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Mean field versus random-phase approximation calculation of the energy
of an impurity immersed in a spin-1/2 superfluid
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In this article we calculate the energy of an impurity weakly coupled to a spin-1/2 fermionic superfluid. We
show that the divergences resulting from three-body physics can only be cured using a proper description of the
excitations of the many-body background. We highlight the crucial role played by interactions between quasipar-
ticles which are overlooked within Bardeen-Cooper-Schrieffer mean-field theory of fermionic superfluidity. By
contrast, we prove that their addition using the random phase approximation allows us to regularize the energy
of the impurity. Finally, we show that these beyond mean-field corrections should be observable by the analysis
of the frequency shift of the impurity center-of-mass oscillations in an external confining potential.
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I. INTRODUCTION AND MAIN RESULTS

The concept of quasiparticle provides a simple and pow-
erful framework for the study of the low-energy physics of
complex many-body systems. In practice, a quasiparticle can
be described as a free particle dressed by a cloud of excitations
of the surrounding many-body medium leading to a renormal-
ization of its physical properties, and most notably its mass.

This mechanism was first suggested by Landau and Pekar
to describe the coupling of electrons to the vibration modes of
a crystal lattice (the so-called polaron problem) [1] and since
then has been generalized to a host of physical situations, from
solid-state physics, where polarons play a crucial role in the
study of photovoltaic materials [2], to nuclear physics [3].

In recent years, mixtures of ultracold atoms have provided
an ideal playground for the study of polaron physics [4].
In this context, two simple systems were studied. First, an
analog for Landau-Pekar polaron was obtained by immersing
an impurity in a weakly interacting Bose-Einstein condensate
(BEC)—the so-called Bose polaron [5–7]. In this case, the
Bogoliubov spectrum describing the low-lying excitations of
the BEC possesses a structure that is similar to the phonons of
a crystal. Another simple situation was obtained by consider-
ing the case of a particle swimming in a sea of noninteracting
spin-polarized fermions, the so-called Fermi polaron [8–14]
that was also realized in exciton-polariton systems [15].

A generalization of these two polaronic model systems is
provided by the study of an impurity immersed in an ensemble
of attractive spin-1/2 fermions [16–18]. When the attraction
between the particles of the medium is varied, the ground
state of the many-body background evolves from an ideal gas
of fermions to a Bose-Einstein condensate of strongly bound
dimers, thus realizing the celebrated BEC-BCS crossover
[19]. As a consequence, the state describing the impurity
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immersed in a fermionic superfluid interpolates between the
Fermi and Bose polarons. While in reported experiments, the
impurity is weakly coupled to the medium and most can
be captured quantitatively by treating the impurity-fermion
interaction within a mean-field approximation, a theoretical
study of beyond-mean-field effects was initiated in [20–22]
that highlighted the role of three-body interactions. In par-
ticular, Ref. [22] showed that the leading order corrections
were related to the compressibility of the background medium
after a regularization of UV divergences made possible by the
introduction of explicit three-body interactions [23].

Building on this work, we show here that a precise de-
scription of the properties of the background is required for
the regularization procedure used in [22] to be effective.
Indeed, describing the background superfluid within BCS
approximation that considers only pair-breaking excitations
is incompatible with this renormalization scheme. To obtain
a finite beyond-mean-field correction, we need to take into
account collective modes of the system, and for this we work
within the framework of the random phase approximation
(RPA) [24–26] that allows us to make quantitative predictions
for the energy of the impurity.

More precisely, consider an impurity of mass mi immersed
in a many-body ensemble of spin-1/2 fermions of mass mf

and with balanced spin populations. a and a′ are, respectively,
the fermion-fermion and impurity-fermion scattering lengths
(the latter being assumed to be spin independent). We note
|α〉 the eigenstates of the medium in the absence of impu-
rity, and Eα the corresponding eigenenergies. By convention,
α = 0 corresponds to the ground state. For a total density n
of fermions, the state of the many-body background is char-
acterized by the dimensionless parameter 1/kF a, where kF =
(3π2n)1/3 is the Fermi wave vector, the limits 1/kF a → −∞
(resp. +∞) corresponding, respectively, to the weakly (resp.
strongly) attractive regimes.

In the quasiparticle picture, the low-lying energy of an
impurity of momentum h̄q takes the form of a free particle
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dispersion relation,

E (q) = E0 + �E + h̄2q2

2m∗ + o(q2), (1)

where �E is the interaction energy of the impurity with the
many-body ensemble and m∗ is its effective mass.

