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Discrete scale-invariant boson-fermion duality in one dimension
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We introduce models of one-dimensional n(� 3)-body problems that undergo phase transition from a continu-
ous scale-invariant phase to a discrete scale-invariant phase. In this paper, we focus on identical spinless particles
that interact only through two-body contacts. Without assuming any particular cluster-decomposition property,
we first classify all possible scale-invariant two-body contact interactions that respect unitarity, permutation
invariance, and translation invariance in one dimension. We then present a criterion for the breakdown of
continuous scale invariance to discrete scale invariance. Under the assumption that the criterion is met, we solve
the many-body Schrödinger equation exactly; we obtain the exact n-body bound-state spectrum as well as the
exact n-body S-matrix elements for arbitrary n � 3, all of which enjoy discrete scale invariance or log periodicity.
Thanks to the boson-fermion duality, these results can be applied equally well to both bosons and fermions.
Finally, we demonstrate how the criterion is met in the case of n = 3; we determine the exact phase diagram for
the scale-invariance breaking in the three-body problem of identical bosons and fermions. The zero-temperature
transition from the unbroken phase to the broken phase is the Berezinskii-Kosterlitz-Thouless-like transition
discussed in the literature.
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I. INTRODUCTION

Discrete scale invariance, or scale invariance with respect
to one particular scale, has attracted considerable attention
in many scientific disciplines [1,2] because of its unique yet
universal predictions. For example, in quantum scattering the-
ory, discrete scale invariance manifests itself in log-periodic
oscillations [3] of S matrices and in geometric scaling of
bound-state energies. Let us first take a brief look at these
ideas by using a toy example.

Consider a 1 × 1 S matrix S(E ) in a specific channel,
where E stands for energy. The most general scaling law that
respects the unitarity |S(E )| = 1 would have the following
form:

S(et E ) = S(E ), (1)

where t is a real parameter. If this holds for any continuous
t ∈ R, the general solution to Eq. (1) must be independent of
the modulus of E ; that is, the S matrix is a constant in contin-
uous scale-invariant theory. On the other hand, if Eq. (1) holds
only for some discrete t ∈ t∗Z = {0,±t∗,±2t∗, . . .}, where
t∗ defines one particular scale, the general solution becomes
S(E ) = f (ln E ), where f is a periodic function with period
t∗; that is, if continuous scale invariance is broken to discrete
scale invariance, the S matrix exhibits periodic oscillations as
a function of ln E .

In addition to this log periodicity, discrete scale invariance
also leads to a striking consequence in bound-state problems.
Suppose that the S matrix has a bound-state pole along the
negative E axis; that is, S(E ) → N∗

E+E∗
as E → −E∗, where
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E∗ > 0 and N∗ are some constants. Then, the scaling law
S(E ) = S(ent∗E ) implies that there in fact exist infinitely many
poles of the form

S(E ) → N∗e−nt∗

E + E∗e−nt∗
, n ∈ Z. (2)

Hence, in bound-state problems, discrete scale invariance
manifests itself as the onset of infinitely many bound states
with the energies En = −E∗e−nt∗ , which satisfy the geomet-
ric scaling En+1 = e−t∗En. Notice that the residues of the
S matrix (2), which are related to normalization constants of
bound-state wave functions (see, e.g., [4]), also satisfy the
same geometric scaling.

The above discussion, although simplified, captures the
general impact of discrete scale invariance in quantum theory.
To date, a number of quantum systems that enjoy discrete
scale invariance, log periodicity, or geometric scaling have
been discovered; see [2] for a nice review. Among the notable
examples is the Efimov effect [5,6] in three-body problems
under two-body short-range interactions, where the geometric
series of three-body bound states emerge if scattering lengths
diverge and dimensionful parameters apparently disappear.
Note, however, that this Efimov effect is known to be highly
susceptible to particle statistics and dimensionality. For exam-
ple, for three identical bosons, it was shown that the Efimov
effect is present only when the spatial dimension d is in the
range 2.3 < d < 3.8 [7]. As discussed in [8], this was due
to the absence of nontrivial scale-invariant two-body contact
interactions (at least in the limit of infinite scattering length)
in other dimensions.

One purpose of this paper is to show that—contrary to
the conventional wisdom—there in fact exist a lot of scale-
invariant two-body contact interactions in one dimension if
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the number of particles is greater than two. Another pur-
pose is then to present concrete examples of one-dimensional
n(� 3)-body problems that undergo phase transition from a
continuous scale-invariant phase to a discrete scale-invariant
phase. For the sake of simplicity, in this work we focus on
identical spinless particles that interact only through two-
body contacts [9]. Remarkably, any such many-body systems
generally enjoy the boson-fermion duality—the one-to-one
correspondence between isospectral bosonic and fermionic
systems—which enables us to treat bosons and fermions on
equal footing. In essence, the boson-fermion duality in one di-
mension is just the equivalence between the even-parity sector
of the δ-function potential system and the odd-parity sector of
the ε-function potential system [10]. The simplest application
of this equivalence to many-body problems is the well-known
boson-fermion duality between the Lieb-Liniger model [11]
of identical spinless bosons and the Cheon-Shigehara model
[12] of identical spinless fermions. Recently, it was shown
[13] that this duality can be further generalized because one-
dimensional two-body contact interactions have much more
variety than previously investigated. Most importantly, this
generalization includes scale-invariant two-body contact in-
teractions which—at least at the formal level—render the
system invariant under continuous scale transformation. Such
continuous scale invariance, however, can be broken down
to discrete scale invariance just as in the Efimov effect. The
goal of this paper is to show that this indeed happens for both
bosons and fermions and to present the exact n-body bound-
state spectrum as well as the exact n-body S-matrix elements
that exhibit geometric scaling and log periodicity. The key
to this achievement is the configuration-space approach to
identical particles [14–17]. Before discussing scale-invariance
breaking, let us first briefly review the boson-fermion du-
ality in [13] from the viewpoint of the configuration-space
approach.

