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Droplet-superfluid compounds in binary bosonic mixtures

M. Nilsson Tengstrand* and S. M. Reimann
Division of Mathematical Physics and NanoLund, Lund University, SE-221 00 Lund, Sweden

(Received 5 November 2021; accepted 8 March 2022; published 24 March 2022)

While quantum fluctuations in binary mixtures of bosonic atoms with short-range interactions can lead to the
formation of a self-bound droplet, for equal intracomponent interactions but an unequal number of atoms in the
two components, there is an excess part that cannot bind to the droplet. Imposing confinement, as here through
periodic boundary conditions in a one-dimensional setting, the droplet becomes amalgamated with a residual
condensate. The rotational properties of this compound system reveal simultaneous rigid-body and superfluid
behavior in the ground state and uncover that the residual condensate can carry angular momentum even in the
absence of vorticity. In contradiction to the intuitive idea that the superfluid fraction of the system would be
entirely made up of the excess atoms not bound by the droplet, we find evidence that this fraction is higher
than what one would expect in such a picture. Our findings are corroborated by an analysis of the elementary
excitations in the system, and shed new light on the coexistence of localization and superfluidity.
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I. INTRODUCTION

In the field of ultracold atomic quantum gases it was
suggested early on [1–3] that quantum effects beyond mean
field (BMF) may lead to self-bound droplets of fermionic or
bosonic atoms. For weakly interacting single-component Bose
gases, quantum fluctuations are often too small to play any
significant role. Nevertheless, for binary or dipolar Bose gases
the interactions may be adjusted such that the different main
contributions to the mean-field (MF) energy nearly cancel
out, leaving only a small residual term that can be tuned to
equilibrate with the BMF part of the total energy. A self-
bound dilute boson droplet may then form [4,5], with curious
properties originating from its genuine quantum many-body
nature. Although originally proposed for binary Bose gases
[5], the first experimental observations of droplets stabilized
by the Lee-Huang-Yang (LHY) quantum fluctuations [6] were
made for dipolar atoms, dysprosium [7–10] and erbium [11].
Here, a scenario similar to the binary case [12] arises due to
the peculiarities of the dipolar interactions [13–17]. Exper-
iments with binary bosonic mixtures of potassium [18–20]
or heteronuclear mixtures [21,22] followed soon after (see
the reviews [23,24]). In low-dimensional systems, quantum
fluctuations may be enhanced, facilitating and stabilizing
the droplet formation process [5,25,26], and the dimen-
sional crossover has been discussed in Refs. [27–29]. Recent
work on binary self-bound states in one dimension (1D) or
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quasi-1D also investigated corrections beyond LHY [30], ap-
plied the quantum Monte Carlo method [26,31], used the
Bose-Hubbard model [32,33] or formulated an effective quan-
tum field theory [34]. It has been shown that microscopic
pairing or dimer models agree with variational approaches
[35,36]. Collective excitations [37,38] and thermodynamic
properties [30,39] were also studied.

Droplets may also form in systems with intercompo-
nent asymmetry. One obvious realization is heteronuclear
mixtures, see, e.g., Refs. [21,22,40–42]. Another interest-
ing scenario arises when the intracomponent interactions are
equal, but the components have different particle numbers.
Then, the excess particles in the larger component cannot bind
to the droplet [4], but instead form a uniform background into
which the droplet is immersed [43]. Another interesting sce-
nario can occur for nonequal intraspecies interactions around
the miscibility-immiscibility threshold, where it was recently
suggested [44] that a mixed phase may coexist with a nona-
malgamated gaseous component, where partial miscibility is
caused by BMF contributions leading to bubble phases.