Using perturbation theory, we have at second order in
impurity-fermion coupling [22],

1

m∗ = 1

mi

[
1 − 4g′2n

3

∫
d3q

(2π )3
ε(i)

q χ3
(
q, ε(i)

q

)]
, (2)

�E = g′n
[

1 + g′
∫

d3q
(2π )3

(
1

ε
(r)
q

− χ1
(
q, ε(i)

q

))]
. (3)

Here, g′ = 2π h̄2a′/mr is the coupling constant of the
impurity-medium two-body contact interaction, mr is the re-
duced mass of an impurity-fermion pair, ε(α=i,r)

q = h̄2q2/2mα ,
and

χp(q, E ) = 1

N

∑
α

|〈α|n̂q|0〉|2
(E + Eα − E0)p

= (−1)p−1

(p − 1)!

∂ p−1χ1

∂E p−1
.

(4)

Here n̂q = ∑
k,σ c†

k,σ ck+q,σ , where ck,σ is the annihilation
operator of a fermion of momentum k and spin σ , and N is
the total number of fermions. χp plays a central role in the
following and we note that it depends only on the proper-
ties of the excitation spectrum of the many-body background
and can be related to the density-density response function
(see Sec. II).

n̂q is an operator that transfers a momentum −h̄q to the
many-body system. For large q, we can assume that it couples
the ground state to free particle excitations for which Eα −
E0 � h̄2q2/2mf . We therefore have

χp(q, ε(i)
q ) ∼

q→∞
1

N

∑
α

|〈α|n̂q|0〉|2(
ε

(r)
q
)p ∼ 1(

ε
(r)
q
)p . (5)

As a consequence, we readily conclude that the sum ap-
pearing in the expression of the effective mass [Eq. (2)] is
convergent and does not need any regularization. By contrast,
the case of the interaction energy is more involved. Indeed,
although χ1 and 1/ε(r) compensate at leading order in Eq. (3),
it was shown in [22] that the sum is log divergent as a con-
sequence of the following large momentum behavior of χ1,

χ1(q, ε(i)
q ) =

q→∞
1

ε
(r)
q

[
1 − π2κ (η)

mf

mr

C2

Nq
+ · · ·

]
, (6)

where C2 is Tan’s contact parameter of the many-body back-
ground [27], η = mi/mf , and

κ (η) =
√

η3(η + 2)

2π3(η + 1)2
− η

2π3
arctan

(
1√

η(η + 2)

)
− 4

π3

√
η

η + 2
arctan

(√
η

η + 2

)2

. (7)

Following [23], this divergence can be regularized using
an effective three-body interaction leading to the following

regularized expression for the polaron energy shift:

�E = g′n
[

1 + kF a′F
(

1

kF a

)
− 2π

mf

mr
κ (η)

a′C2

N
ln(kF R3) + · · ·

]
, (8)

where R3 is an effective length characterizing the three-body
scattering amplitude (R3/a′ � 1.5 for the Lithium 6/Lithium
7 mixture used in [16]) and

F

(
1

kF a

)
=

�→∞
2π

kF

[
h̄2

mr

∫
q<�

d3q
(2π )3

(
1

ε
(r)
q

− χ1
(
q, ε(i)

q

))
− mf

mr
κ (η)

C2

N
ln(�/kF )

]
. (9)

To calculate χp, a first approach is to use the extension
of the BCS theory—a mean-field theory—to the whole BEC-
BCS crossover [22]. In this case, we readily obtain

χMF, p(q, E ) = 1

n

∫
d3k

(2π )3

|ukvk+q + vkuk+q|2
(E + Ek + Ek+q)p , (10)

where (uk, vk ) are the amplitudes of the Bogoliubov modes
and Ek their energy [28].

However, this type of approximation scheme is restricted
to the pair-breaking excitation sector and does not account for
collective modes (phonons) that are dominant on the BEC side
of the crossover. A well-known consequence of this peculiar-
ity is, for instance, that the compressibility calculated using
BCS theory does not satisfy the f-sum rule. In our case, this
leads to an underestimated value of κ [the third term appearing
in Eq. (7) is missing; see Sec. III] which leads to a UV
divergence of F when � → ∞ and prevents the regularization
of the energy of the impurity.

Here, we solve this issue using the random phase ap-
proximation (RPA) that incorporates quasiparticle interactions
and recovers the collective modes of the system (known as
Bogoliubov-Anderson’s modes in this context) [24,25,29]. In
this framework, we will show that χ1 satisfies Eq. (6), with C2

being given by BCS mean-field value C2/N = m2
f �

2/n (here
� is the superconducting gap; see Sec. III). This allows us to
regularize the polaron energy, leading to a universal function
F displayed in Fig. 1. The numerical values obtained using
RPA coincide with the asymptotic behaviors predicted in [22]
for the BEC and BCS limits (1/kF a → ±∞, orange solid
lines): On the weakly attractive side, F converges towards
the finite limit F (−∞) = 3/2π that can be calculated analyt-
ically for an ideal Fermi gas, while on the far BEC limit, we
recover the asymptotic expansion imposed by the matching
between the polaron energy with the mean-field interaction of
an impurity with a Bose-Einstein condensate of deeply bound
dimers:

