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Supersolid-like square- and honeycomb-lattice crystallization of droplets in a dipolar condensate
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We demonstrate a supersolid-like spatially periodic square- and honeycomb-lattice crystallization of droplets
in addition to the commonly studied triangular-lattice crystallization in a cylindrically symmetric quasi-two-
dimensional trapped dipolar condensate, using a beyond-mean-field model including a quantum-fluctuation
Lee-Huang-Yang-type interaction. These three types of crystallization of droplets may appear for the same
atomic interaction and the same trap frequencies. The energies E of all three crystallizations as a function of
the number N of atoms satisfy the universal scaling relation E ∼ N0.4, indicating that all three arrangements of
the droplets should be energetically probable processes of phenomenological interest. The state of square-lattice
crystallization may have the central site occupied or unoccupied, corresponding to a parity-symmetric or
parity-antisymmetric state, respectively. The state of square-lattice crystallization with the occupied central site
and the state of triangular-lattice crystallization, for a fixed N , constitute two quasidegenerate ground states,
while the other states are low-lying excited states. This makes the square-lattice crystallization with the occupied
central site an ideal candidate for future experimental observation.
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I. INTRODUCTION

A supersolid [1–6] is a special form of quantum matter
which exhibits a spatially ordered stable structure, as en-
countered in a solid crystal, breaking continuous translational
invariance. A supersolid can also flow without friction as
a superfluid, breaking continuous gauge invariance. Hence,
contrary to the wisdom that frictionless flow is an exclusive
property of a superfluid, a supersolid simultaneously pos-
sesses the properties of a superfluid and a solid. The search
for supersolidity in 4He [7] was not conclusive [8]. However,
there were theoretical suggestions for creating a supersolid
in a dipolar Bose-Einstein condensate (BEC) [9–11], in a
BEC with finite-range atomic interaction [12], and in a spin-
orbit (SO)-coupled spinor BEC [13]. The study of supersolids
has recently gained new impetus among researchers in low-
temperature physics after the experimental observation of
supersolids in a dipolar BEC [14,15] and in an SO-coupled
pseudo-spin-1/2 spinor BEC [16].

Recently, a spatially periodic state displaying a stripe pat-
tern in density, known as a superstripe state because of its
supersolid-like properties, was experimentally observed in an
SO-coupled pseudo-spin-1/2 BEC of 23Na atoms [16]. In
quasi-two-dimensional (quasi-2D) uniform and trapped SO-
coupled spin-2 [17], spin-1 [18,19], and pseudo-spin-1/2 [20]
spinor BECs, the formation of square- and triangular-lattice
patterns in density was demonstrated in theoretical studies in
addition to the superstripe state [13,16]. In a strongly dipo-
lar BEC, for an appropriate mixture of dipolar and contact
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interactions and for a number of atoms N beyond a critical
value, high-density droplet formation was observed experi-
mentally in a dipolar BEC under a strong trap of 164Dy [15]
and 168Er [21] atoms and was studied theoretically [22,23].
In the framework of a mean-field model employing the
Gross-Pitaevskii (GP) equation, a dipolar BEC collapses
for strong dipolar interaction beyond a critical value, and
a Lee-Huang-Yang-type [24] (LHY-type) beyond-mean-field
quantum-fluctuation interaction [25,26] is necessary in theo-
retical studies to stabilize a strongly dipolar droplet against
collapse [11]. As the number of atoms N in a trapped dipolar
BEC is increased so that the density of atoms reaches a critical
value, due to the dipolar interaction, the condensate shrinks
to a very small size. However, it cannot collapse due to the
quantum-fluctuation LHY interaction, and a droplet is formed.
The size of the droplet is much smaller than the harmonic
oscillator trap lengths. Such droplets can accommodate a
maximum number of atoms [22] for given harmonic trap fre-
quencies to attain a critical density of atoms in the condensate.
In spite of the name droplet, the present dipolar BEC droplets
in a strong trap are different from recently observed [27,28]
nondipolar binary BEC droplets in free space. Nevertheless,
in both cases, the collapse is arrested by a beyond-mean-field
quantum-fluctuation LHY interaction.

For a sufficiently large N , in a quasi-one-dimensional
(quasi-1D) trapped dipolar BEC, spontaneous periodic crys-
tallization of droplets along a straight line was observed in
different experiments on 164Dy [29–31], 162Dy [32–34], and
166Er [30,31] atoms and was confirmed in related theoretical
studies [35,36], whereas in a quasi-2D trapped dipolar BEC
of 164Dy atoms, crystallization of droplets on a periodic tri-
angular lattice was observed experimentally [14,37] and was
established in theoretical studies [38–42]. In addition to this
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periodic triangular-lattice state, in a trapped quasi-2D dipolar
BEC, the formation of honeycomb, stripe, and other peri-
odic structures in density and not crystallization of droplets
has also been predicted [40–43] in theoretical studies. Nev-
ertheless, in many of these investigations, especially in the
numerical studies on a truncated finite system, the supersolid-
ity of the system has never been rigorously established [44].
One needs to show the spontaneous breaking of gauge sym-
metry (which gives the superfluid order parameter) and the
spontaneous breaking of translational symmetry in the same
system. Lacking a rigorous demonstration of supersolidity, we
prefer to call these periodic states supersolid-like states in this
paper as in similar studies on quasi-2D SO-coupled spinor
BECs [17,19].