In this paper, we set focus on the case of asymmetric
components confined in a one-dimensional trap with periodic
boundary conditions. For equal intraspecies interactions but
different numbers of particles in the two components, with
increasing coupling strength the translational symmetry of the
uniform system is broken. A localized droplet forms, stabi-
lized by quantum fluctuations, which coexists with a uniform
residual condensate of excess atoms that cannot bind to the
droplet, but are kept together by the confinement. We demon-
strate that this asymmetric system, although with just a single
droplet unlike what is typically seen in dipolar supersolids
[23], simultaneously exhibits rigid-body and superfluid prop-
erties. The nonclassical rotational inertia (NCRI) reveals that
the motion of the droplet at low velocities is not only that of a
classical rigid body but is accompanied by the response of the
nondroplet atoms moving in a direction opposite to the motion
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of the rigid body. Importantly, this response is found to exist
for infinitesimal rotations, thus having a profound impact on
the degree of superfluidity of the system. The number of atoms
contributing to the formation of a vortex is larger than that of
the residual condensate, coinciding with the NCRI fraction.
Our findings are corroborated by an analysis of the lowest
excitation modes in the compound system.

II. MODEL AND METHODS

The energy density for a uniform binary Bose-Bose mix-
ture in one dimension with equal masses and short-ranged
interactions, including BMF corrections, equals [5]

E = g

2
(n2 − n1)2 + δgn1n2 − 2m1/2g3/2

3π h̄
(n1 + n2)3/2, (1)

where ni are the densities of each component and m the mass
of a single particle. Here we have set the intraspecies coupling
constants to be equal, g11 = g22 = g, and introduced δg = g +
g12, where g12 is the interspecies coupling constant. The first
two terms in Eq. (1) constitute the MF energy density and the
last term accounts for the first correction beyond mean field.
The energy density Eq. (1) is valid provided η=

√
mg/nh̄2 �1,

ensuring weak interactions (here we have assumed similar
order of magnitudes for the densities n1 ∼ n2 ∼ n), and that
δg is small in the sense δg/g ∼ η. For a finite-size system the
extended coupled Gross-Pitaevskii equations corresponding
to the energy density Eq. (1) are

ih̄∂tψi = − h̄2

2m
∂xxψi + g|ψi|2ψi + (δg − g)|ψ j |2ψi

− m1/2g3/2

π h̄
(|ψi|2 + |ψ j |2)1/2ψi, (2)

where i, j = 1, 2 and i �= j. We impose periodic boundary
conditions ψi(x) = ψi(x + 2πR), enforcing a confinement
of length 2πR. This is a good approximation for a ring
of radius R [45,46] whenever bending effects may be ne-
glected, i.e., when the transversal confinement length is much
smaller than R. Such binary one-dimensional ring systems
have been extensively studied, both experimentally [47–54]
and theoretically [55–65]. We note that the validity of us-
ing a position-dependent beyond-mean-field contribution can
be motivated on the basis of the semiclassical approxima-
tion (for a background motivating this statement, see, e.g.,
Refs. [13,14,66–69]).

From here on, we use dimensionless units such that h̄ =
m = R = 1. The order parameter is normalized to the num-
ber of particles in each component,

∫ 2π

0 |ψi(x)|2dx = Ni. The
ground state is obtained by solving Eq. (2) numerically with
a split-step Fourier method in imaginary time. To analyze the
system in a rotating frame the term −�L̂ψi is added to the
right side of Eq. (2), where L̂ = −i∂x, which is then solved in
the same manner. In order to find the ground state for a fixed
value of the angular momentum L = L1 + L2, where Li =∫ 2π

0 ψ∗
i L̂ψidx, we consider the quantity Ẽ = E + (C/2)(L −

L0)2 [70–73], where E is the total energy corresponding to
Eq. (2). By minimizing Ẽ for sufficiently large values of the
constant C > 0, the obtained ground state will have angular
momentum L ≈ L0 since the critical point of Ẽ is L = L0 −

∂LE/C, which is a minimum whenever C > −∂LLE . Intro-
ducing λ = δg/g, N = N1 + N2 and ν = N2/N1, we illustrate
our findings below by fixing λ = 0.01 and N = 5000. The
asymmetry parameter is restricted to ν � 1.

