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Superfluid properties of bright solitons in a ring
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We theoretically investigate superfluid properties of a one-dimensional annular superfluid with a boost. We
derive the formula of the superfluid fraction in the one-dimensional superfluid, which was originally derived by
Leggett in the context of supersolid. We see that the superfluid fraction given by Leggett’s formula detects the
emergence of solitons in the one-dimensional annular superfluid. The formation of a bright soliton at a critical
interaction strength decreases the superfluid fraction. At a critical boost velocity, a node appears in the soliton
and the superfluid fraction vanishes. With a transverse dimension, the soliton alters to a more localized one and
it undergoes dynamical instability at a critical transverse length. Consequently, the superfluid fraction decreases
as one increases the length up to the critical length. With a potential barrier along the ring, the uniform density
alters to an inhomogeneous configuration and it develops a soliton localized at one of the potential minima by

increasing the interaction strength.
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I. INTRODUCTION

Superfluidity is one of the most significant macroscopic
quantum phenomena. From Kapitza’s experiment with lig-
uid helium in 1938 [1], properties of superfluidity have
been extensively investigated both theoretically and exper-
imentally [2—4]. For a spatial dimension lesser than three,
Mermin-Wagner’s theorem rules out the emergence of an
off-diagonal long-range order [5]. However, in two dimen-
sions, we can have a quasi-long-range order and find a
Berezinskii-Kosterlitz-Thouless (BKT) transition at a BKT
transition temperature, above which a proliferation of free
vortices occurs [6-9]. This BKT transition can be observed
through abrupt changes of thermodynamic quantities such as
sound velocities or the superfluid fraction [10-14], and this is
a crucial nature specific to two-dimensional systems different
from three-dimensional ones.

On the other hand, in one dimension, we can observe
distinct phenomena either from two-dimensional or three-
dimensional systems. A one-dimensional Gross-Pitaevskii
(GP) equation or nonpolynomial Schrodinger equation in-
volves a soliton, which is a solitary wave that keeps its
inhomogeneous shape during the propagation, for a suffi-
ciently attractive interparticle interaction [15-24]. This is
peculiar to effective one-dimensional systems because an ex-
tra transverse dimension can destabilize solitons in higher
spatial dimensions. Solitons show up in various context of
physics from condensed-matter physics [25,26] and biological
systems [27,28] to high-energy physics [29,30]. In ultracold
atomic systems, the dynamics of soliton has been studied
under several conditions such as the quench dynamics [31,32],
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the dynamics in the presence of a spin-orbit coupling [31,33],
and solitons in an annular geometry [19,22,34]. Based on
these developments, it is significant to clarify and characterize
the property of superfluid that involves modulational changes.

In this paper, starting from the one-dimensional GP equa-
tion, we illustrate superfluid properties of the solitons in an
annular geometry as depicted in Fig. 1 by applying Leggett’s
formula [35]. First, we see the emergence of solitons in an
annular one-dimensional superfluid with a boost. Secondly,
we derive Leggett’s formula from the one-dimensional GP
equation including a boost velocity. While Leggett’s formula
is widely used mainly in the context of supersolid which
involves a crystalline order associated with the nonclassi-
cal translational inertia [35-37], we can straightforwardly
obtain it also from the one-dimensional GP equation (see
also [38—41]). The superfluid fraction given by Leggett’s for-
mula is determined by the modulus of the macroscopic wave
function and detects modulational instabilities in the one-
dimensional superfluid. We see this behavior of the superfluid
fraction given by Leggett’s formula with varying parameters.
As one increases the attractive interaction strength, the uni-
form configuration of the steady state changes to a bright
soliton at a critical interaction strength, which reduces the
superfluid fraction. In particular, at a critical boost velocity,
the soliton has a node leading to the vanishing superfluid
fraction. Finally, we also mention the effects of the transverse
dimensions and potential barriers along the ring on the super-
fluid fraction. We can see that the superfluid fraction decreases
by increasing the transverse width and it undergoes dynamical
instability at a certain width. A potential barrier makes a
uniform configuration into an inhomogeneous one. Increasing
the attractive interaction strength, we see that the inhomo-
geneous density develops a soliton at one of the potential
minima.