F

(
1

kF a

)
=

a→0+
8π2κ (η)

mf

mr

ln (kF a) + Cad

kF a
+ · · · , (11)

where Cad comes from the analysis of the three-body scatter-
ing problem and depends only on the mass ratio η. Note that
the resummation scheme used in [20] also yields the correct
value for κ and is therefore compatible with the regularization
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FIG. 1. Values of F (polaron energy) and G1 (polaron mass)
when the fermion-fermion interaction strength is varied. (Turquoise
triangles) Numerical values using RPA for F (1/kF a) (upper panel)
and Gη (lower panel) with η = 1. The solid lines correspond to the
BCS and BEC asymptotic limits, and in the lower panel the purple
squares correspond to the mean-field prediction accounting only for
pair-breaking excitations.

procedure described previously. However this work incorpo-
rates quasiparticle interactions using only a scalar response
function while the RPA considers a more general 3 × 3 re-
sponse matrix that describes the coupling to both density and
order parameter—see Sec. II below.

Likewise, RPA can be used to calculate the second-order
correction to the effective mass. Using dimensional analysis,
we have

�m

mi
= g′2n2

E2
F

Gη(1/kF a). (12)

The plot of G1 is displayed in Fig. 1, both within RPA and
mean-field approximations. Both approaches coincide in the
BCS limit where the excitation spectrum is dominated by pair-
breaking excitations and where they asymptotically connect
with the ideal gas prediction (orange line). In the BEC limit,
the impurity is mostly dressed by a cloud of phonons. The
BCS predictions therefore strongly underestimate the effec-
tive mass of the quasiparticle and RPA has to be used to obtain
a quantitatively correct result. We see that in this regime
the RPA prediction coincides with a calculation where the

superfluid is described by a weakly repulsive Bose-Einstein
condensate of dimers whose low-lying excitation spectrum is
dominated by Bogoliubov excitations (orange line; see also
Sec. IV).

II. RESPONSE FUNCTIONS IN THE MEAN-FIELD
AND IN THE RANDOM-PHASE APPROXIMATIONS

We now turn to a more detailed derivation of the results
sketched in the previous section. χp is the central quantity
giving access to both the energy and the effective mass of the
polaron. To calculate it, we first note that it can be related to
the density-density response of the system χR. More precisely,
let’s consider the response of the superfluid to a perturbating
potential V given by

V =
∫

d3r(̃uei(q·r−ωt ) + c.c.)̂n(r).

In the linear regime, the density response can be written as
〈n̂q〉 = 
ũχRe−iωt , where, using standard perturbation theory,

χR(q, ω) = 1




∑
α �=0

[
|〈α|n̂−q|0〉|2

ω + i0+ − (Eα − E0)

− |〈α|n̂q|0〉|2
ω + i0+ + Eα − E0

]
, (13)

and 
 is a quantization volume ensuring that χR is an inten-
sive quantity.

We note that χ1 is proportional to the second term of χR,
and is associated with poles located on the negative part of the
real axis. From this remark, we deduce that for E > 0,

χ1(q, E ) = 1

n

∫ +∞

0
dω′ 1

E + ω′

[
− 1

π
Im(χR(−q, ω′))

]
.

(14)

The expression of χp for arbitrary p is then obtained by dif-
ferentiation with respect to E that yields

χp(q, E ) = 1

n

∫ +∞

0
dω′ 1

(E + ω′)p

[
− 1

π
Im(χR(−q, ω′))

]
.

(15)

We now turn to actual calculation of χR of an ensemble
of fermions with zero-range interactions characterized by a
scattering length a. The Hamiltonian describing the system is
given by

H =
∫

d3(r)
∑
σ=�

ψ†
σ (r)

(
− h̄2

2mf
∇2 − μ

)
ψ†

σ (r)

+ g0

∫
d3rψ†

↑(r)ψ†
↓(r)ψ↓(r)ψ↑(r). (16)

Here μ is the chemical potential and g0 is the bare coupling
constant that we can relate to g = 4π h̄2a/mf using Lippman-
Schwinger’s equation:

1

g0
= 1

g
− 1




∑
k

1

2ε
(f)
k

. (17)
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A first approach to calculate the response of the system is
to consider a mean-field approximation where we replace H
by a quadratic Hamiltonian,

H0[U,�] =
∫

d3(r)
∑
σ=�

ψ†
σ (r)

(
− h̄2

2mf
∇2 − μ + U (r)

)

×ψ†
σ (r) +

∫
d3r(�(r)ψ†

↑(r)ψ†
↓(r)

+�∗(r)ψ↓(r)ψ↑(r)). (18)

The optimal values for the Hartree potential U and the or-
der parameter � are obtained variationally [28] and we have
U = g0〈ψ†

↑ψ↑(r)〉 = g0〈ψ†
↓ψ↓(r)〉 (we consider here a spin-

balanced system) and �(r) = g0〈ψ↓(r)ψ↑(r)〉. The spectrum
of the system can then be calculated using a standard self-
consistent Bogoliubov transformation of the field operators
and we note �0 and U0 the ground-state values of � and U .