In order to study the spectrum of elementary excitations
(see Sec. IV), we linearize Eq. (2) around the ground state
ψ0,i by writing

ψi(x, t ) = e−iμit [ψ0,i(x) + ui(x)e−iωt + v∗
i (x)eiω∗t ] (3)

and keeping terms up to first order in the Bogoliubov am-
plitudes ui and vi. Here μi is the chemical potential and
ω/2π the frequency of oscillation of u and v. Due to the
periodicity of the system we expand the amplitudes in plane
waves ui(x) = eikxui,k (x) and vi(x) = eikxvi,k (x), resulting in
the Bogoliubov–de Gennes equations

Akvk = ωkvk, (4)

where vk = (u1,k (x) v1,k (x) u2,k (x) v2,k (x))T and

Ak =

⎛
⎜⎝

X12,k Y1 Z Z
−Y1 −X12,k −Z −Z
Z Z X21,k Y2

−Z −Z −Y2 −X21,k

⎞
⎟⎠ (5)

with

Xi j,k = − 1

2

∂2

∂x2
− ik

∂

∂x
+ k2

2
− μi

+ (2g − 3α)ψ2
0,i + (δg − g − 2α)ψ2

0, j

Yi = (g − α)ψ2
0,i

Z = (δg − g − α)ψ0,1ψ0,2 (6)

and

α = g3/2

2π
(
ψ2

0,1 + ψ2
0,2

)1/2 . (7)

Here α is the contribution due to beyond mean-field effects
and we have assumed ψ0,i to be real. We solve Eq. (4) numer-
ically with standard diagonalization techniques.

III. GROUND-STATE PROPERTIES

We first investigate the density distributions of the two
components, starting with the symmetric case where both
components of the mixture are equal, ν = 1. The top panel of
Fig. 1 shows the corresponding densities for different values
of the interaction parameter g for a slowly rotating system.
For high enough values of g the ground state has the form of a
droplet in agreement with previous findings in one dimension
[5,25]. As g is decreased the extent of the droplet increases,
which results in a transition to a uniform state. We understand
this by considering the bulk density of a flat-top droplet n0 =
8g/(9π2λ2) [5], which implies a droplet extent ∼N/(2n0).
When this droplet size is much smaller than the ring length
the periodic boundary conditions do not significantly affect
the system. As g is decreased, the droplet size eventually
becomes comparable to the ring length for g ∼ 9πNλ2/32.
This results in a transition from a droplet to a uniform system
and is a consequence of the periodic boundary conditions.
(See also the discussion of boundary effects in Ref. [74].) For
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FIG. 1. Densities |�i|2 (red, blue) and velocities φ′
i (black lines)

of the two components in the rotating frame where N = 5000,
δg/g = 0.01, and � = 0.1. The top panel shows the symmetric case,
ν = 1. (a) |�1|2 = |�2|2 for g = 0.5 (red), being homogeneous along
the ring. (b) as in (a) but for g = 1.2, showing droplet formation.
The bottom panel shows the asymmetric case for ν = 3 for the
same parameters as in the top panel. The axis to the right in both
panels shows the corresponding condensate velocities φ′

i . Units are
dimensionless.

low values of g, the situation is similar also in the asymmetric
case, where both components display uniform behavior, as
shown for ν = 3 in the bottom panel of Fig. 1.

With increasing interaction strength g the translation sym-
metry is eventually broken, and the ground-state density for
the component with more particles changes to what appears
to be a mix between a droplet and a uniform medium, while
the other component displays a normal droplet solution. The
droplet coexists with a uniform background, since the excess
particles in the second component can not bind to it [4].
Deviating from ν = 1 results in an increase in the ratio of MF
to BMF energy, eventually causing the former to dominate the
total energy. Thus, unlike the symmetric case where droplet
formation takes place where the MF and BMF terms are of
similar orders of magnitude, for the asymmetric system we
have BMF effects such as displayed in Fig. 1 even though
the MF contribution can be much larger than the BMF one. If
Eq. (2) is solved without the BMF contribution ceteris paribus
we find uniform solutions in the regimes where nonuniform
ones were obtained with the full Eq. (2) for our choice of
parameters. We can understand this by considering the inter-
action energy density Eq. (1), where for sufficiently large ν the
first term is the dominant one and the second and third terms
are of order η. In the homogeneous regime the densities are
simply ni = Ni/(2π ) and the energy corresponding to the first
term (in dimensionless units) is thus g(N2 − N1)2/(4π ). In the
droplet regime we see from Fig. 1 that the densities take the
form n1(x) = nd (x) and n2 = nd (x) + (N2 − N1)/(2π ), where
nd (x) is the density of the droplet part. Since n2(x) − n1(x) =
(N2 − N1)/(2π ) we find that the energy corresponding to
the dominant first term must be the same in the uniform
and droplet regimes, and the ground state is consequently
determined by the interplay between the small part of the
mean-field contribution δgn1n2 and the beyond-mean-field
correction, just as for the symmetric system.