©2022 American Physical Society
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a,

FIG. 1. Schematic picture of a one-dimensional superfluid in an
annular geometry with a radius R described by Eq. (1). The effect of
the transverse width @, is examined in Sec. IV.

II. BRIGHT SOLITON WITH A BOOST VELOCITY

Let us consider one-dimensional attractively interacting
bosons in a ring with a boost velocity u as in Fig. 1 described
by

ih%\ll(x, t) = Hop[V]V¥(x, 1), (D
with

1/ 9 2
Hgp[V] = m —lha — mu

L
+/ dx'V (x — X)W, 1), ()
0

where W(x, t) is the complex macroscopic wave function sat-
isfying fOL dx|¥(x,1)|> = N with system size L, number of
particle N, and V(x) the interparticle interaction potential.
Equation (1) is, in the absence of the boost velocity u = 0,
identical to the usual GP equation. Now we assume a steady
state

W(x,t) = P(x)e M/ 3)

where 1 (x) is a time-independent complex field, which de-
scribes the stationary configuration. The parameter w is the
chemical potential. This provides

i (x) = Hep[¥ 19 (x). “4)

With the contact interaction V (x) = g§(x), we introduce the
following dimensionless quantities

G_x _2mR2 B __ZmR2
=g V=8 R=—oi
5)
a="R"Loy= /Ry
=T PSRNV

where L = 2nR, i = N/L is the average density, y < 0 is
the dimensionless attractive interaction strength, 6 is the
azimuthal angle, 2 is the angular frequency of rotation cor-
responding to the dimensionless boost velocity, and ¢(9) is
the dimensionless macroscopic wave function normalized as

02” dé|p(6)|> = 1 and periodic ¢(0) = ¢(27). Then, Eq. (4)
can be written as

9 2
np0) = [<_ia_6 - Q) + 27T)/|<P(9)|2]<P(9)- (6)

The GP equation has a bright soliton solution as a stationary
solution given by [15,16]

1
27 Iyl < 1veDs
@) = Ko Ko
m m
\/ZJTT(m)dn< - (9—90)’m> (vl > lyeD),
(7N

where K(m) and E(m) are the first and second kind com-
plete elliptic integrals, respectively, under the condition
K(m)E(m) = 712)//2 and dn(u|m) is a Jacobi elliptic function
with an elliptic modulus m. Here y. = —1/2 is the critical
interaction strength. Due to the broken continuous transla-
tional symmetry, Eq. (7) includes a parameter 6, that specifies
the center of the bright soliton. This translational symmetry
breaking results in the emergence of a Nambu-Goldstone
(NG) mode in addition to the one associated with the U(1)
symmetry breaking [16,38,42]. This emergence of two dis-
tinct NG modes are analogous to supersolid, which has both
a crystalline order and a superfluid order [35,37—41,43,44].
In the following, we set 6y = 0 for brevity. It is important
to stress that the NG mode related to the formation of the
bright soliton breaking the continuous translational symmetry
is gapless, i.e., zero energy with respect to the ground state.
The first excitation energy calculated under the Bogoliubov
approximation is gapped at y = 0, while it closes at y = y,
[16]. The latter phenomenon is also usually called modu-
lational instability. Indeed, the Bogoliubov spectrum of the
uniform configuration reads El(B )= /I2(I + 2y) with [ =
+1,42,43, ... [16,42] and for / = &1 one gets E® =0
precisely at y = y. = —1/2. Note that at y = 0 our bosonic
system is noninteracting and uniform but also fully superfluid
just because there is a finite energy gap due to the finite size.

With a boost velocity, we can define phase winding number
v, which is an integer such that 2 — 1/2 < v < Q2+ 1/2, and
the relative angular frequency

w=Q—v, ®)

which varies within —1/2 < w < 1/2 [42,45,46]. Below the
critical interaction strength y < y. = 2w® — 1/2, it has a
bright soliton. The number density n(6) = |g0(6)|2 is [42]