II. BOSON-FERMION DUALITY IN ONE DIMENSION

Roughly speaking, the configuration-space approach is an
approach to identical particles in which permutation invari-
ance is regarded as gauge symmetry; that is, invariance of
physical observables under permutation of multiparticle coor-
dinates is merely a redundancy in description [17]. As in any
gauge theory, all gauge-equivalent configurations are physi-
cally equivalent such that the configuration space must be a
collection of inequivalent gauge orbits. To be more precise,
given a one-particle configuration space X , the n-particle con-
figuration space of identical particles is generally given by
the orbit space Mn = X̊ n/Sn, where X̊ n = X n − �n is the
configuration space of n distinguishable particles and Sn is the
symmetric group. Here X n stands for the Cartesian product of
n copies of X , and �n is the set of coincidence points at which
two or more particles occupy the same place simultaneously.
In general, such a set can be defined as the following locus:

�n =
{

(x1, . . . , xn) ∈ X n :
∏

1� j<k�n

‖x j − xk‖ = 0

}
, (3)

where ‖ · ‖ stands for the norm equipped with X n. Note that
many-body contact interactions are those that have support

FIG. 1. Configuration space of three identical particles in one
dimension. (a) The gray shaded regions represent the locus �3 =
{(x1, x2, x3) : (x1 − x2)(x1 − x3)(x2 − x3) = 0} which splits R3 into
3! disconnected regions. The three-body configuration space M3 =
{(x1, x2, x3) : x1 > x2 > x3} is just one of those disconnected regions.
The ξ1, ξ2, and ξ3 axes point along the directions of the unit vectors
e1 = 1√

2
(1,−1, 0), e2 = 1√

6
(1, 1,−2), and e3 = 1√

3
(1, 1, 1). (b) The

blank white region represents the relative space R2 = {(ξ1, ξ2) :
0 < ξ1 <

√
3ξ2}, which is just the ξ3 = const section of M3. The

gray shaded region represents the impenetrable region for identical
particles. The red arrows represent the inward-pointing unit normal
vectors n1 = 1√

2
(1,−1, 0) and n2 = 1√

2
(0, 1, −1).

only on �n, where wave functions become singular in general.
Figure 1(a) shows �3 for X = R. [Note that, for X = R, �n

can also be defined as the vanishing locus of the Vandermonde
polynomial,

∏
1� j<k�n(x j − xk ) = 0.]

Now let us focus on the case X = R, in which R̊n �
(x1, . . . , xn) consists of n! disconnected regions described by
the inequality xσ (1) > · · · > xσ (n), where σ ∈ Sn is a permuta-
tion of n indices. All of these n! regions are gauge equivalent
for identical particles. Hence, the configuration space of n
identical particles in one dimension can be identified with the
following n-dimensional space:

Mn = {(x1, . . . , xn) : x1 > · · · > xn}. (4)

Note that this space has a number of nontrivial boundaries;
see Fig. 1(b) for the case n = 3. Of particular importance are
the following codimension-1 boundaries at which two out of
n particles collide:

∂M2-body
n, j = {(x1, . . . , xn) : x1 > · · · > x j

= x j+1 > · · · > xn}, (5)

where j = 1, . . . , n − 1.
Let us now focus on the situation where identical particles

freely propagate almost everywhere on the line yet interact
only at the two-body coincidence points. Since all the coinci-
dence points are excluded in Mn, in the configuration-space
approach the n-body Hamiltonian for such systems is just the
following free Hamiltonian:

H0 = − h̄2

2m

n∑
j=1

∂2

∂x2
j

, (6)

where m is the mass of the identical particles. The two-body
contact interactions are then described by boundary condi-
tions of wave functions at the codimension-1 boundaries (5).
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Such boundary conditions must be chosen to fulfill unitarity
(probability conservation). It is well known that such bound-
ary conditions are generally given by the following Robin
boundary conditions:

∂ψ

∂n j
− 1

a j
ψ = 0 on ∂M2-body

n, j , (7)

where ∂ψ/∂n j stands for the normal derivative to the bound-
ary ∂M2-body

n, j given by

∂ψ

∂n j
= n j · ∇ψ = 1√

2

(
∂

∂x j
− ∂

∂x j+1

)
ψ. (8)

Here n j = ∇(x j − x j+1)/‖∇(x j − x j+1)‖ = 1√
2
(0, . . . , 0, 1,

−1, 0, . . . , 0) is the inward-pointing unit normal vector [18]
to the surface x j − x j+1 = 0, ∇ = ( ∂

∂x1
, . . . , ∂

∂xn
) is the deriva-

tive on Mn, and a j is a real parameter that can depend
on the coordinates orthogonal to n j . In this way, in the
configuration-space approach the free Hamiltonian (6) and the
Robin boundary conditions (7) set the problem of identical
spinless particles under two-body contact interactions.

