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Bistable multipole quantum droplets in binary Bose-Einstein condensates
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We address the existence and stability of multipole quantum droplets in symmetric binary Bose-Einstein
condensates described by the amended Gross-Pitaevskii equation with Lee-Huang-Yang quantum corrections.
Quantum droplets trapped in a weakly anharmonic potential can be composed of different numbers of globally
linked poles with an azimuthally periodic distribution. Due to the competing Lee-Huang-Yang-augmented
nonlinearity, the norm of two branches of droplets with slopes of opposite sign merges together at a lower
cutoff of chemical potential. The lower and upper branches of droplets at the same chemical potential, but with
a different norm, can evolve stably in certain parameter regions simultaneously. The stability domain of droplets
shrinks with the growth of the number of poles. Even unstable necklacelike droplets can survive for a very long
time.
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I. INTRODUCTION

The last few years have witnessed rapid advances in the
evolution dynamics of quantum droplets (QDs) [1–6]. In
a pioneering work [1], the existence of stable solitonlike
liquid states was predicted in binary Bose-Einstein conden-
sates (BECs), where the intercomponent attraction was made
slightly stronger than the intracomponent repulsion. Using
the conventional Bogoliubov theory [7] with a modification,
Petrov showed that the mechanical collapse anticipated from
the mean-field approximation can be stabilized by the first-
order Lee-Huang-Yang (LHY) correction due to quantum
fluctuations [8].

In 2018, quasi-two-dimensional (2D) QDs (strongly com-
pressed in one direction) [5,9], and three-dimensional (3D)
isotropic QDs [10] were observed in mixtures of two different
atomic states in 39K and in an attractive mixture of 41K and
87Rb atoms [11] with contact interactions. QDs are nearly
incompressible liquids self-sustained by competing nonlinear-
ities: a cubic mean-field attraction and LHY-induced quartic
repulsion characterized by the s-wave scattering lengths
a11 > 0, a22 > 0, and a12 < 0, respectively. QDs are more
than two orders of magnitude larger and eight orders of magni-
tude more dilute than liquid helium [3–6], and thus constitute
the most dilute liquid in the world. Ultradilute droplets have
found promising applications in matter-wave interferometry
[12] and manipulations of quantum information [13].

Besides binary BECs, QDs also form in other systems with
competing interactions. Particularly, when the attractive dipo-
lar interaction is partially counterbalanced by the repulsive
magnetic interaction occurring on top of the usual zero-
range interactions, such as the ones taking place in potassium
[3,14–17], anisotropic and longer-lived liquid states can form.
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Supersolidlike QDs were demonstrated in dipolar condensates
[18–23]. Droplets were also investigated in binary dipolar
BECs [24,25].

Many numerical studies based on LHY-amended Gross-
Pitaevskii equations (GPEs) [1,2,26–37] and the diffusion
Monte Carlo technique [38–40] were performed on QDs in
various dimensions. Theoretically, the QDs in full many-body
systems solved by quantum Monte Carlo methods are in
reasonable agreement with the predictions of the LHY-GPE
framework, both for Bose-Bose mixtures and dipolar quantum
gases [40–43].

Ring-shaped clusters constructed from several identical
QDs are very robust [27]. Stable 2D vortex droplets with a
topological charge up to 5 can be found provided that their
norm exceeds a critical value [28]. Yet, stable 3D vortex
droplets are possible only for vortices with charge up to 2
[29]. Stable QDs with a heterosymmetric or heteromultipole
structure were also revealed [30].

QDs in an external potential also exhibit rich evolution
dynamics. On-site- and intersite-centered semidiscrete funda-
mental and vortex droplets can be trapped stably in a nearly
1D array [31]. Robust rotating vortex clusters were revealed in
binary BECs loaded in a combined harmonic-Gaussian poten-
tial [32]. Monopole oscillations of LHY fluid were observed
in a 39K spin mixture confined in a spherical trap potential
[33]. Optical lattices significantly alter the existence and sta-
bility domain of QDs, either in one [34,35] or two dimensions
[36]. Very recently, we predicted a different type of 2D and 3D
stable QDs persistently rotating in an anharmonic potential.
Through rotation, crescentlike droplets bridge the fundamen-
tal and vortex droplets with different topological charges [37].