/\f2|:dn2 @le) — nm’i| (O < |w| < %)
n(0) = N%F(@e%) (= 0),
5 K(m) : 1
Wenlen(Solm) | (0= 3)
9
where m’ =1 — m and
_ K(my Y D
N = 2l " ke = amkme 10
f =2K(m)* — 2K(m)E(m) — 7y, (11a)
fo = 2m'K(m)* — 2K(m)E(m) — 7%y, (11b)
fa = 2K(m)E(m) + 7*y. (11c)
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Equation (9) indicates that, for 0 < |w| < 1/2, the number

density is nodeless while it has a node for @ = —1/2. The
chemical potential ji is determined by [42]
Ja—fe—f 1
_ (O < lo| < —),
272 2
2
_ m
p= "0y w=0), (12)

_ (’”)2(1—2 5 (w:—%),

and the elliptic modulus m is determined by

2wrlo| = | C‘iﬂ 71 = Ag(e|m)] <O<|w|<%),

(13a)

Ji=0 (0=0), (13b)
|

fi=0 (‘”:_5)’ (13¢)

with ¢ = arcsin(+/f./(m'f)) and

2
Ao(elm) = ;{K(m)é’(elm/) — [K(m) — E(m)]F (¢|m)}.
(14)

Here, F (u|m) and £(u|m) are the elliptic integrals of the first
kind and second kind respectively.
III. SUPERFLUID FRACTION ASSOCIATED WITH
NONCLASSICAL TRANSLATIONAL INERTIA

Let us now set

¥ (x) = n(x)"/? 0 (15)
and
v(x) = ——¢(x) (16)
Inserting these formulas into Eq. (4) we get
2 92
[—%% + ﬂ[v(x) —ul + gn(x)}n(X)”2 = un(x)'?,
(17)
0
5ﬁn@ﬂv@)—uﬂ==0 (18)
X
Equation (18) implies that
n)[vx) —ul =J, (19)

where J is a constant current density. Equation (19) is very
interesting because it says that if n(x) has spatial variations
then also v(x) must have spatial variations.

We now introduce the average value of the velocity v(x) in
a spatial region [a, b] as

1 b
V= —/ v(x)dx. (20)
b—al,
Then, from Egs. (19) and (20), we obtain
1 brg J
V= — dx = — , 21
v b—al, (n(x)—i—u) X ﬁs—i—u (21)

where

b -1
b—aJ), nkx)

We will see that the number density 75 can be interpreted as
the superfluid number density of the stationary state in the
spatial region [a, b]. Indeed, Eq. (22) is the 1D version of
the formula obtained by Leggett in 1970 [35] for a supersolid
with spatial periodicity b — a, and recently discussed by many
others [38,39,47]. In other words, if the stationary state ¥ (x)
moves with the average velocity v, its current density reads

J =ng(v — u), (23)

where  is the average velocity in the region [a, b] and 71, the
corresponding superfluid number density.

Let us now consider the linear canonical momentum in the
region [a, b]. It is given by

1]
p=-2 [w (x)—w(x>—w<x>—w (x)}dx 24)

Note that Eq. (24) is different from the physical momen-
tum, which takes into account the boost velocity, P =

Re fab dx Y*(x)[—ihd, — mu]y (x). With the help of Egs. (15)
and (19), we then find

b b
P = m/ nx)v(x)dx =m [J 4+ n(x)uldx

=m(J 4+ au)(b — a)
= m[ns(v — u) + nul(b — a), (25)

where

b

n= / n(x)dx (26)
b—aJ,
is the average number density in the region [a, b].

As usual (see, for instance, Refs. [35,39]), the normal
density 7i, in the spatial region [a, b] can be defined as the
response of the linear momentum P to the boost velocity u,
namely

iy = —l % 27
m(b —a) du

By using Eq. (25), we immediately find

1 P

=) gu = 28)

and this result fully justifies that i of Eq. (22) is indeed
the superfluid number density in the region [a, b]. Similarly,
a relation with the nonclassical translational inertia (NCTI),
which is expected in the case of a supersolid system, is pro-
vided by the definition of superfluid fraction f; associated with

NCTI [39]
fs = lim [I—LE} (29)
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FIG. 2. Superfluid fraction calculated by Eqs. (7) and (31). The
gray dashed curve represents the approximated result of Eq. (33) in
the strong-coupling regime |y| > |y.|.

with N = fab n(x)dx = (b — a)i. Using the above definition

for P, one finds
[
Le-a? ), nx)

bR ge 7
= (- 2[/ } ) 30
G- | . eor G0

In particular, by setting ¢ =0 and b =L =27 R, we can

obtain
1L 1 (Loday 1!
fs—[z/o txnoy | m}

2 d@ -1
_ 2
= [/0 |¢<9)|2} ’ GD

where n(x) = | (x)|* is the number density.