Now, one may want to know how Eqs. (6) and (7)
describe the boson-fermion duality in the conventional ap-
proach, where the configuration space is taken to be R̊n rather
than R̊n/Sn. To see this, let us first construct conventional
bosonic and fermionic wave functions on R̊n, which can
easily be done by extending the domain of wave functions.
Let ψ be a normalized wave function on Mn, and let x =
(x1, . . . , xn) be in the region xσ (1) > · · · > xσ (n). Then we
define

ψB(x) = 1√
n!

ψ (σx), (9a)

ψF(x) = 1√
n!

sgn(σ )ψ (σx), (9b)

where σx = (xσ (1), . . . , xσ (n) ) and sgn(σ ) stands for the sig-
nature of σ ∈ Sn. As σ runs through all the permutations,
Eqs. (9a) and (9b) define the totally symmetric and antisym-
metric functions on R̊n, thus providing wave functions of
identical spinless bosons and fermions in the conventional
approach. By construction, it is obvious that the iden-
tity ψF(x) = sgn(σ )ψB(x) holds in the region xσ (1) > · · · >

xσ (n), which can be extended to R̊n in the following
way:

ψF(x) =
( ∏

1� j<k�n

sgn(x j − xk )

)
ψB(x), ∀ x ∈ R̊n, (10)

where sgn(x) = x/|x| stands for the sign function. In this way,
for identical spinless particles, the one-to-one correspondence
holds between the bosonic and fermionic wave functions
in the conventional approach. This is the celebrated boson-
fermion mapping in one dimension [19].

Let us next construct the Hamiltonians for ψB and ψF,
which can be achieved by studying connection conditions at
the codimension-1 singularities in R̊n. To this end, let us first
start with the following toy example:

f ′(0+) − 1

a
f (0+) = 0, (11)

where f (x) is some function on R and the prime indicates the
derivative with respect to x. If f (x) is an even function that
satisfies f (x) = f (−x) and f ′(x) = − f ′(−x), then f (0+) =
f (0−) and f ′(0+) = − f ′(0−) automatically hold. Hence, for
such even functions, the boundary condition (11) is equivalent
to the connection condition f ′(0+) − f ′(0−) − 1

a [ f (0+) +
f (0−)] = 0 at x = 0. On the other hand, if f (x) is an odd func-
tion that satisfies f (x) = − f (−x) and f ′(x) = f ′(−x), then
f (0+) = − f (0−) and f ′(0+) = f ′(0−) automatically hold.
Hence, for such odd functions, the boundary condition (11)
is equivalent to the connection condition f ′(0+) + f ′(0−) −
1
a [ f (0+) − f (0−)] = 0.

The above discussion can easily be generalized to ψB and
ψF. A careful analysis shows that, for totally symmetric func-
tions, the Robin boundary condition (7) is equivalent to the
following connection condition at the codimension-1 singular-
ity {xσ (1) > · · · > xσ ( j) = xσ ( j+1) > · · · > xσ (n)} in R̊n [13]:

(
∂

∂xσ ( j)
− ∂

∂xσ ( j+1)

)
ψB

∣∣∣∣
0+

−
(

∂

∂xσ ( j)
− ∂

∂xσ ( j+1)

)
ψB

∣∣∣∣
0−

−
√

2

a j

(
ψB

∣∣
0+

+ ψB

∣∣
0−

) = 0, (12)

where |0± is shorthand for |xσ ( j)−xσ ( j+1)=0± and σ is an even
permutation. For totally antisymmetric functions, on the other
hand, the Robin boundary condition (7) is equivalent to the
following connection condition:

(
∂

∂xσ ( j)
− ∂

∂xσ ( j+1)

)
ψF

∣∣∣∣
0+

+
(

∂

∂xσ ( j)
− ∂

∂xσ ( j+1)

)
ψF

∣∣∣∣
0−

−
√

2

a j

(
ψF

∣∣
0+

− ψF

∣∣
0−

) = 0. (13)

Note that, thanks to the symmetry property, ψB and the normal
derivative of ψF are both continuous at the codimension-1
singularities.

