve [mainly hidden behind the red
(gray) curve] is for J = 0 in absence of Coriolis couplings, as shown
in the main text. The Coriolis effect mixes states on a ∼100 times
longer timescale than vibrational anharmonicity and does not signifi-
cantly alter the Lyapunov exponent on the timescale considered here.

we use the fast Lyapunov indicator (FLI) λFLI [29,79] as
the indicator for chaos. The specific procedure is as follows:
We construct an initial ensemble with the same action �J and
different angles θ̃ and compute λFLI for each point. Then we
performed a biased random walk obeying constraint (constant
�J) using MCMC (Monte Carlo Markov chain) techniques with
−λFLI as the effective energy. By choosing the appropriate
temperature T and a reasonable step size, at the final time
the ensemble will converge to a set of energy minima, which
corresponds to the maximally chaotic region.

APPENDIX F: THERMAL OTOC

1. Exact diagonalization method—FEAST

The thermal OTOC is obtained by first solving for the
eigenstates of the molecular Hamiltonian H in an energy band
using the FEAST algorithm [60] implemented in the ONEAPI

MATH KERNEL LIBRARY. Two features of FEAST make it most
suitable for computing the thermal OTOC here. First, it is able
to solve for eigenstates within a given energy range to save
computational cost. Second, FEAST allows one to distribute
tasks across parallel processors and reduce the computational
burden per single process.

The regularized [L̂{r}(t )] and the unregularized Lyapunov
spectrum [L̂{u}(t )] are computed as follows:

L̂{r}
i j (t ) = Tr

[∑
k

e−βH/2M̂∗
ki(t )e−βH/2M̂kj(t )

]

=
∑

k

∑
φ

∑
ψ

e−β(Eφ+Eψ )/2〈φ|M̂∗
ki(t )|ψ〉〈ψ |M̂kj(t )|φ〉,

(F1)

and

L̂{u}
i j (t ) = Tr

[∑
k

e−βH M̂∗
ki(t )M̂kj(t )

]

=
∑

k

∑
φ

∑
ψ

e−βEφ 〈φ|M̂∗
ki(t )|ψ〉〈ψ |M̂kj(t )|φ〉. (F2)

Here |ψ〉, |φ〉 are eigenstates.

2. Approximating thermal average using Haar random state

As mentioned in the main text, the thermal average can
be approximated by taking the expectation value with re-
spect to Haar random initial states [10]. We generate the
Haar random states by drawing each (complex) element
in |ψ〉 from a Gaussian distribution. Errors introduced by
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FIG. 8. SCCl2 thermal OTOC and Lyapunov exponent. (a) Regularized (solid) and unregularized (dash-dotted) thermal Lyapunov eigen-
values s for the SCCl2 molecule. s increases from low T (100 K) to high T for both regularized and unregularized OTOC. The unregularized
thermal s is much larger than its regularized counterpart at low T, but approaches its regularized counterpart at high T. (b) Regularized (black
dash-dotted curve and disks) and unregularized [red (gray) solid curve and disks] thermal Lyapunov exponent λ(T ) for SCCl2 molecules. As
mentioned in the main text, at low temperature, λreg is much smaller than λunreg. However, as T increases to 500 K, which is around mean
vibrational frequency ν̄ of the SCCl2 molecule, λreg and λunreg become close to each other.

this approximation can be reduced by averaging over many
initial Haar states. Here the final results are obtained by
averaging over five random Haar states. In all of these setups,
we can compute the thermal OTOC by solving the time-
dependent Schrödinger equation using the SUR or Chebyshev

algorithm. Both algorithms in our computation give compa-
rable performance when computing the thermal Lyapunov
spectrum.

The regularized [L̂{r}(t )] and the unregularized Lyapunov
spectrum [L̂{u}(t )] are computed as follows:

L̂{r}
i j (t ) = Tr

[∑
k

e−βH/2M̂∗
ki(t )e−βH/2M̂kj(t )

]

≈
∑

m

〈ψ |e−βH/4M̂∗
ki(t )e−βH/4|m〉〈m|e−βH/4M̂kj(t )e−βH/4|ψ〉, (F3)

L̂{u}
i j (t ) = Tr

[∑
k

e−βH M̂∗
ki(t )M̂kj(t )

]

≈
∑

m

〈ψ |e−βH/2M̂∗
ki(t )|m〉〈m|M̂kj(t )e−βH/2|ψ〉. (F4)

Here e−βH/4|ψ〉 is computed by propagating |ψ〉 in imaginary time [80].
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