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Finite-temperature strong-coupling expansions for the SU(N) Hubbard model
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We develop finite-temperature strong-coupling expansions for the SU(N) Hubbard model in powers of βt ,
w = exp (−βU ) and 1

βU for arbitrary filling. The expansions are done in the grand canonical ensemble and
are most useful at a density of one particle per site, where for U larger than or of order of the bandwidth, the
expansions converge over a wide temperature range t2/U � T � 10U . By taking the limit w → 0, valid
at temperatures much less than U , the expansions turn into a high-temperature expansion for a dressed SU(N)
Heisenberg model that includes nearest-neighbor exchange, further neighbor exchanges, and ring exchanges
known from the T = 0 perturbation theory of the SU(2) Hubbard model. Below a filling of one particle per
site, the w → 0 limit corresponds to an effective t-J model. The onset of strong correlations can be identified
by a plateaulike behavior in the entropy as a function of temperature. At small deviations from one particle per
site, the expansions can be arranged in powers of a small parameter δ = 1 − n, the deviation from one particle
per site, where the leading βt-dependent terms correspond to holes sloshing around in a disordered SU(N)
background. We use these expansions to calculate the thermodynamic properties of the model at moderate and
high temperatures over a wide parameter range.
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I. INTRODUCTION

Recent developments in the physics of cold atoms have
allowed substantial progress to be made in our under-
standing of the Fermi-Hubbard model [1–6], one of the
most important models in condensed matter physics. The
ability to artificially synthesize representations of the Hubbard
model with well-characterized interaction parameters, com-
bined with new types of experimental measurements, some of
which are impossible in the solid state, has given the field a
huge boost and an opportunity to think about many old and
new aspects of equilibrium and nonequilibrium many-body
phenomena.

Another recent development is the study of cold-atom sys-
tems, which offer a generalization of the well-studied SU(2)
Hubbard model with two spin species to the SU(N) Hubbard
model with N species of fermions [7–13]. Taking these Fermi-
Hubbard systems down to very low temperatures remains a
challenge for experiments, but already interesting behavior
can be seen at moderate to high temperatures.

The purpose of this paper is to develop systematic
finite-temperature strong-coupling expansions [14–16] for the
SU(N) Hubbard model. The expansions are developed in the
thermodynamic limit in the grand canonical ensemble as a
function of the fugacity ζ in powers of βt , w = exp (−βU )
and 1

βU . The expansion coefficients are simple polynomials in
the SU(N) parameter N .

The expansions are most useful at one particle per site,
where they converge over a wide temperature range. By taking
the limit w → 0, the expansions turn into a high-temperature
expansion for a generalized SU(N) Heisenberg model that

contains nearest- and further-neighbor exchange interactions
as well as multispin exchange interactions. In second order
of the expansions, we identify the nearest-neighbor exchange
interaction, which is order t2/U . In fourth-order perturba-
tion theory we identify higher-order terms of order t4/U 3,

that includes nearest-neighbor exchange, second-neighbor ex-
changes between sites that share a neighbor and four-spin
processes in a ring. For the case of N = 2, our results agree
completely with the earlier work of MacDonald, Girvin, and
Yoshioka [17,18]. Our calculations give us the SU(N) gener-
alization of these parameters. There is a change in sign of the
ring exchange terms as a function of N .

In second-order perturbation theory, the entropy at low
temperatures saturates at the value of ln N , as only the
constant, nonzero trace terms in the effective Hamiltonian,
contribute to the partition function in this order. But in fourth
order, spin correlations begin to develop due to nearest-
neighbor exchange interactions of order t2/U . They lead to
a reduction in entropy within the single-occupancy subspace.
Sixth order of the expansions give deviations of the entropy
function from the nearest-neighbor Heisenberg model. We
will present numerical results for various properties of the
square-lattice SU(N) Hubbard model for N = 2, 3, and 4
for moderate to large values of U . These expansions are not
particularly useful numerically for small U , as U goes in the
denominator.