Now, Eq. (12) together with ψB|0+ = ψB|0− is nothing
but the connection condition for the δ-function poten-
tial δ(xσ ( j) − xσ ( j+1);

√
2

a j
) =

√
2

a j
δ(xσ ( j) − xσ ( j+1)) supported

on the codimension-1 singularity {xσ (1) > · · · > xσ ( j) =
xσ ( j+1) > · · · > xσ (n)} in R̊n, where the coupling constant is√

2/a j . On the other hand, Eq. (13) together with ( ∂
∂xσ ( j)

−
∂

∂xσ ( j+1)
)ψF|0+ = ( ∂

∂xσ ( j)
− ∂

∂xσ ( j+1)
)ψF|0− is nothing but the con-

nection conditions for the ε-function potential [20] ε(xσ ( j) −
xσ ( j+1);

a j√
2

), where in this case the coupling constant is

a j/
√

2. Thus, we find the following Hamiltonians for ψB and
ψF:

HB/F = H0 + VB/F, (14)
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where

VB = h̄2

m

n−1∑
j=1

∑
σ∈An

[ ∏
k∈{1,...,n−1}\{ j}

θ (xσ (k) − xσ (k+1))

]

× δ
(
xσ ( j) − xσ ( j+1);

√
2

a j

)
, (15a)

VF = h̄2

m

n−1∑
j=1

∑
σ∈An

[ ∏
k∈{1,...,n−1}\{ j}

θ (xσ (k) − xσ (k+1))

]

× ε
(
xσ ( j) − xσ ( j+1);

a j√
2

)
. (15b)

Here An is the alternating group that consists of only even
permutations. The factor

∏
θ (xσ (k) − xσ (k+1)) is introduced

in order to guarantee the ordering xσ (1) > · · · > xσ ( j) =
xσ ( j+1) > · · · > xσ (n), where θ (x) is the step function. Note
that, since the coupling constants of the two systems are
inverse to each other, the one-to-one correspondence holds
between the strong-coupling regime in one system and the
weak-coupling regime in the other. This is a natural gener-
alization of the celebrated strong-weak duality in [12]. Note
also that, since the eigenvalue equations HBψB = EψB and
HFψF = EψF both boil down to H0ψ = Eψ on Mn with
the same boundary conditions, HB and HF are completely
isospectral.

To summarize, the n-body problem described by the free
Hamiltonian (6) and the Robin boundary conditions (7) on
Mn is equivalent to the n-boson and n-fermion problems
described by HB and HF. By construction, we have the
spectral equivalence between HB and HF, the boson-fermion
mapping between ψB and ψF, and the strong-weak duality.
Notice that, if a1 = · · · = an−1 = const, Eq. (14) just re-
duces to the Lieb-Liniger model and the Cheon-Shigehara
model. Note also that, since the n-body Hamiltonian (14) is
of the form H = − h̄2

2m

∑n
j=1

∂2

∂x2
j
+ V (x1, . . . , xn), it in gen-

eral does not admit any nontrivial cluster decomposition into
the sum of cluster Hamiltonians and intercluster potentials.
In other words, the n-boson and n-fermion systems in the
present paper are generally n-body clusters that cannot be
decomposed into subclusters. We will elaborate on this clus-
ter property in Sec. V by using the three-body scattering
problem.

Now, as noted before, aj can depend on the coordinates
orthogonal to n j without spoiling unitarity. This opens up a
new vista for realizing scale invariance in one-dimensional n-
body problems under two-body contact interactions. Let us
next move on to study such a scale-invariant subfamily of the
Robin boundary conditions (7).

III. SCALE-INVARIANT TWO-BODY
BOUNDARY CONDITIONS

To begin with, let us first introduce the normalized
Jacobi coordinates (ξ1, . . . , ξn) in Mn, which can be de-
fined through the orthogonal transformation x j 
→ ξ j = e j ·
x = ∑n

k=1 e jkxk . Here e j = (e j1, . . . , e jn) is the following

n-dimensional orthonormal vector:

e j = 1√
j( j + 1)

(1, . . . , 1,− j, 0, . . . , 0),

j ∈ {1, . . . , n − 1}, (16a)

en = 1√
n

(1, . . . , 1), (16b)

where − j in Eq. (16a) is in the ( j + 1)th component. Note that
x can be written as x = ξ1e1 + · · · + ξnen. Note also that ξn =
x1+···+xn√

n
, which ranges from −∞ to ∞, corresponds to the

center-of-mass coordinates. Hence, it is convenient to separate
the one-dimensional subspace Ren = {ξnen : −∞ < ξn < ∞}
from Mn. It is also convenient to introduce the hyperspherical
coordinates in the (n − 1)-dimensional subspace spanned by
the set of vectors {e1, . . . , en−1}, which describes the relative
space Rn−1 (the configuration space of relative motion). First,
the hyperradius in the relative space Rn−1 is defined by

r =
√

ξ 2
1 + · · · + ξ 2

n−1

=
√√√√1

n

∑
1� j<k�n

(x j − xk )2. (17)

The hyperangles in the relative space Rn−1 are then described
by the unit vector ξ̂ = (ξ̂1, . . . , ξ̂n−1) := 1

r (ξ1, . . . , ξn−1),
which, from the condition x1 > · · · > xn, must satisfy the

condition 0 < ξ̂1 < · · · <

√
n(n−1)

2 ξ̂n−1 [13]. The configura-
tion space is then factorized as follows:

Mn = R × R+ × 
n−2, (18)

where R = {ξn : −∞ < ξn < ∞} is the space of the center-
of-mass motion, R+ = {r : 0 < r < ∞} is the space of the
hyperradial motion, and 
n−2 is the space of the hyperangular
motion given by


n−2 =
{

(ξ̂1, . . . , ξ̂n−1) : ξ̂ 2
1 + · · · + ξ̂ 2

n−1 = 1,

0 < ξ̂1 < · · · <

√
n(n − 1)

2
ξ̂n−1

}
. (19)

As we will see shortly, this factorization plays a pivotal role
in solving the n-body Schrödinger equation by the method of
separation of variables. Note that, for n = 2, the factor 
n−2

should be discarded in Eq. (18). Note also that the relative
space Rn−1 = R+ × 
n−2 can also be written as Rn−1 =
{(ξ1, . . . , ξn) : 0 < ξ1 < · · · <

√
n(n−1)

2 ξn−1}.
Now, in the coordinate system (ξn, r, ξ̂), the gradient of a

wave function ψ is written as follows:

∇ψ = ∂ψ

∂ξn
eξn + ∂ψ

∂r
er + 1

r
∇
n−2ψ, (20)

where eξn and er are the unit vectors pointing along the ξn

and r directions and ∇
n−2 is the gradient on 
n−2. Notice
that, for n � 3, all the normal vectors n j are orthogonal to
eξn and er . (For n = 2, the normal vector is equivalent to er .)
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Hence, for n � 3, the Robin boundary condition (7) is cast in
the following form [21]:

1

r
n j · ∇
n−2ψ − 1

a j
ψ = 0 on ∂M2-body

n, j . (21)

Below we will focus on the case n � 3.
Now we are ready to identify the scale-invariant sub-

family of the boundary conditions. First of all, under the
scale transformation Sα : x 
→ αx (α > 0), one-dimensional
n-body wave functions transform as follows:

ψ (x) 
→ (Sαψ )(x) := α
n
2 ψ (αx). (22)

The boundary condition (21) is then said to be scale in-
variant if Sαψ satisfies the same boundary condition as
ψ . It is, however, obvious from the factor 1

r that Eq. (21)
does not remain unchanged under Sα unless a j depends
on the coordinates and transforms as aj (x) 
→ a j (αx) =
αa j (x). (Note that ∇
n−2 is invariant under Sα .) Note
also that coordinate-dependent aj generally breaks transla-
tion invariance unless it satisfies a j (x1 + β, . . . , xn + β ) =
a j (x1, . . . , xn) for any real β. Hence, in order to realize
scale- and translation-invariant boundary conditions, aj (x)
must satisfy the following conditions for the scaling law and
translation invariance, respectively:

a j (αx) = αa j (x), (23a)

a j (x + βen) = a j (x). (23b)

It is easy to see that the general solution to these conditions is
given by

a j (x) = rg j (ξ̂), (24)

where g j is an arbitrary function of ξ̂. The boundary condition
(21) then becomes

n j · ∇
n−2ψ − 1

g j
ψ = 0 on ∂M2-body

n, j . (25)

This describes the most general scale- and translation-
invariant two-body contact interactions in the n(� 3)-body
problems of identical spinless particles in one dimension.
Since both the Hamiltonian and the boundary conditions are
scale invariant, the n-body system described by Eqs. (6) and
(25) is, at least formally, scale invariant. This continuous scale
invariance, however, can be broken down to discrete scale
invariance in exactly the same way as the Efimov effect. Let
us next investigate the criterion for such symmetry breaking
by using the n-body Schrödinger equation.

IV. FROM CONTINUOUS TO DISCRETE
SCALE INVARIANCE

Let us study the time-independent n-body Schrödinger
equation H0ψ = Eψ . To this end, we first note that, in the
coordinate system (ξn, r, ξ̂), the free Hamiltonian (6) can be
written as H0 = r− n−2

2 H̃0r
n−2

2 , where [22]

H̃0 = − h̄2

2m

(
∂2

∂r2
+ �
n−2 − (n−2)(n−4)

4

r2
+ ∂2

∂ξ 2
n

)
. (26)

Here �
n−2 stands for the Laplacian on 
n−2. Hence, under
the assumption that the wave function has the form

ψ (x) = r− n−2
2 
(ξn)R(r)�(ξ̂), (27)

the Schrödinger equation H0ψ = Eψ boils down to the fol-
lowing differential equations:

− ∂2

∂ξ 2
n


(ξn) = 2mEcm

h̄2 
(ξn), (28a)

−�
n−2�(ξ̂) = λ�(ξ̂), (28b)(
− ∂2

∂r2
+ λ + (n−2)(n−4)

4

r2

)
R(r) = 2mErel

h̄2 R(r), (28c)

where Ecm + Erel = E . Note that the boundary condition (25)
is only for the hyperangular wave function �. In other words,
all the information about the two-body contact interactions is
encoded in the eigenvalue λ. Note also that, since ξn and r
are permutation invariant, the totally symmetric and antisym-
metric wave functions in R̊n are obtained by just extending
the domain of �. For example, in the region where ξn ∈ R,
r ∈ R+, and σ ξ̂ ∈ 
n−2, where σ ξ̂ stands for the action of the
permutation σ ∈ Sn on the unit vector ξ̂, we have