We can now calculate χR by considering the response of
the fermionic superfluid to the following perturbation:

Hdrive[u, φ] =
∫

d3r u(r, t )[ψ†
↑(r)ψ↑(r) + ψ

†
↓(r)ψ↓(r)]

+ [φ(r, t )ψ†
↑(r)ψ†

↓(r) + H.c.], (19)

where u and φ are driving fields coupling, respectively, to the
density and the order parameter of the system.

We first consider the response of the fermionic super-
fluid by describing its dynamics using the Hamiltonian
H0[U0,�0] + Hdrive, where we assume that the expressions
of the Hartree potential and of the order parameter appearing
in H are not affected by the perturbation. As a consequence,
this first approach restricts the response of the system to the
pair-breaking sector.

Following [26], we write n = n0 + δn and � = |�|eiθ �
�0 + δ|�| + i�0θ , where we chose the phase of the order
parameter such that �0 is a real number. Moreover, for
any real physical quantity A we write A(r, t ) = Ãei(k.r−ωt ) +
Ã∗e−i(k.r−ωt ).

In the framework of linear response theory, the response of
the system in terms of order parameter and density is related
to the drive fields u, φ+ = Re(φ) and φ− = Im(φ) by a 3-by-3
correlation matrix M(q, ω),⎛⎜⎝�0θ̃/g0

δ|̃�|/g0

δñ

⎞⎟⎠ =
⎛⎝M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞⎠
⎛⎜⎝φ̃−

φ̃+
2̃u

⎞⎟⎠, (20)

where the components Mi j can be calculated explicitly as a
function of the Bogoliubov amplitudes (uk, vk ) [26,30]. In
particular, we note that M33 corresponds to the density-density
response of the superfluid. We have indeed χR

MF = 2M33 and
applying Eq. (14) to χR

MF yields the mean-field Eq. (10) for
χp.

The perturbation of the order parameter and of the Hartree
potential contradicts the assumption that U and � are not
modified in the expression of H0. In the random-phase ap-
proximation, we solve this contradiction by considering a self-
consistent response of the system to Hdrive. In other words, we
now describe the system by HRPA = H0[U + δU,� + δ�] +
Hdrive[u, φ].

We note that, by construction, H0[U0 + δU,�0 + δ�] +
Hdrive[u, φ] = H0[U0,�0] + Hdrive[u + δU, φ + δ�], from
which we conclude that the response of the system can be
described using the previous calculation, but considering now
an effective self-consistent drive defined by⎛⎜⎝φ̃−

φ̃+
2̃u

⎞⎟⎠
eff

=

⎛⎜⎝φ̃−
φ̃+
2̃u

⎞⎟⎠+

⎛⎜⎝�0θ̃

δ|�̃|
g0δñ

⎞⎟⎠. (21)

Using the non-self-consistent approach, we have⎛⎜⎝�0θ̃

δ|�̃|
g0δñ

⎞⎟⎠ = g0M

⎛⎜⎝φ̃−
φ̃+
2̃u

⎞⎟⎠
eff

, (22)

hence, using the definition of the effective driving fields,⎛⎜⎝�0θ̃

δ|�̃|
g0δñ

⎞⎟⎠ = g0MRPA

⎛⎜⎝φ̃−
φ̃+
2̃u

⎞⎟⎠, (23)

with

MRPA = M

I − g0M
. (24)

The compressibility of the system corresponds to χR
RPA =

2(MRPA)33. In the zero-range limit where g0 → 0, the diagonal
terms Mii with i = 1, 2 need to be renormalized to obtain finite
values. Introducing M̃ii = Mii − 1/g0, the compressibility can
be written as a sum of a mean-field term and an interaction-
induced term proportional to �2 [25]:

χR
RPA = 2

∣∣∣∣∣∣
M̃11 M12 M13

M21 M̃22 M23

M31 M32 M33

∣∣∣∣∣∣∣∣∣∣M̃11 M12

M21 M̃22

∣∣∣∣ = χR
MF + χR

int, (25)

with

χR
int = 2

−M23M32M̃11 − M13M31M̃22 + 2M12M23M31

M̃11M̃22 − M12M21
. (26)

We note that all matrix elements being calculated in the
BCS superfluid, their imaginary part is nonzero only if the fre-
quency ω is greater than 2�; however, the zeros of the
denominator of the beyond-mean-field term yield a nonzero
imaginary part for frequencies below 2�. In other terms, in
addition to the contribution of the pair-breaking continuum,
the RPA gives us both the dispersion relation of the collective
modes and their contribution to the density-density response
function. These collective modes were shown to turn into
the usual Bogoliubov condensate modes in the BEC limit
[25], and they become negligible in the BCS limit due to the
exponential decrease of the gap.