FIG. 2. Energy as a function of angular momentum per particle
for ν = 1, . . . , 5 (see legend), g = 1.5. Units are dimensionless.

We are here interested in the properties of the mixed-phase
system. The ground-state energy E (�) as a function of the
angular momentum per particle � ≡ (L1 + L2)/N , where Li is
the angular momentum of component i as defined in Sec. II,
is shown in Fig. 2 for different degrees of asymmetry ν. It
takes the form of a single parabola for ν = 1, corresponding
to the rigid-body rotation of the droplet in the ring. For the
asymmetric case with ν > 1, different parabolas appear to
intersect. Intriguingly, the structure of E (�) is similar to the
one found for a three-dimensional dipolar toroidal system
in the supersolid phase [75]. With this analogy in mind, we
model the system by considering Nc particles taking angular
momentum as a classical rigid body under rotation and Nv

particles taking angular momentum only in terms of vorticity,
with N = Nc + Nv . The energy cost for adding a vortex with
s-fold quantization to the condensate can be determined by
assuming an order parameter for the vortex component on the
form ∝ eisx, where the integer s is the angular momentum
per particle in the vortex-carrying component, leading to an
energy cost equal to Nvs2/2. Since the solidlike part of the
system carries angular momentum according to Nc�

2
c/2, where

�c is its angular momentum per particle and N� = Nc�c + Nvs,
the different energetic branches dependent on angular mo-
mentum can be written

Es/N = 1

2

[
(� − fvs)2

1 − fv
+ fvs2

]
, (8)

where we have defined the fraction of particles carrying vor-
ticity fv = Nv/N . The branches Es and Es+1 intersect at � =
s + 1/2, i.e., having no vortex is energetically favorable for
� < 0.5, having a singly quantized one for 0.5 < � < 1.5 and
so on. The energies in Eq. (8) obtained within our model
predict that the functional form of the dispersion relation
should be parabolas intersecting at half-integer values of �,
in accordance with the numerical results displayed in Fig. 2.

Importantly, this suggests that the asymmetric system can
exhibit properties of a solid and superfluid simultaneously,
with rigid-body rotation and quantized vorticity coexisting.
Unlike ring-shaped dipolar supersolids, which display a sim-
ilar behavior under rotation [75,76], here in the case of
isotropic short-range interactions the ground-state density
does not exhibit any repeating crystalline structure. Since the
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FIG. 3. Nonclassical rotational inertia (NCRI) fraction as a func-
tion of interaction strength g for ν = 1 (orange; the discontinuity is
indicated by the bullets and connecting dashed line), and for ν = 3
with f1, f2, and f as indicated in the legend. (Note that f = f1 = f2

for the symmetric system). Units are dimensionless.

branches Es have minima at � = fvs, there is a possibility
for the system to exhibit metastable superflow. These minima
exist in the ground-state energy E (�) only if they occur on the
interval where the corresponding branch Es(�) is the lowest in
energy, thus giving a criterion for the existence of a metastable
persistent current related to an s times multiply quantized
vortex according to fv > (2s − 1)/(2s).