ψB(ξn, r, ξ̂) = 1√
n!

r− n−2
2 
(ξn)R(r)�(σ ξ̂), (29a)

ψF(ξn, r, ξ̂) = 1√
n!

sgn(σ )r− n−2
2 
(ξn)R(r)�(σ ξ̂). (29b)

As σ runs through all the permutations, the above equa-
tions define the n-body wave functions of identical bosons
and fermions in R̊n. It should be emphasized that, if 
, R,
and � are normalized solutions to Eqs. (28a)–(28c), then
Eqs. (29a) and (29b) automatically become the normalized
eigenfunctions of the Hamiltonians (14) with the eigenvalue
E = Ecm + Erel.

Now, it is well known in the context of the 1/r2 po-
tential that infinitely many discrete energy levels appear if
λ + (n−2)(n−4)

4 < − 1
4 [23]; that is, continuous scale invariance

is broken down to discrete scale invariance if λ < λc, where
λc = − (n−3)2

4 is the critical value [24]. Hence, the sufficient
condition for the scale-invariance breaking is

inf σ (−�
n−2 ) < λc, (30)

where σ (−�
n−2 ) stands for the spectrum of the operator
−�
n−2 . Let us, for the moment, assume that there exists
at least one such negative eigenvalue and see the impact of
discrete scale invariance by solving the hyperradial equa-
tion (28c) exactly.

A. Exact n-body bound-state spectrum

Let us first consider the case Erel < 0. In this case the nor-
malized solution to the hyperradial equation (28c) for λ < λc

is given by

Rκλ(r) = Nκ

√
2κr

π
Kiν (κr)

→ Nκe−κr as r → ∞, (31)
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where

|Nκ | =
√

κ sinh(νπ )

ν
. (32)

Here κ =
√

2m|Erel|/h̄2 > 0, ν = √
λc − λ > 0, and Kiν is

the modified Bessel function of the second kind. It is well
known [23] that Eq. (31) provides orthogonal functions if κ is
quantized as κ� = κ∗e− �π

ν , where κ∗ > 0 is a newly emerged
inverse length scale and � ∈ Z. Thus, there exist infinitely
many negative energy eigenvalues given by

E (�)
rel = − h̄2κ2

∗
2m

exp

(
−2�π

ν

)
, � ∈ Z. (33)

These are the binding energies of n-body bound states of
identical particles in the channel λ(< λc). Note that Eq. (33)
satisfies the geometric scaling E (�+1)

rel = e− 2π
ν E (�)

rel , which—as
discussed in the Introduction—is a manifestation of discrete
scale invariance in the bound-state problem. It should also be
noted that, under the full discrete scale invariance which forms
the group Z, the energy spectrum (33) cannot be bounded
from below. In other words, in order to make the spectrum
lower-bounded, we have to break this invariance under Z.
One easy way to achieve this is to cut off and regularize the
inverse-square potential. Since the purpose of this paper is
to demonstrate the full discrete scale invariance, we will not
discuss this regularization procedure any further. For more
details, we refer to the literature [25–32] (see also [33] for
the related field-theory approach).

B. Exact n-body S-matrix elements

Let us next consider the case Erel > 0. In this case the
solution to the hyperradial equation (28c) is given by the
following linear combination:

Rkλ(r) =
√

πkr

2

[
e−i (1+2iν)π

4 H (2)
iν (kr) + Sλ(k)e+i (1+2iν)π

4 H (1)
iν (kr)

]
→ e−ikr + Sλ(k)e+ikr as r → ∞, (34)

where k =
√

2mErel/h̄2 > 0. H (1)
iν and H (2)

iν are the Hankel
functions of the first and second kind, respectively. It is
straightforward to show that Eqs. (31) and (34) become or-
thogonal if the coefficient Sλ(k) takes the following form [34]:

Sλ(k) = i
sinh[νπ/2 − iν ln(k/κ∗)]

sinh[νπ/2 + iν ln(k/κ∗)]
. (35)

This is the S-matrix element of n-body scattering of identical
particles in the channel λ(< λc). Indeed, it satisfies unitarity,

Sλ(k)Sλ(k) = 1, ∀k > 0, (36)

discrete scale invariance,

Sλ(e
π
ν k) = Sλ(k), ∀k > 0, (37)

and possesses the following structure of bound-state poles and
residues:

lim
k→iκ�

(k − iκ�)Sλ(k) = i|Nκ�
|2, ∀� ∈ Z, (38)

all of which are desired properties of S matrix in discrete
scale-invariant quantum theory [35]. Here the overline stands

for the complex conjugate. Note that Eq. (37) is equivalent to
the log periodicity of Sλ(k) with the period π/ν as a function
of ln k. As discussed in the Introduction, this log periodicity
is a manifestation of discrete scale invariance in the scattering
problem.