We calculate numerically χR and χp using the approach
laid out in [26], At large q, both the mean-field and RPA
results behave as 1/q2 and we display in Fig. 2 the sub-
leading contribution for a unitary Fermi gas. As discussed
in the introduction, we observe that the mean-field prediction
underestimates the value of χ1 while the RPA approach yields
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FIG. 2. Log-log representation of the mean-field (purple squares)
and the RPA (turquoise triangles) numerical absolute values of the
subdominant terms in χ1(q, εi

q ) rescaled by the dominant O(q−2)
term for a mass ration η = 1. The lines represent the 1/q3 asymptotic
behaviors for mean-field (purple dashed) and RPA (dotted turquoise)
associated with their respective values of κ [Eqs. (31) and (7)]. We
see that the numerics agree with the predicted asymptotic behaviors.
We see that, contrary to the MF result, RPA satisfies the asymptotic
behavior required by renormalization of the polaron energy.

the asymptotic behavior given in Eq. (6) and is therefore com-
patible with a renormalization using three-body collisions.

III. HIGH-q BEHAVIOR OF χ1(q, q2/(2mi ))

Here, we prove analytically that, as revealed numerically
in the previous section, χ1 follows the asymptotic behavior
(6). In Sec. III A, we first prove that the dominant O(q−2)
term comes from χR

MF, the mean-field contribution to the
density-density response function and that the mean-field con-
tribution gives a O(q−3) term in (6), with a constant κMF

given by the first two terms in (7). Finally, in Sec. III B,
we prove that χR

int, the non-mean-field contribution to the
density-density response function gives a O(q−3) contribution
to χ1(q, q2/(2mi )) and the third term in Eq. (7) for κ .

A. Subdominant O(q−3) contribution: MF term

As mentioned in the first section, the 1/q2 behavior of χ1

originates from the high-energy response of the system that
corresponds to free particle excitations. As a consequence, the
leading UV behavior of χ is fully contained in the BCS mean-
field term χMF [see Eqs. (5) and (6)]. In order to reveal the
subleading q−3 dependence, we subtract the term of order q−2

to χMF, 1 and we have

χMF, 1

(
q,

q2

2mi

)
− 2 mr

q2

=
∫

d3k

(2π )3

[
(E+E− − ξ+ξ− + �2)

2E+E−
( q2

2mi
+ E+ + E−

)
− 2mr

q2

(
E+ − ξ+

2E+
+ E− − ξ−

2E−

)]
1

n
, (27)

where we have used the notations E± = Ek± with k± = k ±
q/2 and ξ± = ξk± and Ek =

√
ξ 2

k + �2, ξk = k2/(2mf ) − μ.
To obtain Eq. (27), we have furthermore used that n/2 =∫

d3k
(2π )3 ( E+−ξ+

2E+
) = ∫

d3k
(2π )3 ( E−−ξ−

2E−
). In the q → ∞ limit, we define

a cutoff � such that

q � � � klow,

where klow is a low-energy wave-vector scale defined by
klow = max (

√
2mf�,

√
2mf |μ|). In Appendix, we show that

the contribution from the domains {k± < �} (27) is negligible
at leading order. In the domain {k± > �}, we can replace at
lowest order (E± − ξ±)/E± by 2m2

f �
2/k4

±, E+E− − ξ+ξ− +
�2 by 1

2�2( k2
+

k2−
+ k2

−
k2+

+ 2) and E± by k2
±/(2mf ) in the denom-

inators. The only remaining scale is q and we rescale k by q.
It is easily seen that the integral converges in +∞ and near
k̃± = 0, due to the first term in the integrand of (27) [31]. The
contribution of order q−3 is

1

n

mr m2
f �2

q3
JMF(η), (28)

where

JMF(η) =
∫

d3k

(2π )3

[ (
1

k2−
+ 1

k2+

)2

1
1+η

+ η

1+η

(
2k2 + 1

2

) − 1

k4−
− 1

k4+

]
.

(29)

JMF can be evaluated analytically and we find

JMF(η) = π2 η + 1

η

(
η arctan

1√
η(η + 2)

−
√

η3(η + 2)

(η + 1)2

)
.