-1

fs=

SRS

A. Superfluid fraction in the strong-coupling regime at rest

In the strong-coupling regime y >> y, without boost, one
can write [16]

0(0) ~ %woh(%e), (32)
and the superfluid fraction given by Leggett’s formula can be
calculated analytically as [48]

) a 1 . -
fs = a” coth (oc)|:§ + 1 sinh (2a)i| , (33)

with @ = 72|y]|.

The superfluid fraction calculated by Eq. (31) is displayed
in Fig. 2. The blue solid line shows the result by Eq. (7), while
the gray dashed line stands for the analytic result of Eq. (33)
in the strong-coupling regime. We numerically calculated the
stationary modulus from Eq. (1) using the Crank-Nicolson
method. In the uniform regime |y | < |y.|, the superfluid frac-
tion remains f; = 1. At the critical interaction strength y =
Ve, it sharply drops, and in the solitonic regime |y | > [y.|, it

monotonically decreases. The inhomogeneous density in the
solitonic regime leads to the nonquantized angular momentum
unlike the uniform case [42]. It means that the angular mo-
mentum is no longer a good quantum number in the solitonic
regime. However, the circulation of superfluid velocity is still
quantized as [42]

7 do 1

/ 5= 090) = —[0Qm) — (O] =v, (34
0 21 2

and therefore the superfluidity is sustained.

One may wonder if f; = 1 in the noninteracting case y = 0
contradicts Landau’s criterion. Note that Leggett’s formula
(31) focuses only on the ground state instead of including
effects of elementary excitations. In a noninteracting Bose
gas, Landau’s criterion indeed rules out superfluidity because
of the elementary excitations and the superfluid fraction given
by Landau’s formula within the two-fluid model vanishes. In
an infinite size system, the Bogoliubov spectrum is continuum
and gapless. It can make the superfluid ground state fragile
to elementary excitations based on Landau’s criterion. In our
finite-size system, however, the Bogoliubov spectrum is dis-
cretized and gapped except for y = y, [16,42]. Consequently,
the superfluid ground state can be stabilized, and we have
fs = 1 even in the noninteracting case.

B. Superfluid fraction with a boost velocity

In the presence of the boost velocity u, using the formula
of Jacobi’s elliptic functions

/ dx L{ |:€(x|m) B mcn(x|m)sn(x|m)]’ (35)

dn’(xjm) _ m dn(x[m)
[ dx
dn®(x|m) — A

= I'I(1 TA ; am(x|m)‘m) dn(xim)

(1 — A1 — msn2(x|m)’

(36)

with A a real constant and I1(n; x|m) the elliptic integral of the
third kind, one obtains the superfluid fraction

2 2
J\Tf f H(ZmK (m)‘m) (0 o] < 1)’
n2 2[/((m) f 2
fo= {AE K m) =0,
n  E(m)

: =)

where I1(n|m) = I1(n;w/2|m) is the complete elliptic inte-
gral of the third kind.

Figure 3 shows the superfluid fraction numerically com-
puted from Leggett’s formula and Eq. (1) with some values of
the boost velocity. For a superfluid at rest 2 = 0, the critical
interaction strength is . = —1/2 and the superfluid fraction
monotonically decreases as one increases the attractive inter-
action strength. With a boost velocity, the critical interaction
strength is ¥, = 2w? — 1/2 and the superfluid fraction de-
creases for |y | > |y.| as well. In particular, for Q2 = —1/2, the
relative angular frequency is @ = —1/2 and the number den-

(37
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FIG. 3. Interaction dependence on superfluid fraction with boost
velocities 2 = 0, 0.25,0.5. The curves are numerically computed
from Egs. (1) and (31).

sity has a node. As a result, the superfluid fraction computed
by Leggett’s formula vanishes.