The LHY correction can be used to stabilize not only
fundamental states, but also excited states. Thus far, in 2D
and 3D configurations, stable excited QDs were found only
in the form of vortex states [28,29]. Therefore, a fascinating
question arises about whether other families of higher-order
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QDs, e.g., multipole-mode droplets, exist. If yes, what is
their dynamics and how does the LHY correction influence
their dynamics? Note that various types of multipole non-
linear states have been considered in different configurations
[44–47], but not, as yet, for QDs.

In this paper, we show that multipole QDs can form out of a
gaseous binary BEC described by the amended GPE. The aim
of this paper is twofold. First, we reveal that two branches of
azimuthally periodic droplets including different numbers of
poles exist in symmetric binary BECs. Second, we investigate
the stability of multipole QDs and find the shrinkage of the
stability domain with the growth of the number of poles.
Unstable necklacelike droplets survive for a long time.

II. THEORETICAL MODEL

Since the form of the LHY correction changes upon re-
duction of the dimensionality, the properties of QDs depend
on the dimensionality of the LHY system [1,2]. The evolu-
tion dynamics of 3D binary BEC can be described by the
GPE equation with a self-attractive cubic term augmented
with LHY-induced quartic self-repulsion [1]. When BEC is
strongly confined in the transverse direction, the reduced 2D
LHY system significantly simplifies the descriptions of binary
BEC for modes with lateral size l � √

a±a⊥, where a± and
a⊥ denote the self-repulsion scattering lengths of each com-
ponent and the transverse-confinement length, respectively
[48]. For typical values used in experiments l ∼ 10 μm, a± ∼
3 nm, and a⊥ � 1 μm, the above condition results in reduced
coupled GPEs [1,2] for describing the evolution of a two-
component binary BEC with dimensionless wave functions
�±(x, y, t ),

i
∂�±
∂t

= −1

2
∇2�± + V �± + 4π

g
(|�±|2 − |�∓|2)�±

+ (|�+|2 + |�−|2) ln(|�+|2 + |�−|2)�±. (1)

Here, ∇2 = ∂xx + ∂yy is the transverse Laplace operator. The
coordinates and time are additionally rescaled by the rela-
tions (x, y) → (g/2

√
π )(x, y) and t → (g2/4π )t with g > 0

being a coupling constant. For the sake of simplicity, we
assume identical shapes of the components, i.e., a+ = a− and
�+ = �− = ψ/

√
2. The identical intraspecies interactions

thus allow one to reduce the full binary system to a scalar
equation with an external potential,

i
∂ψ

∂t
= −1

2
∇2ψ + |ψ |2 ln(|ψ |2)ψ + V ψ. (2)

This system conserves several quantities, including the
norm (number of atoms) N = ∫∫ |ψ |2dxdy and the Hamilto-
nian (energy),

E = 1

2

∫∫ [
|∇ψ |2 + 2V |ψ |2 + |ψ |4 ln

( |ψ |2√
e

)]
dxdy.

We consider the evolution of QDs in a weakly anhar-
monic potential V = (−αr2 + βr4)/2, where r =

√
x2 + y2

and anharmonic parameters α = 10−2 and β = 10−4, as in
Ref. [37]. Such a potential provides a shallow radial mini-
mum for trapping necklacelike droplets [Fig. 1(a)]. Stationary
solutions of QDs can be solved numerically by assuming

(a) (b)

FIG. 1. (a) Potential V . (b) Spectra of a linear system. All quan-
tities are plotted in dimensionless units

ψ = w(x, y) exp(−iμt ). Substitution of it into Eq. (2) results
in an ordinary differential equation,

1
2∇2w + μw − V w − |w|2 ln(|w|2)w = 0, (3)

where w denotes the distribution of stationary QDs at t = 0
and μ is the chemical potential of the condensate.

III. NUMERICAL RESULTS AND DISCUSSIONS

Before we discuss the properties of QDs in a nonlinear
system, it is instructive to understand the dispersion relation of
the corresponding linear system. After removing the nonlinear
term in Eq. (3), the linear equation has infinite eigenvalues
and corresponding linear eigenmodes. Nonlinear modes can
bifurcate from these linear modes if nonlinearity cannot be
ignored. Fundamental droplets always bifurcate from the first
linear mode and higher-order excited droplets associate with
other linear modes. Linear modes intuitively reveal the possi-
ble profiles of nonlinear modes bifurcating from them. The
spectra of the given potential are shown in Fig. 1(b). The
first five discrete μ values are μ0 = −0.6481, μ1 = −0.0445,
μ2 = −0.0049, μ3 = −0.0481, and μ4 = 0.1116. At these μ

values, QDs with topological charges m = 0, 1, 2, 3, and 4
can bifurcate out from the corresponding linear modes. Mean-
while, the bifurcation of droplets with 0, 2, 4, 6, and 8 poles
from the linear modes is also possible, as we will show later.