To summarize, we have seen that discrete scale invariance
manifests itself in the geometric series of n-body bound states
as well as in the log-periodic oscillation of n-body S-matrix
elements. Note, however, that these exact results are based on
the assumption that at least one negative eigenvalue λ (<λc)
exists in the Laplace equation (28b). Let us finally investigate
whether and when such a negative eigenvalue appears. To
simplify the problem, below we will focus on the case n = 3,
in which the critical value is λc = 0.

V. EXAMPLE: EXACT PHASE DIAGRAM
IN THE THREE-BODY PROBLEM

Now we wish to solve the Laplace equation on the three-
body hyperangular space 
1 = {(ξ̂1, ξ̂2) : ξ̂ 2

1 + ξ̂ 2
2 = 1, 0 <

ξ̂1 <
√

3ξ̂2} with the scale-invariant boundary conditions. To
this end, let us first introduce the following polar coordinates
in 
1 [see Fig. 1(b)]:

(ξ̂1, ξ̂2) = (sin θ, cos θ ), (39)

where θ ∈ (0, π
3 ). Then the Laplace equation (28b) simply

becomes

− ∂2

∂θ2
�(θ ) = λ�(θ ). (40)

Note that the codimension-1 boundaries ∂M2-body
3,1 and

∂M2-body
3,2 correspond to θ = 0 and θ = π

3 , respectively. The
inward-pointing unit normal vectors on these boundaries are
n1 = eθ=0 and n2 = −eθ= π

3
, where eθ stands for the unit vec-

tor in the θ direction at the angle θ . Since the gradient of scalar
functions on 
1 is ∇
1 = eθ

∂
∂θ

, the boundary conditions (25)
read

+ ∂

∂θ
�(θ ) − 1

g1
�(θ ) = 0 at θ = 0, (41a)

− ∂

∂θ
�(θ ) − 1

g2
�(θ ) = 0 at θ = π

3 , (41b)

where g1 and g2 are real constants. [Note that, for n � 3, g j (ξ̂)
in Eq. (24) becomes constant at the boundaries.]

Let us now solve the eigenvalue equation (40) with the
above boundary conditions. First, the general solution for
λ �= 0 is given by

�λ(θ ) = A(λ)ei
√

λθ + B(λ)ei
√

λ( π
3 −θ ), (42)

where A(λ) and B(λ) are integration constants. By imposing
the boundary conditions (41a) and (41b), we get the following
quantization condition for λ [36]:

tan
(π

3

√
λ
)

= (g1 + g2)
√

λ

g1g2λ − 1
, (43)

or, equivalently,

[X − X0(λ)]2 − Y 2 = Z (λ), (44)

033312-6



DISCRETE SCALE-INVARIANT BOSON-FERMION … PHYSICAL REVIEW A 105, 033312 (2022)

FIG. 2. (a) Parameter dependence of the eigenvalues λ0 < λ1 <

λ2 < · · · . λ2 is always positive. λ1 changes sign if we go across the
blue line defined by g1 + g2 = − π

3 on the λ = 0 plane. The negative
λ1 exists in the domain D1 = {(g1, g2) : − π

3 < g1 + g2 < |g1 − g2|}.
λ0 is always negative and exists in the domain D0 = {(g1, g2) :
g1 < 0, g2 < 0}. (b) Exact phase diagram. The light-gray shaded
region represents the union D0 ∪ D1 in which continuous scale in-
variance is broken to discrete scale invariance in the λ0 or λ1 channel.
The dark-gray region represents the intersection D0 ∩ D1 in which
continuous scale invariance is broken in both the λ0 and λ1 channels.

where X = g1+g2√
2

, Y = −g1+g2√
2

, X0(λ) =
√

2
λ

cot( π
3

√
λ), and

Z (λ) = 2
λ

[1 + 2 cot2( π
3

√
λ)]. Note that Eq. (44) defines in-

finitely many two-dimensional sheets in the (g1, g2, λ) space
whose intersection with the λ = const plane is a hyperbola
[see Fig. 2(a)]. As one can observe from Fig. 2(a), two dis-
tinct sheets—the λ0 sheet and the λ1 sheet—on which the
eigenvalues λ0 and λ1 go below the critical value λc = 0
exist. Close inspection shows that λ0 is always negative and
exists only in the domain D0 = {(g1, g2) : g1 < 0, g2 < 0},
while λ1 changes sign if it crosses the line g1 + g2 = −π

3 and
becomes negative in the domain D1 = {(g1, g2) : −π

3 < g1 +
g2 < |g1 − g2|}. Hence, in the region D0 ∪ D1, continuous
scale invariance is broken down to discrete scale invariance
in the λ0 or λ1 channel. The exact phase diagram is depicted
in Fig. 2(b). It should be noted that the zero-temperature
transition from the unbroken phase to the broken phase is
nothing but the Berezinskii-Kosterlitz-Thouless-like transi-
tion discussed in [37].