It is tempting to identify the amount of particles belonging
to the vortex component with the number N2 − N1, intuitively
imagining that N1 particles from each component bind as a
droplet and thus act in a solid-body fashion while the excess
particles take the role of a background superfluid capable of
carrying vorticity. If this were true, then fv = (N2 − N1)/N =
(ν − 1)/(ν + 1), in contradiction with the numerically ob-
tained positions of the minima in Fig. 2, which were predicted
to occur at � = fvs. To give an example, for ν = 3 the first
minimum occurs at � ≈ 0.63 while (ν − 1)/(ν + 1) = 0.5. To
investigate this obvious discrepancy, we compute the nonclas-
sical rotational inertia fraction for each component [77,78]

fi = 1 − lim
�→0

Li

Ni�
. (9)

The total NCRI fraction is defined as f = (N1 f1 + N2 f2)/N ,
and we plot the numerically obtained results in Fig. 3 for ν =
1 and ν = 3. Interestingly, for ν = 1 there is a discontinuous
jump from f = 1 to a value that is nonzero, signaling that even
for the symmetric droplet system there are parameter values
such that the motion is not entirely classical. As ν is increased
the discontinuity decreases until it eventually disappears, as
exemplified for ν = 3 in Fig. 3. We see that the total NCRI
fraction for the asymmetric system not only differs from (ν −
1)/(ν + 1) but is also dependent on g.

Let us now study the motion of the condensate under
rotation by examining the condensate velocity. We start by
considering the time-independent coupled extended Gross-
Pitaevskii equations in the rotating frame

μiψi = − 1

2
ψ ′′

i + g|ψi|2ψi + (δg − g)|ψ j |2ψi

− g3/2

π
(|ψi|2 + |ψ j |2)1/2ψi − �L̂ψi, (10)

where it is assumed that i �= j as before. Writing ψi(x) =
ψ̃i(x)eiφi (x) and inserting into Eq. (10) we find

μiψ̃i = − 1

2
ψ̃ ′′

i + 1

2
ψ̃i(φ

′
i )

2 + gψ̃3
i + (δg − g)ψ̃2

j ψ̃i

− g3/2

π

(
ψ̃2

i + ψ̃2
j

)1/2
ψi − �ψ̃iφ

′
i

+ i

(
−ψ̃ ′

i φ
′
i − 1

2
ψ̃iφ

′′
i + �ψ̃ ′

i

)
. (11)

Using the fact that ψ̃i and φi are real we separate Eq. (11) into
two equations by identifying real and imaginary terms, where
the imaginary part yields the equation

1
2 ψ̃iφ

′′
i + ψ̃ ′

i φ
′
i = �ψ̃ ′

i . (12)

This equation can be solved for the condensate velocity φ′
i (x)

in terms of ψ̃i(x), with the solution

φ′
i (x) = � + Ci

ni(x)
, (13)

where Ci is an integration constant and ni = |ψi|2 =
ψ̃2

i . Since the angular momentum can be written Li =∫
ni(x)φ′

i (x)dx we finally obtain an expression for the
velocity

φ′
i (x) = � + Li − Ni�

2πni(x)
. (14)