If we add the contributions of order q−2 and q−3, we find
the following high-q expansion for χMF, 1(q,

q2

2mi
),

χMF, 1

(
q,

q2

2mi

)
= 2 mr

q2

(
1 − π2 κMF(η)

mf

mr

(
m2

f �2

nq

))
,

+ o(q−3) (30)

where

κMF(η) =
√

η3(η + 2)

2π3(η + 1)2
− η

2π3
arctan

1√
η(η + 2)

. (31)

In this expression, m2
f �

2 is Tan’s contact per unit volume

C2/
 in a mean-field BCS theory. The ratio m2
f �2

n is therefore
equal to C2/N , where N is the total (summed on spins) number
of particles. We recover a result similar to Eq. (6), but with
κMF instead of the full κ . The non-MF part will complete the
value of κ , as we will see in the next section.

B. Subdominant O(q−3) contribution: non-MF term

We find the high-q behavior of the nonmean-field contri-
bution of the response function χR

int (q, ω) in (26) by taking the
ratio ω̃ = ω/(q2/(2mf )) fixed. This means that in the q → ∞
limit, the frequency ω also tends to infinity. We find that in
this regime, M̃11(q, ω) ∼ mf q f11(ω̃ + i 0+), M̃22(q, ω) ∼
mf q f22(ω̃ + i 0+), M12(q, ω) ∼ (−i)mf q f12(ω̃ + i 0+),
M13(q, ω) ∼ (−i/2)(� m2

f /q) f13(ω̃ + i 0+), and
M23(q, ω) ∼ (1/2)(� m2

f /q) f23(ω̃ + i 0+). These scaling
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behaviors are easily found using the expressions of the
�i j’s of [26] and the correspondence between �i j and
Mi j . Let us consider, for instance, M23. From Eqs. (36)

and (37) of [26], we have M23(q, ω) = − 1
2

∫
d3k

(2π )3

ε+
k qw+

k qW −
k q

ω2−(ε+
k q )2 ,

with ε+
k q = E+ + E− and w+

k qW −
k q = �

2 E+ E−
(ξ+ + ξ−). We

separate the k space into two parts: k < � and k > �, where
the cutoff � fulfills klow � � � q. For k < �, at lowest
order, the integrand is of order �/(q2/mf )2. Indeed, we can
neglect k compared to q and � and μ compared to q2/mf .
The integration gives a volume factor of the order �3 and the
contribution to M23 is of order ��3/(q2/mf )2. Compared to
the q−1 contribution, of the k > � domain this is negligible.
Indeed, we find a ratio of order �3/q3 � 1. In the k > �

domain, we rescale k by q and we can neglect � and μ

in ξ± and E±. The integration volume gives a factor q3

and the integrand a factor �/(q2/(2mf ))2. This gives a q−3

dependence. We find f23 = −2
∫

d3k
(2π )3

((k+ )−2+(k− )−2 )(2k2+ 1
2 )

(ω̃+i0+ )2−(2k2+ 1
2 )2 . In

the same manner, we find f13 = −2
∫

d3k
(2π )3

((k+ )−2+(k− )−2 )(ω̃)
(ω̃+i0+ )2−(2k2+ 1

2 )2 ,

f12 = 2
∫

d3k
(2π )3

ω̃

(ω̃+i0+ )2−(2k2+ 1
2 )2 , and f11 = f22 =

2
∫

d3k
(2π )3 (

2k2+ 1
2

(ω̃+i0+ )2−(2k2+ 1
2 )2 + 1

2k2 ). If we use the asymptotic

expressions of the Mi j’s in (26), we find χR
int ∼

�2 m3
f

q3
2 f12 f23 f13− f11( f 2

13+ f 2
23 )

( f11+ f12 )( f11− f12 ) .
Finally, we use (14) to determine the large q behavior of

χ1(q, q2/(2mi )).

χ1

(
q,

q2

2 mi

)
∼ �2m3

n q3
4
√

2Re

(∫ +∞

1
2

X 2
+

(ω̃ + 1
η

)
√

ω̃ − 1
2

dω̃

)
,

where X+ = f23 + f13 = −2
∫

d3k
(2π )3

((k+ )−2+(k− )−2 )
(ω̃+i0+ )−(2k2+ 1

2 )
. In the last

step, we use the integral expression for X+ and write X 2
+ as

a double integral on wave vectors and exchange the order of
integrations (we integrate on ω̃ first). After integration on the
frequency ω̃, the integrals on the wave vectors factorize. The
integral we need to calculate is

∫
d3k

(2π )3
((k+ )−2+(k− )−2 )

2 k2+ 1
2 + 1

η

. It is found

to be equal to 1
2π

arctan
√

η

η+2 . As a result we find for the high-

q behavior of the non-mean-field part of χ1,

χ1,non−MF

(
q,

q2

2mi

)
∼ (mf�)2 mf

n

8

π

√
η

η + 2

×
(

arctan
√

η

η + 2

)2 1

q3
. (32)

As mentioned before, (mf�)2 is Tan’s contact per unit vol-
ume, and we see from (6) that the non-mean-field contribution
gives the third contribution to κ in (7).