Moving away from one particle per site, we focus on par-
ticle densities, ρ, less than one particle per site. We present
numerical results for the square-lattice SU(N) Hubbard mod-
els at various densities, where one can see a crossover from
the high-temperature regime (T > U ) to a strongly correlated
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regime at temperatures T << U . The strongly correlated
regime is characterized by a plateaulike behavior in the en-
tropy function, which is nearly U independent for large U . In
the w → 0 limit, these expansions can be turned into a high-
temperature expansion for a generalized SU(N) t-J model.
Close to one particle per site, the hopping terms are small
by a parameter δ = 1 − n. The leading δ-dependent terms
correspond to isolated holes sloshing around in a disordered
SU(N) background. We believe our calculation should serve
as a benchmark for other numerical calculations and for cold
atom experiments on SU(N) systems with moderate to large
U values especially at intermediate (T � t) and high (T � t)
temperatures.

II. MODEL AND METHODS

The SU(N) Hubbard model is defined by a Hamiltonian
H = H0 + V , where the unperturbed Hamiltonian H0 is an on-
site term:

H0 = U
∑

i

ni(ni − 1)

2
− μ

∑
i

ni, (1)

with ni the total number operator for particles on site i
and μ is the chemical potential. The perturbation V is the
hopping term:

V = −t
∑
〈i, j〉

N∑
α=1

(C†
i,αCj,α + H.c.), (2)

where the sum 〈i, j〉 runs over nearest-neighbor pairs of sites
of a lattice and the sum over α runs over the N species of
fermions.

Using the formalism of thermodynamic perturbation the-
ory [14,15], the logarithm of the grand partition function, per
site, can be expanded as

1

Ns
ln Z = ln z0 +

∞∑
r=1

∫ β

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τr−1

0
dτr〈Ṽ (τ1) . . . Ṽ (τr )〉N

(3)

where z0 is the single-site partition function, Ns is number of
sites in a large system,

Ṽ = eτH0Ve−τH0 , (4)

and,

〈X 〉 = Tre−βH0 X/Tre−βH0 . (5)

Let ζ be the fugacity defined as ζ = eβμ. The particle density
(per site) can be obtained via the relation

ρ = ζ

Ns

∂

∂ζ
ln Z. (6)

This relation needs to be solved to obtain ζ or μ as a function
of ρ and β, which then allows one to obtain various properties
at fixed particle density.

We can readily obtain other thermodynamic quantities such
as Internal energy E and entropy S using the relations

E = −
(

∂

∂β
ln Z

)
ζ

, (7)

and

S = −β

(
∂

∂β
ln Z

)
ζ

− ρ ln ζ + ln Z. (8)

The strong-coupling expansion has two types of U depen-
dence. There are exponential terms wn = exp (−βnU ), and
additional dependence on 1

βU to some power. In the strong-
coupling or atomic limit, each bare or unperturbed state has
a definite occupancy. This is where the power of w comes
from. However, eigenstates of the Hubbard Hamiltonian are
admixtures of different occupancies. In the strong-coupling
expansion, this admixing gives rise to the 1/βU terms in
various orders.

Thus, we define two measures of double occupancy

D1 = − 1

β

∂

∂U

ln Z

Ns
, (9)

and

D2 = w
∂

∂w

ln Z

Ns
. (10)

In D1 we have a full measure of double occupancy as one is
differentiating the partition function with respect to all the U
dependence. In D2 we are differentiating with respect to w

only and no differentiation is performed with respect to the
1/βU terms. Thus, when D2 becomes small that means our
bare or unperturbed states are those with no double occupancy.
On the other hand, D1 can still be nonzero due to the admixing
of different occupancy in the eigenstates of the Hamiltonian.
It can even increase as temperature is lowered as we will
see later. The reference to bare states makes sense as long
as U is large enough and vanishing D2 gives us the onset of
the strongly correlated regime or generalized Heisenberg or
t-J model.