In Fig. 4, we show the angular frequency dependence of
superfluid fraction in the upper panel (a) and current density
in the lower panel (b) with y = —1/2 numerically calculated
from Eq. (1). As in Ref. [42], the number density is peri-
odic in 2. Consequently, the superfluid fraction also exhibits
periodicity. The superfluid fraction decreases as one rotates

(b)
1 0.5 0 0.5 1

Q

FIG. 4. Superfluid fraction and current density scaled by J, =
hn/(mR) as functions of the dimensionless boost velocity 2 with
a fixed interaction strength y = —1/2. They are numerically calcu-
lated from Eqgs. (1) and (31).

the superfluid and, as mentioned, it vanishes at Q = £+1/2
corresponding to w = —1/2. By virtue of Eq. (34), the current
density in Eq. (23) can be written as

J

-7 = —JsWw, 38

7o fsw (33)
in the corotating frame with Jy = hin/(mR), or, in the rest
frame,

Jrest _ J Lo
Jo Jo
= fuf2 + fyv, (39)

with f, = 1 — f; the normal fluid fraction. The current den-
sities given by Eqgs. (38) and (39) are displayed in Fig. 4(b).
The current density in the corotating frame J oscillates in €2.
For Q2 an integer, the relative angular frequency w vanishes
and J vanishes as well. For © a half-integer, the superfluid
fraction vanishes and J vanishes as well. Consequently, J has
nodes under the angular frequencies at which €2 is an integer
or a half-integer. It is distinct from the superfluid fraction in
Fig. 4(a) that the current density in the corotating frame is odd
in  because it involves the relative angular frequency as well
as the superfluid fraction.

Besides the exact solution in Eq. (9), we can easily un-
derstand the presence of a node in the wave function for
w = —1/2 through a unitary transformation. We can write the
GP Hamiltonian with a boost velocity as

Hap(@) = —— (—ino- — "2 2 + gl W(x, )
= —|-ith— — — X,
aP 2m 0x R &
— eiQX/RHGP(O)efiQx/R. (40)
Using Hgp(0), we can write the GP equation as
0 - . -
i) = [HGP(0)+EQ%]W(x,t), 1)
with
U(x, 1) = e “¥Ry(x, ). (42)

In particular, for a constant boost velocity €(¢) = €2 and as-
suming the steady solution in Eq. (3), one obtains

PO) = e p(0), (43)

which leads to a twisted boundary for (). Under the single
value condition ¢(27) = ¢(0), for Q € Z, the transformed
one also satisfies @(27) = @(0). Hence the number density
and superfluid fraction remain the same as the case without a
boost velocity 2 = 0. In the case of half integer @ =n + 1/2,
on the other hand, one obtains @(27) = —@(0). This change
of sign requires at least one node in @(6).

IV. EFFECTS OF TRANSVERSE DIMENSIONS

A realistic 1D system would have a finite width in the
transverse direction as in Fig. 1. This effect can be captured by
the 1D nonpolynomial Schrodinger (NPS) equation [20,49—
51]. It is given by

ih%\l—’(x, t) = Hxps[V]V(x, 1), (44)

033320-5



KOICHIRO FURUTANI AND LUCA SALASNICH

PHYSICAL REVIEW A 105, 033320 (2022)

1.5 ‘
a;/R=0.0
I“ aL/R=0.4
,’\ a /R=a. ----
1 ~
1t (A y=-11
—~ ¥ 1}
N
=
0.5 1
(a)
0
- —/2 b

0 L J
0 0.2 0.4 0.6 0.8 1

aJ_/R

FIG. 5. Density distribution n(8) = |¢(#)|* for # = —1 and the superfluid fraction in the presence of a transverse width a; and the
superfluid fraction as a function of the characteristic transverse length a; without a boost velocity €2 = 0. The blue solid curve in the left
panel (a) represents the configuration in the absence of the transverse width. The orange dotted curve represents the result for @, = 0.4. The
green dashed curve stands for the result for @, = d., above which the system is dynamically unstable. The superfluid fraction in the right panel
(b) is numerically calculated from Eqs. (47) and (31). The end points correspond to the critical transverse width &. beyond which the bright

soliton collapses.

with
Hips[W] = — (i L
=—|—-ii— —mu —
NPS 2m ox § n?
hwl 1 2
oL : 45
+ = <n2+n> (45)

with g = gsp/(2ma?), gsp = 4nh’as/m, ay = /h/(mw))
the transverse width, and n = [1 + 2a,|W¥(x, 1)|2]/* [49,50].
The steady-state equation can be found under Eq. (3) as

pr(x) = Hyps[Y 19 (x). (40)