IV. BCS AND BEC LIMITS FOR THE EFFECTIVE MASS

The expressions of χR found using RPA and the mean-field
approximations can also be used to obtain the effective mass
of the polaron. As explained in the end of Sec. I, we can write
the second-order perturbation to the effective mass m∗ in units
of the impurity mass mi: It takes the form of a mean-field
energy in units of the Fermi energy g′n/EF squared times

a dimensionless function Gη(1/kF a) [Eq. (12)]. Along the
crossover, Eq. (2) gives us a relation between the response
function χ3(q, ε(i)

q ) and the correction to the effective mass
Gη:

Gη = 4

3

E2
F

n

∫
d3q

(2π )3
ε(i)

q χ3(q, ε(i)
q ). (33)

As mentioned in the introductory part, we see in Fig. 1 that
the mean-field and RPA results are consistent in the BCS limit
(that is, when 1/kF a tends to −∞). In this regime, the bath
is indeed made of two noninteracting Fermi seas of opposite
spins and its elementary excitations are particle-hole pairs
which are correctly captured within the BCS approximation,
as well as its RPA extension. χ3 is then given by

χ3(q, E ) = 2

n

∫
k<kF|k+q|>kF

d3k

(2π )3

1

(E + q2/2mf + k · q/mf )3 ,

(34)

In particular, in the equal-mass case, an analytical calculation
yields G1(−∞) = 3/8 that coincides with the numerical re-
sults displayed in Fig. 1.

In the opposite limit, 1/(kF a) → +∞, the mean-field ap-
proximation strongly underestimates the correction to the
effective mass. Indeed, in this regime the fermions become
so tightly bound that Cooper pairs lose their internal degrees
of freedom, and we can treat the system as a condensate of
composite bosons [32,33]. Pair-breaking excitations are there-
fore suppressed and we can apply Eq. (2) to an ensemble of
bosons, provided we replace χ3 by the response function χb

3 of
the condensate, calculated within the mean-field Bogoliubov
approximation. The fermionic physical parameters n, mf , a,
and μ are replaced by their bosonic equivalents: the boson
density nb = n/2, the boson mass mb = 2mf , and the boson-
boson scattering length (in the framework of BCS theory)
abb = 2a which yields us the bosonic chemical potential μb =
4πabb

mb
nb = gn/2. We also need to replace the impurity-fermion

coupling constant g′ by its impurity-boson counterpart given
by Born’s approximation g′

b = 2g′. Equation (2) transforms
into

1

m∗ = 1

mi

[
1 − 8g′2n

3

∫
d3q

(2π )3
ε(i)

q χb
3

(
q, ε(i)

q

)]
, (35)

with

χb
3 (q, E ) =

∣∣ub
q + vb

q

∣∣2(
E + Eb

q

)3 , (36)

with ub
q and vb

q being the amplitudes of the Bogoliubov modes
of the condensate and Eb

q their energy.
In this integral, energies and wave vectors can be rescaled

by the chemical potential and the healing length of the bosonic
dimers. We then readily find that G1(1/kF a) scales like the
square root of 1/kF a with

Gη

(
1

kF a

)
=

a→0+

√
6π I (η)

√
1

kF a
, (37)
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where

I (η) =
+∞∫
0

q4dq

η

√√√√ q2

2
q2

2 + 1

(
q2

η
+
√

q2

2

(
q2

2
+ 1

))−3

,(38)

with I (1) � 0.265. As shown in Fig. 1, this asymptotic be-
havior coincides with the numerical results based on the RPA
approximation.

V. CONCLUSION AND OUTLOOK

A possible way to test this prediction for the energy shift
�E is to use radio-frequency spectroscopy which provided
a very sensitive probe for the study of Fermi [12,13,34,35]
and Bose [5,6,36] polarons, However, as described below,
signatures of beyond-mean-field effects might be already ob-
servable in the measurement of the oscillation frequency of an
impurity of 7Li inside a superfluid of 6Li reported in [16].

To model this experiment, we assume that the impurity and
the background superfluid are trapped by the same potential
V . We can then describe the semiclassical dynamics of the
polaron using the Hamiltonian,

h(r, p) = p2

2m∗ + V (r) + �E (n(r)). (39)

Within LDA, the density profile of the fermionic back-
ground can be obtained from its equation of state n(μ) using
the prescription μ(r) = μ0 − V (r), where μ0 is the global
chemical potential of the fermions.

For vanishingly small amplitude oscillations of the impu-
rity, we have V (r) � μ0 and the energy of the quasiparticle
can be approximated by

h(r, p) = �E (n0) + p2

2m∗ +
(

1 + d�E

dn

dn

dμ

∣∣∣∣
0

)
V (r), (40)

where the subscript 0 means that the quantity is evaluated at
the center of the fermionic cloud.