III. SERIES EXPANSIONS

The single-site partition function is a series in powers of w

and is readily obtained as

z0 = 1 + Nζ + N (N − 1)

2
ζ 2w

+ N (N − 1)(N − 2)

6
ζ 3w3 + O(w6), (11)

Since we are interested in moderate to large U and at tempera-
tures below U , the higher-order terms are exponentially small
and can be safely neglected.

In each order, the terms in the expansion can be expressed
in terms of various graphs on the lattice as:

1

Ns
ln Z = ln z0 +

∑
G

LGz−s
0 (βt )rXG(ζ , βU, N ), (12)

where the sum is over graphs denoted G. The graph G has
s sites and r bonds. LG is the lattice constant of the graph
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FIG. 1. Graphs that contribute to fourth order of the expansion.
Graph (a) contributes in second order, graph (b) in third order, and
graphs (c), (d), (e), and (f) in the fourth order.

defined as the extensive part of the graph count, per lattice site.
The weight factor XG(ζ , βU, N ) is the reduced contribution of
the graph obtained from an evaluation of the trace. The graphs
that contribute up to fourth order are shown in Fig. 1. The
contributions from each graph rapidly become quite cumber-
some and need to be evaluated by a computer program. Note
that in this formalism, disconnected graphs are also needed.
More details on the method can be found in Oitmaa et al. [14].

The second-order term comes from just a single graph
shown in Fig. 1(a). It has two sites and two powers of the
same bond connecting the sites give us the second order in βt .
The trace calculations lead to the weight for the first graph Xa

equal to:

N
(
ζ + (N − 1)2ζ 3w + 1

4 (N − 1)2(N − 2)2ζ 5w4
)

+ 2N (N − 1)ζ 2(1 + 1
2 (N − 1)(N − 2)ζ 2w2)(1 − w)/βU

+ 1
2 N (N − 1)(N − 2)ζ 3w(1 − w2)/βU

+ 1
6 N (N − 1)2(N − 2)(N − 3)ζ 5w4(1 − w2)/βU

+ 1
9 N (N − 1)(N − 2)(N − 3)ζ 4w3(1 − w3)/βU + . . . ,

(13)

where the neglected terms represented by . . . are order w6

and hence numerically extremely small at the temperatures
below T = U . As a reminder, our interest is in the temperature
regime t2/U < T < 10U with U of order the bandwidth or
larger.

There is only one graph in third order consisting of a
triangle of three bonds. This graph is absent on bipartite
lattices. In fourth order there are three connected graphs and
one disconnected graph. The expressions rapidly become too
unwieldy for use without a computer program.

Since the fourth-order terms become important only at
temperatures of order t and by this temperature w becomes
exponentially small, it suffices to focus on the w → 0 limit
for the fourth- and higher-order terms. Note that this limit does
not imply we are considering a strict large-U limit, as we have
all inverse power of 1/U still present in the calculations. In
this w → 0 limit, the largest power of ζ in a graph is given by
the number of sites in the system. Furthermore, for any given
power of ζ the N dependence is a polynomial whose order is
the power of ζ . Thus, at fourth order, the N dependence of
these terms is fully determined from knowing the results up
to N = 4.

For the graphs in Figs. 1(c), 1(d) and 1(e), let us call the
weight factors Xc, Xd , and Xe respectively. In the w → 0 limit,
these simplify considerably to become

Xc = Nζ

12
+ 4N (N − 1)

ζ 2

(βU )2
− 8N (N − 1)

ζ 2

(βU )3
(14)

Xd = Nζ

6
+ N2ζ 2

6
+ 3N (N − 1)ζ 2

βU
− 4N (N − 1)ζ 2

(βU )2

+ 4N (N − 1)2ζ 3

(βU )2
+ 2N (N − 1)ζ 2

(βU )3

+ N (N − 1)(10N − 8)ζ 3

3(βU )3
(15)

and

Xe = N (ζ − 4ζ 2 + ζ 3)

3
+ 4N (N − 1)(ζ 2 − ζ 3)

βU

+ 4N (N − 1)ζ 2(−2 − 5ζ + 3Nζ )

(βU )2

+8N (N − 1)ζ 2(1 + (5 − 3N )ζ + (5 − 5N + N2)ζ 2)

(βU )3
.