Using the dimensionless quantities in Eq. (5), one obtains

2 2
fp(6) = [(-i% - sz) 4 2my 12O

n(0)?
+i<#+ (9)2> ©®. @
7 @t 9(0),

with

2 a
2
Ta

n@) = [1+2a,e@)*1'*.  (48)

v

Here we have introduced the dimensionless s-wave scattering
length @; = Nag/R and the dimensionless transverse width
a 1 =a] / R.

In the thin transverse length limit a; — 0 with a fixed
interaction strength 7, one finds n(68) — 1 and the 1D NPS
equation in Eq. (47) recovers the 1D GP equation as

9 2
feire(6) = [(—iﬁ - Q) + Zﬂ?lfﬂ(@)lz]w(@), (49)

with fiegr = 1 — 2&12 the dimensionless effective chemical
potential.

We illustrated the density configuration in the left panel
of Fig. 5 for y = —1. As one increases the transverse width
a, , we have a sharper bright soliton. The right panel in Fig. 5

illustrates the superfluid fraction without a boost calculated
by Leggett’s formula in Eq. (31) solving Eq. (47) numerically.
We can check that the superfluid fraction approaches the re-
sults by the 1D GP equation in a; — 0, which is consistent
with Eq. (49). As one increases the transverse width a /R, for
7 = —0.5 and = —0.7, the superfluid fraction decays up to
a certain value of a, /R = a.. Beyond a, r;4(9) in Eq. (48)
is negative and therefore n%(9) changes to purely imaginary.
In this case, one can see Im[it] > 0, which indicates W(x, 1)
eMlt/1 and the steady-state solution in Eq. (3) is dynamically
unstable. This is the collapse of the condensate implicitly
induced by the transverse dynamics encoded into the NPS
equation (44). The stability condition of the bright soliton is
given by [50]

4
—— < ya; <0, (50)
3

which gives the critical transverse width a. = 4/(37|7|). On
the other hand, in the case of # = —0.3, the superfluid fraction

1

0.8
Unstable

x 0.6
he 2
_|
S 04 U

021

O L n

2 15 -1 0.57c 0

FIG. 6. Phase diagram for the density configuration. The sym-
bols “S” and “U” stand for solitonic regime and uniform regime,
respectively, which are separated by the critical interaction strength
ye = 2w* — 1/2. For ya, < —4/(3m), the system undergoes a dy-
namical instability.
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04 ‘ does not decay at all by increasing the transverse width. This
Q=0 —— is because the density configuration is uniform instead of a
N Q=04 L= bright soliton as in the case of a 1D GP equation below the
03[ ™ Q=05---- critical interaction strength |y| < 1/2. The phase diagram for
g (1) the density configuration is summarized in Fig. 6.
S 02 |
= ’ V. EFFECTS OF POTENTIAL BARRIER
In this section, we examine the effects of potential barriers
0.1 in the ring on the density configuration and superfluid fraction.
0 A. Single Gaussian barrier
As suggested by Ref. [19], a single potential barrier in the
annular superfluid allows us to observe a soliton located at the
/2 opposite side of the potential center. Let us assume a Gaussian
barrier located at origin
D 2 2
= 0 h h U() —_02 /w2
< Ux) = U®) = ——e (5]
) 2mR? ©) 2mR? JTw ©b
/2 } /./‘ e with w the dimensionless barrier width. In the thin barrier
“/‘.',-/' limit w — 0, it approaches U(0) — Uyd(0). In w — oo, on
’,1’;'/ the other hand, /(f) — 0 and it recovers a barrier-free annu-
-7 ‘ ‘ : lar superfluid analyzed in the previous section. We set Uy = 1
- —/2 0 /2 T for simplicity.

FIG. 7. Density distribution and phase variation for y = 0.1 and
w = 0.1. The upper panel (a) shows the density distribution n(0),
while the lower panel (b) shows the phase variation ¢(0) with vary-
ing boost velocity.