The velocities for some parameters are plotted in Fig. 1
where in particular Figs. 1(b) and 1(d) show how the velocity
for both components in the symmetric system and the first
component in the asymmetric one are equal to � throughout
most of the ring, reflecting the solidlike movement. Away
from the bulk of the droplet where the density is small, the
second term in Eq. (14) becomes significant and the velocity
thus deviates from � in a manner depending on Li − Ni�. For
small � this difference is negative, resulting in a change of
sign for the velocity as displayed in Figs. 1(b) and 1(d). If the
density is negligible in the region where the velocity deviates
from � this will have little effect, but if the droplet instead
occupies most of the ring, as is the case close to the transition
point between the uniform and droplet phases, this results
in parts of the system moving in a direction opposite to the
rest of the condensate. The NCRI fraction will consequently
differ from zero, explaining why f for the symmetric system
and f1 for the asymmetric system do not immediately fall
to zero at the transition point. For the second component in
the nonuniform asymmetric case the velocity has opposite
signs inside and outside the droplet region, indicating that
the movement of the droplet is accompanied by a response of
the background medium, which moves in the other direction.
Since this response exists also for infinitesimal rotations, it
affects the results based on the definition in Eq. (9), increasing
it compared to if there had been no response flow of the
background. Curiously, this implies that the interpretation of
f as the fraction of particles that stay at rest as the container is
set to slowly rotate is not a correct one. (Interestingly, a similar
type of response by the background has been noticed also
for dipolar condensates in the supersolid phase [75,79].) To
connect to the results in Fig. 2, we compute the corresponding
NCRI fractions and find that f ≈ 0.47, f ≈ 0.63, f ≈ 0.72,
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FIG. 4. Spectra of elementary excitations for ν = 1 (left) and
ν = 3 (right) as a function of k for g = 1.4 where the top panels
show the real modes and the bottom panels the imaginary modes. The
(gray) dashed lines show the analytical solutions in the homogeneous
regime for |p| � 3 (see text) for the corresponding parameter values.
Note that the y axes to the left also apply to the panels of the right
column. Units are dimensionless.

and f ≈ 0.78 for ν = 2, 3, 4, 5, respectively. These data agree
well with the positions of the minima of E (�), suggesting that
fv ≈ f for these asymmetric systems, i.e., that the fraction of
particles related to vortex formation is larger than that of the
residual condensate and coincides with the NCRI fraction. We
note that the energy as a function of angular momentum for
the symmetric case ν = 1 always takes the form of a single
parabola as displayed in Fig. 2, even when the NCRI fraction
is different from zero but smaller than one (i.e., around the
transition point g ≈ 0.85 in Fig. 3). This indicates that for
ν = 1 we may have f �= fv = 0 and that the fraction of resid-
ual condensate needs to be nonzero for the vortex fraction to
also be nonzero.

IV. EXCITATION SPECTRUM

Finally, we investigate the spectra of collective excitations
by solving Eq. (4) numerically. Figure 4 shows the lowest
modes as a function of k for the symmetric (ν = 1) and
asymmetric case (here for ν = 3) in the nonuniform regime.

In both cases there are three modes that are gapless at
k = 0. Two of these are purely imaginary (see the bottom
panels in Fig. 4) and one is purely real. Imaginary solutions
indicate a dynamical instability of the system (see, for ex-
ample, Refs. [80–82]), and we find that when g is decreased
and we approach the uniform regime these imaginary modes
harden, implying a higher degree of instability closer to the
phase boundary. With increased g the modes instead soften
until they become vanishingly small and the system thus
becomes stable. The hardening of the imaginary modes as
g is decreased towards the phase boundary suggests that the
instability in the nonuniform phase originates from the peri-
odic boundary conditions, and we investigate this further by
means of real-time propagation. We consider a situation where
the interaction strength g is at t = 0 suddenly changed to a

FIG. 5. Real-time evolution of the ground-state densities for an
asymmetric system with ν = 3 and g = 0.94 close to the phase
boundary. At t = 0 the interaction strength is suddenly changed to
g = 0.95, which is then turned back to g = 0.94 at t = 5 (keeping
λ constant). The top panel shows the evolution of the first compo-
nent and the bottom panel the evolution of the second component.
Note that the x axis at the bottom applies to both panels. Units are
dimensionless.

slightly higher value for a short time and then turned back
to its original value (while keeping λ constant at all times).
As an example, Fig. 5 shows the real-time evolution of a
droplet-superfluid compound close to the phase boundary for
ν = 3 and g = 0.94 when it is excited in this way. It can be
seen how the droplet continuously collapses and is reformed
at a position displaced by π compared to the previous droplet
location. Furthermore, we find that the closer we are to the
phase boundary the smaller the perturbation has to be to
bring about such a recurring droplet collapse. Notably, we do
not find similarly unstable behavior by perturbing a uniform
system close to the phase boundary (which has no imaginary
modes), where the density oscillations instead are very small,
something that is true also deeper in the droplet regime for
large values of g. We thus find these mixtures with periodic
boundary conditions to be dynamically stable under this type
of small perturbations except close to the phase boundary
from the nonuniform side, in accordance with results for the
excitation spectra.