(16)

The weight factor of a disconnected graph such as Fig. 1(f) is
the product of the weights of its disconnected pieces.

We should note that there is a subtlety in taking w → 0
limit at one particle per site ρ = 1 in that ζ becomes ex-
ponentially large as 1/

√
w (see next section). However, any

additional power of ζ relative to one particle per site always
brings with it an additional power of w, so that these terms
remain exponentially small relative to the leading terms.

IV. ONE PARTICLE PER SITE

The expansions simplify greatly when the particle density
ρ = 1. At low temperatures (T < t), the chemical potential
can be determined up to exponentially small correction terms
and in the w → 0 limit the system maps into a generalized
SU(N) Heisenberg model. In this section, we focus on this
mapping analytically. Numerical results for different N will
be presented at the end of the section.

The single-site partition function, keeping only the lowest
power of w, is

z0 = 1 + Nζ + N (N − 1)

2
ζ 2w. (17)

Thus,

ρ = 1

z0
(Nζ + N (N − 1)ζ 2w). (18)

Setting ρ = 1 leads to the result

ζ 2 = 1

w

2

N (N − 1)
. (19)

This relation between chemical potential and U is exact for
N = 2 at all temperatures but not so for larger N as noted
in the work by Ibarra-Garcia-Padilla et al. [12]. However,
it allows a systematic expansion for all higher-order terms
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where exponentially small terms in powers of
√

w can be
neglected. We obtain,

z0 = 2 + Nζ . (20)

Hence, in the w → 0 limit, we have the relation:

ζ

z0
= 1

N
+ O(

√
w). (21)

Since the w → 0 limit of XG for a graph with s sites has zs
0 in

the denominator and the numerator has a maximum power of
ζ s without any double occupancy only the ζ s terms survive in
this limit. All terms which bring additional powers of ζ bring
additional powers of w as well and thus remain exponentially
small. Thus, we obtain (focusing on the terms relevant to the
square lattice)

Xa

z2
0

= 2(N − 1)

N

1

βU
, (22)

Xc

z2
0

= 4(N − 1)

N

1

(βU )2
− 8(N − 1)

N

1

(βU )3
, (23)

Xd

z3
0

= 4(N − 1)2

N2(βU )2
+ (N − 1)(10N − 8)

3N2(βU )3
, (24)

and

Xe

z4
0

= 8(N − 1)(5 − 5N + N2)

N3(βU )3
. (25)

It is interesting to note that the last term, which is related to
ring exchanges, changes sign between N = 3 and N = 4.

The terms of order β in the logarithm of the partition
function correspond to < −βHe f f >, that is, minus the trace
of different effective Hamiltonian terms obtained in a t/U
expansion of the Hubbard model [17,18]. For example the
leading term for N = 2 is βt2/U or βJ/4, which corresponds
to the −J/4 term in the well-known second-order effective
Hamiltonian for the Hubbard model at half-filling

J (	Si · 	S j − 1/4). (26)

The terms βt4/U 3 come from one bond, two bond and four-
site ring graph. For N = 2, these become −4βt4/U 3, βt4/U 3,
and −βt4/U 3. These agree with the constant terms in the work
of MacDonald et al. [17] and set the magnitudes for various
exchange parameters of the effective model.

Thus, finite-temperature perturbation theory is an alterna-
tive method for determining the exchange parameters in the
effective Hamiltonian. However, since S = d

dT (T ln Z ), any
linear term in β in ln Z does not contribute to reduction in
the entropy. Thus, in second-order perturbation theory, the
entropy at low temperatures saturates to ln N , correspond-
ing to the singly occupied subspace. We need to go to the
fourth-order terms to see the reduction in entropy within the
singly occupied subspace. In fourth-order the reduction in
entropy comes from the β2(t2/U )2 terms. Thus, for large U
this gives us the leading nearest-neighbor spin correlations
from Heisenberg interactions. This term is equivalent to the
Curie-Weiss or mean-field behavior of the Heisenberg model.
To see additional correlations due to higher-order terms in
t/U one would have to go to sixth and even higher orders

of perturbation theory. We will discuss these higher-order
corrections to the entropy at the end of this section.