The distributions of dipole QDs are shown in Fig. 2.
Droplets composed of two well-separated spots shown in the
upper panels originate from the linear mode at μ1 = −0.0445.
They can be seen as the superposition states of two vortex
droplets with opposite winding number m = ±1. Thus, the
linear eigenvalue from which dipole droplets bifurcate out
equals the linear eigenvalue where vortex droplets with m =
±1 bifurcate out. With the growth of μ, the droplet becomes
broad and its amplitude decreases [Figs. 2(a) and 2(b)]. This
family of droplets ceases to exist when μ < −0.3392. In
addition to droplets bifurcating from linear modes, there exists
another family of droplets with a broader distribution of each
pole. This family of droplets is composed of two half-moon
components [Figs. 2(c) and 2(d)]. Their components expand
with the growth of μ. Meanwhile, the amplitude of the droplet
increases slowly.

While the norm of the lower-branch droplets increases
monotonically with a decrease of μ, the norm of the
upper-branch droplets increases with the growth of μ
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FIG. 2. Moduli of dipole droplets marked by circles in (e). μ =
−0.30 in (a), (c) and −0.11 in (b), (d). The color bars depict the
dimensionless amplitudes of droplets here and afterwards. (e) De-
pendence of norm N on chemical potential μ. Dotted: unstable;
solid: stable. (f) Instability growth rate λre vs μ for lower branch
(blue) and upper branch (red) droplets. All quantities are plotted in
dimensionless units.

[Fig. 2(e)]. The rapid rise of the norm of the upper-branch
droplets means that the number of atoms in the droplets in-
creases rapidly with the growth of μ. Interestingly enough, the
two branches of the droplets merge together at the common
lower cutoff of the chemical potential μcut = −0.3392. The
slope of the norm curve at μcut is vertical.

The stability of the droplets is very important since it
determines whether droplets can survive for a long time and
thus is crucial to practical applications of them. The stability
of the droplets can be analyzed by means of the linearized
Bogoliubov–de Gennes equations [49,50] for perturbed wave
functions, taken as

ψ (x, y, t ) = [w + f exp(λt ) + g∗ exp(λ∗t )] exp(−iμt ),

where f (x, y), g(x, y) 
 1 are infinitesimal perturbations
which may grow with a common complex growth rate λ of the
disturbance upon evolution, and ∗ is the complex conjugate
operation. The linearization of Eq. (1) for these perturbations
yields a linear-stability eigenvalue problem

λ

[
f
g

]
= i

[
M1 M2

−M∗
2 −M∗

1

][
f
g

]
. (4)

(c) (d)

(a) (b)

FIG. 3. (a), (b) Quadrupole and (c), (d) octupole droplets marked
by circles in Fig. 4(a) at μ = −0.17 and Fig. 4(b) at μ = −0.04. (a),
(c) Lower branch. (b), (d) Upper branch. All quantities are plotted in
dimensionless units.

Here, M1 = − 1
2∇2 + V − μ + 2|w|2[ln(|w|2) + 1

2 ] and
M2 = w2[ln(|w|2) + 1]. Equations (4) can be solved
numerically by the Fourier collocation algorithm put forward
by Yang [51]. The stability of a QD is determined by the
spectrum of the above linearization operator. Droplets can
evolve stably only when all imaginary parts of eigenvalue λ

equal zero.
The lower-branch dipole droplets are unstable in a nar-

row region near the linear bifurcation point μ1 = −0.0445.
The upper-branch dipoles are stable in the scope μ ∈
[−0.3392,−0.2997]. Near the lower cutoff of μ, there exists
a common stability region where both the lower and upper
branches of dipoles are stable. Borrowing the concept of
bistable solitons in optics [52], we term these self-localized
droplet states with the same μ but different norm N as
“bistable” droplets. We also note that the stability of the lower
and upper branches of the droplets supported by LHY-GPE
does not obey the Vakhitov-Kolokolov stability criterion [53],
which holds true usually for optical solitons or matter-wave
solitons. Figure 2(f) displays the dependence of the instability
growth rate on chemical potential μ.