We find that the real mode that is gapless at k = 0 is tied
to the superfluidity of the system. For the symmetric case, it
becomes soft rapidly as the NCRI goes to zero, see the lowest
mode in the top left panel in Fig. 4. With increasing ν the
superfluid character of the condensate is enhanced, hardening
this mode such that it for k > 0 may result in crossings and
avoided crossings with the higher modes, see the top right
panel of Fig. 4. The lowest-lying modes of the pure droplet
system that are nonzero at k = 0 are characterized by their
insensitivity to changes in k, the first one being the breathing
mode [38]. For the asymmetric system we find by studying the
Bogoliubov amplitudes that the lowest nonzero at k = 0 mode
is still the breathing mode, followed by higher modes with
linear slopes that form a zigzag pattern higher up in the spec-
trum. We can understand this structure from the solution of the
Bogoliubov–de Gennes equations of the uniform condensate,
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which may be obtained analytically through the ansatz [83]

vk (x) =
∞∑

p=−∞

eipx

√
2π

ṽpk, (15)

where ṽpk = (ũ1,pk ṽ1,pk ũ2,pk ṽ2,pk )T. By substituting
into Eq. (4) we readily find the solutions

ω2
±,pk = (p + k)2

4π
[π (p + k)2 + (g − α)N

±
√

(g − α)2(N1 − N2)2 + 4(δg − g − α)2N1N2],

(16)

which in the limit g 
 δg, α can be written as

ω2
+,pk ≈ (p + k)2

4π

[
π (p + k)2 + 2(g − α)N

− 4(δg − 2α)
N1N2

N

]
(17)

and

ω2
−,pk ≈ (p + k)2

4π

[
π (p + k)2 + 4(δg − 2α)

N1N2

N

]
. (18)

From these two types of solutions we observe that there is a
separation of scales, where the low-lying part of the spectrum
is dominated by the ω−,pk branches. For sufficiently large
|p|, k ∈ [0.0, 0.5] and ω−,pk > 0, we find that the solutions
Eq. (18) take the approximate form

ω−,pk ≈ p2

2
+ pk + (δg − 2α)

N1N2

πN
,

which on the interval k ∈ [0.0, 0.5] takes the form of a zigzag
pattern as displayed in Fig. 4, where it can be seen how
the nonuniform system exhibits a structure that is similar to

the uniform one, but displaced to higher energies. This is a
clear indication for the increased importance of the nondroplet
superfluid background higher up in the excitation spectrum.

V. CONCLUSIONS

In summary, we investigated the effects of quantum fluc-
tuations beyond just droplet formation of a binary Bose
mixture with short-range interactions in a one-dimensional
confinement with periodic boundary conditions. Although
the BMF contribution for asymmetric configurations may be
small compared to the MF one, it can cause a breaking of
translational symmetry. Examining the rotational properties
and collective excitations of an asymmetric compound system
where a single droplet amalgamates with a residual conden-
sate, we found that rigid-body and superfluid characteristics
coexist. The nonclassical rotational inertia (NCRI) revealed
that the motion of the droplet at low velocities is not only that
of a classical rigid body, but is accompanied by the response
of the residual superfluid moving in the opposite direction.
This response profoundly impacts on the superfluid fraction
as it is also found for infinitesimal rotations. Investigating the
collective excitations revealed the existence of a single real
gapless phase mode that softens with decreased NCRI, tying
it to the degree of superfluidity of the system.

Our findings are expected to hold also in the quasi-one-
dimensional limit for a sufficiently strong transversal trapping.
As mentioned above, droplets were observed for binary 39K
[18–20] or heteronuclear mixtures [21,22]. Anharmonic traps
with long-lifetime annular flow [84] and widely tunable ring
traps [85] were recently realized, making experiments on
toroidal droplet-superfluid compounds a realistic endeavor.
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