If V is a harmonic potential characterized by a frequency
ω, the effective oscillation frequency of the impurity is now

ω∗ = ω

√
mi

m∗

(
1 + d�E

dn

dn

dμ

∣∣∣∣
0

)
. (41)

If we treat the impurity-bath interaction in a mean-field
approximation (in other terms, if we restrain ourselves to the
first-order term in the perturbative expansions in g′), the rela-
tive frequency correction (ω∗(1) − ω)/ω is given by g′

2
dn
dμ

|0.
Consequently, if the beyond-mean-field relative frequency

correction β is small, we can write it as the sum of the
contributions of the second-order term in g′ in the ground-state
energy and in the effective mass, respectively:

δω/ω − δω(1)/ω

δω(1)/ω
≈ β

(2)
GS + β

(2)
m∗ . (42)

At unitarity, we get

δω(1)

ω
= g′mfkF

2h̄2π2ξ
, (43)

and

β
(2)
GS = 4

3
kF a′

[
F (0) − 2πκ (η)

mf

mr

C2

NkF

(
ln(kF R3) + 1

4

)]
.

(44)

We will here compute the value of these second-order fre-
quency corrections in the conditions reported in [16], namely
kF a′ = 10−2, R3 = 1.50a′, and mi = 7

6 mf . Knowing that at
unitarity the equation of state of the superfluid is the same
as the one of an ideal Fermi gas up to a multiplying constant
ξ = 0.376 [19,37–42], we obtain that the second term in the
above expression (which we may call the three-body term)
gives a relative correction about −4.7%, whereas the two-
body term (the one involving F ) can be estimated to be around
1.1%.

Along the crossover, the correction due to the effective
mass β

(2)
m∗ reads

β
(2)
m∗ = −ξGη(0)

mf

mr

kF a′

9π
, (45)

which would give us a value of about −0.02%.
All these terms being second order in g′, their relative

values at unitarity are fixed: The effective mass will always
(in the RPA and as long as g′ is small) have an effect on the
frequency correction that is two orders of magnitude smaller
than the two-body term of the ground-state energy and about
250 times smaller than the three-body term.

Interestingly, Ref. [16] reported an ∼14% upshift of the
mean-field prediction with respect to the measured oscillation
frequency at unitarity. This discrepancy is slightly beyond the
10% experimental error bar and the beyond-mean-field cor-
rection calculated in the present paper lowers this difference
to only ∼10% that is now within the experimental uncertainty.

In this estimate of the beyond-mean-field contribution to
the frequency shift, we have neglected the drag between the
two isotopes due to Andreev-Bashkin’s effect [43] that was
predicted first in nuclear physics and has recently been the
focus of several theoretical studies in the context of ultracold
gases [44–46]. The study of the interplay between these two
effects is beyond the scope of this article and will be addressed
in future work.
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APPENDIX: JUSTIFICATION OF NEGLECTED TERMS
IN THE HIGH-q LIMIT OF χ1(q, q2/(2 mi ))

We now briefly justify why the integrations in domains
{k− < �} and {k+ < �} in (27) are negligible at this
order. In the domain {k− < �}, we take the limit
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q → +∞ and keep k− finite. We easily find E+−ξ+
4E+

=
m2

f �
2

2 q4 + O(q−5), E+E−−ξ+ξ−+�2

2E+E−
= E−−ξ−

2E−
+ �2

E−ξ+
+ O(ξ−3

+ ),
1
ξ+

= 2mf
q2 (1 − 2q̂·k−

q + 4(q̂·k− )2−2mf ξ−
q2 + O(q−3)), 1

q2

2mi
+E−+E+

=
2mr
q2 (1 − 2mr

mf

q̂·k−
q + 4( mr

mf
)2 (q̂·k− )2−2mr (ξ−+E− )

q2 + O(q−3)). Using
these results, we find for the expansion of the integrand
of (27) in the domain 1 (the terms of order q−2

compensate)
A

q3
+ B

q4
+ o(q−5),

where A= − 1
n ( 2m2

r
mf

(E−−ξ− )
E−

q̂ · k−) and B= 2mr
n ( (E−−ξ− )

2E−
(4( mr

mf
)2

(q̂ · k−)2 − 2mr (ξ− + E−)) + mf �
2

E−
).

After angular integration, the first term of order q−3

vanishes. The term of order q−4 behaves as k−2
− if k− �

klow. After integration on k− (k− < �), it gives a con-
tribution of order �/q4. Compared to the term of order
q−3, we find a ratio �/q. Therefore it is negligible. In
the same way, we find the integration in domain 2 is
negligible.
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