Now, we address the properties of droplets with more com-
ponents. The profiles of quadrupole and octupole droplets are
shown in Fig. 3. Similar to dipole droplets, while the com-
ponents of the lower-branch quadrupoles are well separated,
the spots of droplets on the upper branch are broad [Figs. 3(a)
and 3(b)]. This indicates that the interplay between the com-
ponents of the upper-branch droplets is strong. Meanwhile,
two neighboring components of an octupole droplet are a little
closer than those for a quadrupole droplet [Figs. 3(a) and
3(c)]. The radius of a multipole mode droplet (the distance
from the center of one component to the origin) slightly in-
creases with the growth of the number of spots [Figs. 3(a)
and 3(c)]. Due to the confinement of the external potential,
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(c) (d)

(a) (b)

FIG. 4. Norm N vs μ for (a) quadrupole and (b) octupole
droplets. Dotted: unstable; solid: stable. Instability growth rate vs
μ for (c) quadrupole and (d) octupole droplets. The lower branch is
shown in blue and the upper branch in red. All quantities are plotted
in dimensionless units.

the components of octupole droplets on the upper branch are
obviously squeezed on the azimuthal direction and expand
along the radial direction [Fig. 3(d)].

The norm of the lower-branch quadrupole droplets origi-
nating from the linear mode at μ2 = −0.0049 merges with
the norm curve of the upper-branch quadrupole droplets at
μcut = −0.3071 [Fig. 4(a)]. The merging point for octupole
droplets is μcut = −0.1942 [Fig. 4(b)]. The shift of μcut for
droplets with different numbers of poles is merely due to
the different linear eigenvalues of μ from which the lower-
branch droplets bifurcate out. Though the norm curve of the
upper-branch droplets can continue to even higher values for
larger μ, we do not pay more attention to the corresponding
multipole droplets since they are unstable.

Comparing Fig. 2(f) with 4(c), one finds that the stability
domain of the lower-branch droplets shrinks rapidly with the
growth of the number of droplet poles. The stability region
of the upper-branch droplets shrinks at a relatively slow rate.
Octupole droplets are stable in a very narrow region near their
merging point of μ. Note that the stability of the multipole
droplets trapped in a potential are very different from that
of vortex droplets in the LHY system without an external
potential [28,29], where vortices with different topological
charges are stable only when the norm (number of atoms)
exceeds a critical value.

To further understand the properties of multipole droplets,
we investigate necklacelike droplets with 10, 12, and 14
components. Representative profiles of droplets including 14
poles are illustrated in Figs. 5(a) and 5(b). The lower-branch
necklacelike droplets bifurcate from the linear mode at μ =
0.3499. The merging point of μ for two branches of droplets
now is shifted to 0.0428. Due to the repulsion between neigh-

(c) (d)

(a) (b)

FIG. 5. (a), (b) Necklace droplets with 14 poles marked in (c) at
μ = 0.27. (c) Dependence of norm N of necklace droplets on μ.
Dotted: unstable; solid: stable. Inset: Amplification of the region near
μcut. (d) Instability growth rate vs μ for lower-branch droplets. All
quantities are plotted in dimensionless units.

boring poles, the effective radius of droplets with more poles
is larger than those with fewer poles. For the same reason, the
poles of necklace droplets on the lower and upper branches
are squeezed on the azimuthal direction and expand along the
radial direction more obviously. The strong interactions be-
tween the neighboring poles are responsible for the instability
of droplets with more poles [Fig. 5(c)]. The narrow stability
region of octupole droplets near μcut disappears when the
number of poles increases to 14. Such droplets are unstable
in almost their whole existence domain [Fig. 5(d)].

To verify the stability analysis results of QDs with various
numbers of poles, we perform extensive evolution simulations
of droplets by the split-step Fourier method. In the numerical
simulations, we add white noise into the initial input at t = 0
for stable droplets and do not add noise for unstable droplets.
Typical evolution examples of stable and unstable droplets
are shown in Fig. 6. The very small instability growth rates
of unstable droplets shown in Figs. 2(f), 4(c), 4(d) and 5(d)
imply that even unstable droplets can survive for a very long
time [Figs. 6(a) and 6(d)]. One or more spots of unstable
QDs decay with an increase of t and disappear eventually.
The left spot corresponds to a symmetry-breaking state of the
system. White noise added into the stable droplets radiates
away quickly for a short time. Good agreements between the
stability analysis and direct numerical evolution simulations
are obtained for all addressed multipole mode droplets. Note
the droplet shown in Fig. 6(f) is very close to the correspond-
ing linear eigenmode.