Combining contributions from all the graphs to fourth or-
der in perturbation theory and multiplying their contributions
by the lattice constants for the square lattice, which are 2, 2, 6,
1, and −7 for Figs. 1(a), 1(c) 1(d), 1(e), and 1(f), respectively,
and adding them up, our results for the logarithm of the
partition function per site becomes:

ln Z

Ns
= ln z0 + βt2

U
aN + β2t4

U 2
bN + βt4

U 3
cN , (27)

where

aN = 4(N − 1)

N
, (28)

bN = 8(N − 1)

N
− 4(N − 1)2

N2
, (29)

and,

cN = −16(N − 1)

N
+ 4(N − 1)(5N − 4)

N2

+ 8(N − 1)(5 − 5N + N2)

N3
. (30)

For the N = 2 the first two terms add up to βJ
2 + 3

16β2J2, with
J = 4t2/U . The β2 term agrees with the known results for
the Heisenberg model [19]. The first two coefficients aN and
bN depend on (1 − 1/N ) only. We believe, this is the source
of universality observed by Ibarra-Garcia-Padilla et al. [12].
The last term is smaller by two powers of t/U . These are also
the first terms absent in second-order numerical linked cluster
expansions [20], invoked in the study of Padilla et al. [12].

The entropy function, per site, on the square lattice to
fourth order becomes

S

Ns
= ln N − bn

β2t4

U 2
(31)

with the β2 dependence characteristic of all such lattice
models.

In Fig. 2, we show plots of entropy per site S, for several U
values for N = 2, N = 3, and N = 4. Results are shown from
the full second- and fourth-order perturbation theory as well
as from the reduced fourth-order perturbation theory, which
is valid at temperatures much less than U and provides a
mapping to the generalized Heisenberg model.

One can see that the generalized Heisenberg model works
quite well at temperatures below t for all U . Note that our
generalized Heisenberg model includes ring exchange terms.
For U = 8, the temperature scale for the applicability of this
model is such that the entropy is significantly below ln N (see
where solid lines overlap with dotted lines in Fig. 2). There
is no real entropy plateau at ln N for U/t = 8. This is an
important result for experiments, where it is common to fit
changes in entropy between low and high temperatures to ln 2
for a spin-half system. Our calculations show that this is only
valid if U/t is greater than about 10. For smaller U values,
there is no temperature window where the double occupancy
can be ignored and the system still has nearly the full ln N
entropy left.
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0.8

1

1.2
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S
/k

b U/t = 8
U/t = 12
U/t = 16
U/t = 20

N=2

(a)

0.1 1 10 100

T/t

0

0.5

1

1.5

2

S
/k

b U/t = 8
U/t = 12
U/t = 16
U/t = 20

N=3

(b)

0.1 1 10 100

T/t

0

2

S
/k

b U/t = 8
U/t = 12
U/t = 16
U/t = 20

N=4

(c)

FIG. 2. Entropy per site in units of the Boltzmann constant kb

as a function of temperature for (a) N = 2, (b) N = 3, and (c) N =
4. In each case the fourth-order perturbation theory result is shown
by a solid line, the second-order perturbation theory is shown by a
dashed line and the w → 0 generalized Heisenberg limit is shown by
a dotted line. In each plot, solid lines from top to bottom at T/t = 5
correspond to U = 8, 12, 16, and 20, respectively.