Before closing this section, it is worthwhile to revisit the
three-body scattering by using the hyperangular wave func-
tion (42). To simplify the argument, let us consider the case
g1 = g2 =: g ∈ (−π

6 , 0), in which two negative eigenvalues
λ0 and λ1 appear. In this case, it is easy to show that the
eigenfunctions take the following simple forms:

�λ0 (θ ) ∝ e−ν0θ + e−ν0( π
3 −θ ), (45a)

�λ1 (θ ) ∝ e−ν1θ − e−ν1( π
3 −θ ), (45b)

where ν0 = √|λ0| and ν1 = √|λ1| are the solutions to the
conditions g = − 1

ν
coth( π

6 ν) and g = − 1
ν

tanh( π
6 ν). Notice

that the first terms in Eqs. (45a) and (45b) sharply local-
ize to the boundary θ = 0 (i.e., the two-body coincidence
point x1 = x2) with the exponential decay rate 1/ν0,1, while
the second terms localize to the opposite boundary θ = π

3
(i.e., x2 = x3) with the same exponential decay rate. In other
words, these eigenfunctions describe the superpositions of

FIG. 3. Typical particle configurations for (a) the dimer on the
right and (b) the dimer on the left. The sizes of the dimers are
about

√
2r sin(1/ν0,1), which follow from the exponential decay

rates 1/ν0,1 in Eqs. (45a) and (45b) and the relations x1−x2√
2

= r sin θ

and x2−x3√
2

= r sin( π

3 − θ ). [Note that, in the three-body problem, the
relations between the normalized Jacobi coordinates and the hyper-
spherical coordinates are ξ1 = x1−x2√

2
= r sin θ and ξ2 = x1+x2−2x3√

6
=

r cos θ , which lead to x2−x3√
2

= r sin( π

3 − θ ).]

two “dimers” whose spatial extents are about
√

2r sin(1/ν0,1)
(see Fig. 3). The physical meaning of the scattering solutions
�λ0,1 (θ )Rkλ0,1 (r) is now clear: they describe the superposi-
tions of “atom-dimer” scatterings. Note, however, that these
scatterings are not quite the same as the standard atom-dimer
scattering in the three-dimensional Efimov effect [30] because
the spatial extents of our dimers scale with the hyperradius
r; that is, the dimer’s size becomes smaller and smaller as
the third particle approaches the dimer. This difference comes
from the cluster properties of the models: in the standard
atom-dimer scattering, the total Hamiltonian decomposes into
the summation of the one-body cluster Hamiltonian, two-body
cluster Hamiltonian, and intercluster potential between one-
and two-body clusters, thereby determining the dimer’s size
only through the two-body cluster Hamiltonian. In the present
model, however, there is no such cluster decomposition such
that the whole three-body system simply scales with r. This
scaling is the characteristic feature of the three-body scatter-
ing in our model.

VI. CONCLUSION

In this paper, we have introduced the most general scale-
invariant model of n identical spinless particles in one
dimension, where interparticle interactions are only two-body
contacts. In this model, we have found that continuous scale
invariance can be broken down to discrete scale invariance for
any n � 3. The physical consequences of this scale-invariance
breaking are the onset of geometric series of n-body bound
states and the log-periodic oscillation of the n-body S-matrix
elements. Thanks to the boson-fermion duality, our findings
can be applied equally well to both bosons and fermions. We
emphasize that our results are based on the assumption that the
system fulfills (i) probability conservation, (ii) permutation
invariance, (iii) translation invariance, and (iv) scale invari-
ance. Hence, any n-body problems under two-body contact
interactions that satisfy (i)–(iv) must fall into our model. It
should also be emphasized that we did not require cluster
separability in the present paper. If, in addition, one requires
cluster separability, the available parameter space becomes
a much smaller subspace. For example, if we required the
three-body system to be decomposed into the one- and two-
body clusters, then the scale invariance would be realized

033312-7



SATOSHI OHYA PHYSICAL REVIEW A 105, 033312 (2022)

only for the Dirichlet and Neumann boundary conditions at
the two-body coincidence points, which correspond to gj = 0
and gj = ∞ in Eqs. (41a) and (41b), respectively. Hence, in
this case the system cannot exhibit discrete scale invariance,
which is consistent with the no-go result [7] that the Efimov
effect cannot be realized in one dimension. Our nontrivial
results are therefore applicable to n-body systems that cannot
be decomposed into smaller subclusters.

Let us finally comment on the criterion (30). Our exact
results (33) and (35) in the broken phase are based on the
assumption that there exists at least one negative eigenvalue
λ that satisfies the inequality λ < λc = − (n−3)2

4 . For n = 3,
we have checked that this condition is indeed satisfied and

determined the exact phase diagram of scale-invariance break-
ing. However, the case n � 4 is left open. From the physical
viewpoint, it is quite reasonable to expect that, for sufficiently
strong attractive interactions, at least one negative eigenvalue
λ (<λc) would always appear for any n. This is simply be-
cause, just as in the case of the ordinary δ-function potential
problem in one dimension, at least a single negative eigen-
value should appear and take an arbitrary large absolute value
as we increase the strength of attractive coupling constants.
Future studies should investigate whether and when the cri-
terion is met for n � 4 by employing the spectral analysis of
the Laplace equation (28b) with the scale-invariant boundary
conditions (25).
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