We briefly explain the physics of the coexistence of two
branches of droplets. When the condensate includes a few
atoms, the atoms are confined in the low-lying area of the
anharmonic potential shown in Fig. 1(a). Such droplets reside
on the lower branch and bifurcate from the corresponding
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(c)

(d)

(e)

(f)

(a)

(b)

FIG. 6. Evolution simulations of (b), (c), (e), (f) stable and (a),
(d) unstable QDs. (a) Unstable lower-branch dipole droplet marked
in Fig. 2(f) at μ = −0.106, t = 2400. (b) Stable upper-branch dipole
droplet marked in Fig. 2(f) at μ = −0.3, t = 6000. (c), (d) Sta-
ble upper-branch quadrupole droplets at μ = −0.299, t = 6000
and unstable lower-branch quadrupole droplets at μ = −0.234, t =
3120 marked in Fig. 4(c). (e) Stable octupole droplet marked in
Fig. 4(d) at μ = −0.17, t = 6000. (f) Stable necklace droplet marked
in Fig. 5(d) at μ = 0.349, t = 6000. All quantities are plotted in
dimensionless units.

linear mode. With a decrease of the chemical potential, the
number of atoms increases until μ = μcut, where atoms fully
occupy the low-lying area of the potential. At this stage, the
LHY correction exhibits an attractive nonlinearity. The norm
curve of the lower-branch droplets is a decreasing function
of μ. With a further increase of droplet density, repulsive
nonlinearity becomes dominant. It leads to a positive slope
of the norm curve. The atoms in the upper-branch droplets
cross the bulge at the bottom of the anharmonic potential and
occupy the region at a level exceeding the potential bulge.

We should note that the analysis and all presented
results are valid only in the zero-temperature limit (the rel-
evant experimental setting is �150 nK [54]). Droplets at
finite temperatures were investigated by the Hartree-Fock-
Bogoliubov-Popov theory. A thermal component forms a halo
around the droplets [55]. The arrangement and stability of
the multipole droplets we discussed will change when the
temperature is nonzero.

The coordinates (x, y, t ) = (Xr−1
0 ,Y r−1

0 , T t−1
0 ) have been

used for the derivation of dimensionless Eqs. (1) and (2),

where r0 is the characteristic transverse scale. The charac-
teristic energy ε0 = h̄2/mr2

0 (m is the atomic mass) and time
t0 = h̄ε−1

0 . By assuming r0 = 0.5 μm, one gets energy and
unit timescales of ε0 ∼ 6.9 × 10−31 J and t0 ∼ 0.15 ms. These
estimates are based on the atomic mass of 39K from recent
experiments [5,10].

Experimentally, we consider 39K atoms tightly confined
by a transversal anharmonic potential. The s-wave scattering
lengths are assumed as a± = −50.0a0 and a = 50.5a0 for the
inter- and intraspecies interactions (a0 is the Bohr radius),
respectively. The parameters of the external potential V are
α = mω2r2

0/ε0 and β = γ mω2r4
0/ε0d2, where ω is the trap-

ping frequency, d = (h̄/mω)1/2 is the oscillator length, and
γ is the anharmonicity parameter. The number of atoms N
in the condensate connects with the dimensionless norm N by
N = (ε0r3

0/g)N , where the coupling constant g = 4π h̄2a±/m.
The estimate of the experimental parameters based on the
above assumptions corresponds roughly to ω ∼ 600 Hz, N ∼
6 × 103, d = 1.5 μm, and γ = 0.3, which are well within the
reach of current experimental investigations.

IV. CONCLUSIONS

To summarize, we investigated the existence, stability, and
evolution dynamics of QDs including various numbers of
poles distributed uniformly on a ring. The combination of
competing LHY nonlinearity and an anharmonic potential
allows for the coexistence of two branches of QDs at the same
chemical potential but with different numbers of atoms. With
the growth of the pole number, the stability domain of the
droplets shrinks. Unstable multipole droplets are very robust
and can survive for a long time. Our findings can be easily
generalized into optical solitons in competing cubic-quintic
nonlinear media trapped in an anharmonic potential.
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