We illustrate the density distribution and the phase vari-
ation numerically calculated from the GP equation for y =
—0.1 and w = 0.1 in Fig. 7. The density in panel (a) exhibits
a periodicity in €2 and involves a node only for 2 = 0.5 as
explained in Sec. II. In panel (b), one can observe that it ex-
hibits a node of phase at & = 0 with a finite angular frequency
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FIG. 8. Density distribution n(8) = |@(6)|* and the superfluid fraction in the presence of a Gaussian barrier numerically calculated by
Leggett’s formula (31) without boost. The upper panel (a) in the left figure shows the density distribution at a fixed interaction strength
y = —0.1. By decreasing the barrier width, it undergoes modulational transformation and forms a dark soliton around # = 0. The lower panel
(b) in the left figure shows the density distribution at a fixed barrier width w = 5. As one increases the attractive interaction strength y, the
uniform density distribution turns to a dark soliton around 6 = 0. In the right panel (c), the blue solid line corresponds to the superfluid fraction
without the barrier w = 400. A finite barrier width makes the modulation nonuniform and the superfluid fraction deviates from f; = 1. In
addition, the abrupt decrease at the critical interaction strength is smeared.

033320-7



KOICHIRO FURUTANI AND LUCA SALASNICH

PHYSICAL REVIEW A 105, 033320 (2022)

0.4

03r

0.2F

n(9)

0.1¢

n(0)

0 L
- —-r/2

O L L I
0 02 04 06 038 1 1.2 14 1.6
b4

y=0.0
(c) y=-03
— A
15¢ ----y=-l0 I
————— y=-2.0 ] i
|
-~ 1=2 il
\E/ 1 PR
PN
1 A
0.5 [T
1’/ “
i I i
0 — =00
(d) y=-0.44
1.5k —==- y=-10 /
VG = y=-2.0 !
~ \ y !
S ki I=3 I
< M i’
\
\ !
y/
05F % L
) I'I
0 S e | el
vy =0.0
(e) A y=-05
1.5} ! y=-10---
13 y=-20 ———
2 L I=4
T Lr "'\‘.
= 1y
/’/ )
051 i h
I’I ‘~‘\
_/\,.’ A L e
P
- —-m/2 0 /2 n

FIG. 9. Density distribution n(8) = |@(6)|> and the superfluid fraction f, without boost under a spatially periodic potential I (6) =
Uy cos (16). The upper left panel (a) displays the density configuration for y = —0.1 under U, = 1. The blue solid curve, the orange dotted
curve, and the green dashed curve stand for the results of [ = 2, 3, 4, respectively. Panel (b) shows the density with some different values
of potential amplitude U, = 1.0, 3.0, 0.1 for y = —0.1 and / = 2. Each of the right panels (c), (d), (e) represent the density distributions for
| =2, 3,4, respectively, with varying interaction strength under U, = 1. The lower left panel (f) shows the superfluid fraction calculated by
Leggett’s formula (31) under ¢, = 1. The blue solid, orange dotted, and green dashed lines stand for the results for / = 2, 3, 4, respectively.

of rotation 2 # 0. At Q = 0.5, in particular, it involves a
m-phase slip at & = 0. This means that the solution is a black
soliton by definition.

The left panels in Fig. 8 illustrate the density distribution
with some different values of barrier width. The upper panel
(a) shows the result with a fixed interaction strength y = —0.1
under 2 = 0. With a large barrier width, it is almost uniform
distribution because |y| < |y.|. As one decreases the barrier
width, a suppressed soliton around 6 = 0 forms. In particu-
lar, because U(0) ~ Uy6(0) with a small w, the density n(6)
exhibits an abrupt change at 0 = 0.

To see the modulational changes, the superfluid fraction
given by Leggett’s formula is useful. We show the superfluid
fraction in the right panel of Fig. 8. The finite barrier width w
makes the abrupt decrease at the critical interaction strength
smeared and the superfluid fraction deviates from f; = 1.
However, as mentioned, the nonuniform modulation that leads
to fs < 1 is crucially different between the case of a finite
barrier width and that of w = 400. In the former case, we
have a bright soliton at @ = 0 for y < y,. In the latter case, on

the other hand, the bright soliton is shifted to 6 = mw because
of the potential barrier at 6 = 0 atany y < y..