In Fig. 3, we show the energy function obtained from
the full evaluation of the fourth-order perturbation theory. In
Fig. 4 and Fig. 5, the double occupancy is shown as a function
of temperature. As noted earlier D1 is a true measure of double

0.1 1 10 100

T/t

-2

0

2

4

6

8

E
/t

N = 2, U/t = 8
N = 2, U/t = 12
N = 2, U/t = 16
N = 2, U/t = 20
N = 3, U/t =  8
N = 3, U/t = 12
N = 3, U/t = 16
N = 3, U/t = 20
N = 4, U/t = 8
N = 4, U/t = 12
N = 4, U/t = 16
N = 4, U/t = 20

FIG. 3. Energy in units of the hopping parameter t obtained from
the full fourth order perturbation theory is shown for various N
and U . Each style lines (solid, dashed, and dash-dotted) from top
to bottom at T/t = 30 correspond to U/t = 20, 16, 12, and 8,
respectively.

occupancy while D2 must go to zero when w → 0 and the
latter marks the onset of the effective generalized Heisenberg
model.

Note the increase in D1 at the lowest temperatures shown
in Fig. 4. This rise in D1 is an important part of the physics of
the Hubbard model [21]. It is another signature of the growth
of antiferromagnetism. When the system enters the predom-
inantly single-occupancy subspace, but temperature is still
much larger than J , all singly occupied bare states, including
ferromagnetic and antiferromagnetic ones are equally proba-
ble. Of these, antiferromagnetic ones are maximally admixed
with double occupancy. Thus growth of antiferromagnetism at
lower temperatures coincides with an increase in D1.

Since, the fourth-order terms already converge well for
T < t , for higher orders of perturbation theory, one can

0.1 1 10 100

T/t

0

0.1

0.2

0.3

0.4

D
1

N = 2, U/t = 8
N = 2, U/t = 12
N = 2, U/t = 16
N = 2, U/t = 20
N = 3, U/t = 8
N = 3, U/t = 12
N = 3, U/t = 16
N = 3, U/t = 20
N = 4, U/t = 8
N = 4, U/t = 12
N = 4, U/t = 16
N = 4, U/t = 20

FIG. 4. Double occupation measure D1 obtained from the full
fourth-order perturbation theory is shown for various N and U . Each
style lines from top to bottom at T/t = 20 correspond to U/t = 8,
12, 16, and 20, respectively.

033317-5



RAJIV R. P. SINGH AND JAAN OITMAA PHYSICAL REVIEW A 105, 033317 (2022)

0.1 1 10 100

T/t
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0.1

0.2

0.3

0.4

D
2

N = 2, U/t = 8
N = 2, U/t = 12
N = 2, U/t = 16
N = 2, U/t = 20
N = 3, U/t = 8
N = 3, U/t = 12
N = 3, U/t = 16
N = 3, U/t = 20
N = 4, U/t = 8
N = 4, U/t =12
N = 4, U/t = 16
N = 4, U/t = 20

FIG. 5. Double occupation measure D2 obtained from the full
fourth-order perturbation theory is shown for various N and U . Each
style lines from top to bottom at T/t = 10 correspond to U/t =, 8,
12, 16, and 20, respectively. Note that this is defined such that it must
go to zero as the exponentially small terms with positive powers of
w go to zero.

confine one selves to the w → 0 limit. This greatly simpli-
fies the trace calculations and makes it possible to do the
sixth-order calculations. We have carried out the sixth-order
calculations for N = 2, 3, and 4. For the SU(2) case, the
sixth-order expansions for ln Z are

2 β3 t6

U 3
− 36 β2 t6

U 4
+ 62.5 β

t6

U 5
. (32)

The first term is just the β3 term for the Heisenberg model
and agrees with known results [19]. The third term comes
from traces of higher-order (t6/U 5) new terms in the effective
Hamiltonian generated by perturbation theory. The second
term is in some sense the most interesting. It leads to the
leading deviations of the entropy function from the nearest-
neighbor Heisenberg model. We find that for the SU(2) case
this deviation in the entropy in second order in β is only
3 percent for U/t = 20 but rises to close to 20 percent for
U/t = 8. This further shows that by U/t = 8 higher-order
terms in t/U cannot be ignored in any quantitative description
of the system.