B. Spatially periodic potential

Here we consider the effects of a spatially periodic poten-
tial
2 2

Ui = ——140) = 2h—uo cos (16),

52
2mR? mR2 (52)

with [ an integer. In particular, {4, (6) corresponds to a double-
well potential which has two valleys along the ring [52-54].
Such a double-well potential is realized also by deforming the
ring into an ellipse as a consequence of the geometric potential
Ugeo(s) = —th(S)Z /(8m), where k(s) is the curvature with
the curvilinear abscissa s along the geometry [55-58]. In this
way, the geometric potential Ug, takes its minima at a point
with a maximum curvature, while it takes the maxima at a
point with a minimum curvature. Along an ellipse, conse-
quently, the geometric potential plays the role of a double-well
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potential. This periodic external potential explicitly breaks the
continuous translational symmetry. Let us see how a soliton
forms under such a potential barrier.

Figure 9(a) shows the density configuration for y = —0.1
with [ = 2,3,4. We set Uy = 1 as in Sec. V A. The uniform
configuration in the absence of a potential barrier alters to
a lattice structure, which has / maxima, under the spatially
periodic barrier ;. The amplitude of the density modulation
is smaller with a larger integer / indicating a shallow regime.
In Fig. 9(b), we showed the density distribution with some
different values of potential amplitude Uy = 0.1, 1,3 for
y = —0.1 and [ = 2. Increasing the potential height U,
we have a highly localized density configuration, while it
delocalizes with a small U,. Figures 9(c)-9(e) illustrate the
density configurations with varying interaction strength and
Up = 1. As one increases the attractive interaction strength
y, the system selects one of the potential minima to develop
a bright soliton, and the noninteracting lattice structure
transforms to a highly localized configuration.

We show the superfluid fraction in Fig. 9(f) for / = 2,3, 4
with Uy = 1. The formation of lattice configuration in the
weakly interacting regime leads to the deviation of the
superfluid fraction from f; = 1. We can see that the critical
interaction strength at which the superfluid fraction abruptly
drops decreases with a small /. It indicates that the formation
of a bright soliton starts to occur with a smaller interaction
strength. As one increases /, the behavior of the superfluid
fraction approaches that without an external potential because
increasing / corresponds to an almost uniform potential which
can be negligible.

VI. CONCLUSION

We elucidated superfluid properties of a one-dimensional
annular superfluid, which exhibits solitons with sufficiently
attractive interaction, subject to a rotational boost, a trans-
verse dimension, or a potential barrier by using the superfluid
fraction given by Leggett’s formula. We derived Leggett’s
formula for the superfluid fraction, which does not contradict

Landau’s criterion and is valid even in the noninteracting
case with a finite excitation gap in a finite-size system. The
superfluid fraction is f; = 1 for a uniform configuration and
decreases for an inhomogeneous density. Therefore, Leggett’s
formula characterizes modulational instabilities and we have
seen the formation of soliton abruptly reduces the superfluid
fraction. In particular, at @ = —1/2, we have a black soli-
ton and the superfluid fraction vanishes. We have included
effects of transverse width through the one-dimensional non-
polynomial Schrodinger equation. The superfluid fraction
monotonically decreases as one increases the transverse width
up to the critical width, above which the superfluid is unsta-
ble. We have also investigated the superfluid fraction in the
presence of a potential barrier. The potential barrier alters
a uniform configuration without a barrier into an inhomo-
geneous one, which reduces the superfluid fraction. As one
increases the attractive interaction strength, the system se-
lects one of the potential minima to develop a soliton. In
a dipolar supersolid, the superfluid fraction associated with
the nonclassical rotational inertia has been experimentally
observed through the measurement of the scissors mode fre-
quency [37]. We expect that our results of the superfluid
fraction in an annular superfluid are also experimentally ac-
cessible in a similar manner. A one-dimensional superfluid
is a simple and useful platform to analyze various macro-
scopic quantum phenomena such as Josephson dynamics
[59-62]. Moreover, the formation of solitons that we have
focused on appears ubiquitously not only in condensed-matter
physics [25,26] but in high-energy physics [29,30]. Our work
on the superfluid properties of the one-dimensional annular
superfluid would have a wide range of applications and contri-
butions to further theoretical investigations in diverse physical
systems.
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