For SU(3) case, the sixth-order expansions for ln Z are

128

81
β3 t6

U 3
− 2048

81
β2 t6

U 4
+ 175904

2187
β

t6

U 5
. (33)

And, for SU(4) case, the sixth-order expansions for ln Z are

5

4
β3 t6

U 3
− 45

4
β2 t6

U 4
+ 50789

576
β

t6

U 5
. (34)

V. PARTICLE DENSITIES BELOW ONE PARTICLE
PER SITE

Although our expansions are valid for arbitrary particle
densities, we will focus here on particle densities less than
one per site (ρ < 1). At these densities, the strong correlation
limit, or w → 0 limit, corresponds to an effective SU(N)
t-J model. However, we now have hopping terms that

scale as βt and these terms begin to grow at a tem-
perature below T = t . This limits the convergence of
our expansions numerically to the temperature range T >

t . It is known that a high-order series expansion con-
verges reasonably for the SU(2) t-J model at all den-
sities down to much lower temperatures [19,22,23]. But,
keeping the higher powers of t/U coming from the
Hubbard model [24] and developing a high-temperature ex-
pansion for an extended t-J model has, to our knowledge, not
been done even for the SU(2) case, and we leave this for future
work.

From a numerical point of view, there is a simplification
when densities are close to one particle per site. In this case
one can expand properties in powers of δ = 1 − ρ. For a
single site, the partition function (setting w = 0) becomes

z0 = 1 + Nζ . (35)

The bare density is given by

ρ0 = Nζ

1 + Nζ
. (36)

This can be inverted to give

Nζ = ρ0

1 − ρ0
, (37)

and, thus,

z0 = 1

δ0
, (38)

where δ0 = 1 − ρ0 serves as a small parameter. The grand
partition function in zeroth order becomes

ln Z

Ns
= − ln δ0. (39)

But, because z0 goes in the denominator, all higher-order
terms, including the full density, can be expanded in positive
powers of δ0. In leading order δ = 1 − ρ = δ0. Hopping terms
are small by a factor of δ0. However, the leading-order term in
δ0 gets contributions from all powers of βt and it corresponds
to isolated holes in a fluctuating SU(N) background, which is
an important problem in itself [25].

It is straightforward to expand expressions for Xa through
Xe given earlier in powers of δ0 to obtain the free energy of
the doped system. We only give here the leading-order result.
To order t2 and δ0, one obtains:

ln Z

Ns
= − ln δ0 + 2ρβ2t2δ0 + 4(N − 1)

N

βt2

U
(1 − 2δ0). (40)

The second term comes from the hopping of an isolated hole.
Since hopping Hamiltonian is traceless, it contributes first
only to second order in the logarithm of the partition function.
The last term is just the Heisenberg term reduced due to
doping. The asymptotic high-temperature expression for the
t-J model becomes

S

Ns
= −δ ln δ − ρ ln ρ + ρ ln N − 2ρβ2t2δ, (41)

where δ = 1 − ρ. Note that the high-temperature expansion
includes contributions from hole kinetic energy and all back-
ground fluctuations in the spin configuration.
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FIG. 6. Entropy per site in units of the Boltzmann constant kb

for ρ = 0.9 obtained from the full fourth-order perturbation theory
is shown for various N and U values. The N = 2 cases are shown
by solid lines, N = 3 cases by dashed lines and N = 4 cases by
dash-dotted lines. Each style lines from top to bottom at T/t = 5 cor-
respond to U/t = 8, 12, 16, and 20, respectively. High-temperature
limiting behavior of the t-J model entropy in Eq. (41) is shown by
thin dotted lines.

In Fig. 6 and Fig. 7, we show plots of the entropy function
at intermediate to high temperatures for densities of ρ = 0.9
and 0.8, respectively, and several U values of the order of or
larger than the bandwidth for N = 2, 3, 4 from a complete
numerical evaluation of all the weights to fourth order. Plots
for the same U values are shown by the same color. The
results for different N values are qualitatively similar. Except
for the case of U = 8, all the larger U values show a clear
intermediate temperature regime. There is a crossover from
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FIG. 7. Entropy per site in units of the Boltzmann constant kb

for ρ = 0.8 obtained from the full fourth-order perturbation theory
is shown for various N and U values. The N = 2 cases are shown
by solid lines, N = 3 cases by dashed lines and N = 4 cases by
dash-dotted lines. Each style line from top to bottom at T/t = 5 cor-
responds to U/t = 8, 12, 16, and 20, respectively. High-temperature
limiting behavior of the t-J model entropy in Eq. (41) is shown by
the thin dotted lines.

the high-temperature regime at temperatures of order or larger
than U to a strongly correlated regime at temperatures well
below U . The U = 8 case, is at the boundary of developing
such a regime.

This intermediate temperature regime is characterized by
a plateaulike flattening of the entropy curves, which becomes
more and more pronounced as U increases. Furthermore the
entropy function in this regime becomes nearly U indepen-
dent. This indicates that double occupancy is strongly reduced
at these temperatures (w → 0) and it marks the onset of an
effective t-J model. The asymptotic high-temperature expres-
sion for the entropy of the t-J model in Eq. (41) is shown
in the plots by the dotted lines. The energy scale is at first
dominated by t only as the temperatures are high enough that
the effects of J are still negligible. Thus, the entropy becomes
nearly U independent. The exchange J plays an important
role in further reduction of entropy below this plateaulike
region. Hence, going to temperatures below T = t the drop
is most pronounced for smaller U values. This intermediate
temperature regime and crossover could be explored in cold
atom experiments.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have developed a finite-temperature
perturbation theory for the SU(N) Hubbard model for arbi-
trary fugacity ζ = eβμ, in powers of βt , w = exp −βU and
1/(βU ). The expansions at second order are complete for all
N up to O(w6). Up to fourth order, terms are complete for
N = 2, 3, and 4. For higher N we have the full N depen-
dence when w → 0 that is when the temperature is much
less than U . For N = 2, 3, and 4, we have also obtained the
sixth-order expansions in the w → 0 limit. These expansions
are particularly useful when U is of order or larger than the
bandwidth and there is one particle per site. In this case these
expansions are well convergent over a wide temperature range
t2/U � T � 10U , i.e., from a high temperature many times U
down to a temperature of order the exchange constant or the
mean-field ordering temperature.

At low temperatures (w → 0 limit), these expansions for
the Hubbard model turn into a high-temperature expansion
for a generalized Heisenberg model, which contains nearest-
and further-neighbor spin exchanges as well as ring exchange
terms and other high-order processes. In second order of per-
turbation theory, the entropy saturates at low temperatures
to the value of ln N , the full entropy associated with the
one-particle subspace. Fourth- and higher-order terms contain
development of spin correlations and consequent further re-
ductions in entropy of the system within the singly occupied
subspace.

One interesting finding of our work is that only for U > 10,
there is a well-defined high-temperature limit of the spin
model with an entropy of ln N [ln 2 for the SU(2) model].
When U = 8, there is no such regime. At temperatures be-
low T = t , the highest temperatures at which the spin model
becomes effective, the entropy is already lower than ln 2. In
this case, there is no clear separation in scales associated with
t and J .

For particle density per site ρ less than unity, these expan-
sions turn into a high-temperature expansion for a generalized
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t-J model when w → 0. Because the expansions now contain
various powers of βt , without any inverse powers of U , the
naive convergence of the expansion is set by T = t rather
than T = t2/U . High-order series expansions [19,22,23] are
needed to go down to temperatures of order and below J .

In the temperature regime T > t , where the expansions
converge well for ρ less than unity, one can already see a
crossover to a strongly correlated regime (T 
 U ) from a
high-temperature regime (T of order or larger than U ). This
regime is characterized by a flattening of the entropy func-
tion as a function of temperature. Furthermore, the entropy
function becomes nearly U independent for large U as the ex-
change energy scale J is still negligible at these temperatures.

The study of this crossover may be accessible to cold atom
experiments.

We hope our work will serve as a benchmark for other
numerical studies as well as for experiments on cold atom
systems. The expansions can also be used to study other Mott
phases at integer ρ values for N greater than 2. These will be
discussed in a future work.
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