Following the 1D crystallization of dipolar droplets along
a straight line in a quasi-1D trap [29–36], the natural crystal-
lization in two dimensions is the square-lattice arrangement
of droplets, which has not yet been observed in experiments
or predicted theoretically. In this paper, using a beyond-
mean-field model including the quantum-fluctuation LHY
interaction [25,26] for a three-dimensional (3D) trapped
dipolar BEC, we explicitly demonstrate supersolid-like spa-
tially periodic square- and honeycomb-lattice crystallization
of droplets in the x-y plane perpendicular to the polariza-
tion z direction for an appropriate mixture of dipolar and
contact interactions in a quasi-2D trap in addition to the
triangular-lattice crystallization of droplets found in different
theoretical [38,40] and experimental [14,37] investigations.
We found that the symmetry of the final state is sensitive to
the initial state employed in numerical simulation. A final
state with a specific symmetry—a square, triangular, or a
honeycomb lattice—can easily be obtained with the use of an
initial state with the same symmetry. No such supersolid-like
state can be obtained in a trapped BEC with isotropic contact
interaction. In the case of dipolar interaction, a single droplet
can be stable for a maximum number of atoms. As the number
of atoms is increased further, multiple droplets are generated,
and due to the interplay between the dipolar repulsion in the
x-y plane and the external trapping potential, a supersolid-like
arrangement of droplets is formed.

In this study we find two distinct types of square-lattice
arrangements of dipolar droplets in a circularly symmetric
quasi-2D trapped dipolar BEC, e.g., with the central site at
x = y = 0 occupied or vacant. In the case when the cen-
tral site is occupied (unoccupied) by a droplet, the wave
function is parity symmetric (parity antisymmetric). In the
first type we find 9, 25, 49, . . . droplets arranged on 3×3,
5×5, 7×7, . . . arrays, whereas in the second type we find
4, 16, 36, . . . droplets arranged on 2×2, 4×4, 6×6, . . .

arrays (see Fig. 2 below). Like usual parity-antisymmetric
states, the square-lattice crystallization with a vacant central
site is an excited state. We also numerically investigate the
triangular-lattice arrangement of droplets studied previously.
In addition to the triangular and square-lattice arrangements,
we also demonstrate a clean honeycomb-lattice arrangement
of droplets. A honeycomb lattice is a special case of a tri-
angular lattice with missing droplets at the centers of adjacent
hexagons. Of these different possibilities, the triangular-lattice
arrangement of droplets and the square-lattice arrangement
with an occupied central site constitute two quasidegenerate

stable ground states. The honeycomb-lattice and square-lattice
arrangements with a vacant central site have slightly larger
energies and are excited states.

We also calculated the energies of the different states and
established a universal scaling relation between the energy
per atom E of the supersolid-like crystallization of droplets
on square, honeycomb, and triangular lattices and the number
of atoms N independent of the type of lattice, which implies
that these three periodic crystallizations of droplets are all
equally probable energetically. Moreover, the three different
crystallizations of droplets appear for the same atomic contact
and dipolar interactions and for the same trap frequencies.
Hence, all these periodic crystallizations of droplets should
be of experimental interest. With this in mind, in this paper,
we have employed the same confining trap frequencies and
a similar number of 164Dy atoms as in previous experimen-
tal [37] and theoretical [38] studies on the triangular-lattice
formation of dipolar droplets. The number of droplets nd is
found to increase approximately linearly with N .

In Sec. II we present the beyond-mean-field model in-
cluding the quantum-fluctuation LHY interaction in the GP
equation. The time-independent version of this equation is
also obtained from a variational rule using a time-independent
energy functional. In Sec. III we present the numerical results
for stationary states with three types of periodic arrays of
droplets, e.g., a square lattice, triangular lattice, and honey-
comb lattice, in a trapped dipolar BEC. Finally, in Sec. IV we
present a summary of our findings.

II. BEYOND-MEAN-FIELD MODEL

In this paper we base our study on a 3D beyond-mean-field
model including the quantum-fluctuation LHY interaction.
We consider a BEC of N dipolar atoms polarized along the z
axis, of mass m each, interacting through the following atomic
dipolar and contact interactions [45–47]:

V (R) = μ0μ
2

4π

1 − 3 cos2 θ

|R|3 + 4π h̄2a

m
δ(R), (1)

where a is the scattering length, μ0 is the permeability of
vacuum, μ is the magnetic dipole moment of each atom, R =
r − r′ is the vector joining two dipoles placed at r ≡ {x, y, z}
and r′ ≡ {x′, y′, z′}, and θ is the angle made by R with the z
axis. The strength of dipolar interaction is given by the dipolar
length

add = μ0μ
2m

12π h̄2 . (2)

The dimensionless ratio

εdd ≡ add

a
(3)

determines the strength of the dipolar interaction relative to
the contact interaction and controls many properties of a dipo-
lar BEC.

A dipolar BEC is described by the following 3D beyond-
mean-field GP equation including the quantum-fluctuation
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LHY interaction [23,38,45–47]:

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2

2m
∇2 + U (r) + 4π h̄2

m
aN |ψ (r, t )|2

+ 3h̄2

m
addN

∫
1 − 3 cos2 θ

|R|3 |ψ (r′, t )|2dr′

+ γQF h̄2

m
|ψ (r, t )|3

]
ψ (r, t ), (4)

where U (r) = 1
2 m(ω2

x x2 + ω2
y y2 + ω2

z z2) is the trap with an-
gular frequencies ωx ≡ 2π fx, ωy ≡ 2π fy, and ωz ≡ 2π fz

along the x, y, and z directions, respectively, and the wave
function is normalized as

∫ |ψ (r, t )|2dr = 1. The coefficient
of the beyond-mean-field quantum-fluctuation LHY term γQF

is given by [23,25,26]

γQF = 128

3

√
πa5Q5(εdd ), (5)

where the auxiliary function

Q5(εdd ) =
∫ 1

0
dx(1 − x + 3xεdd )5/2 (6)

can be evaluated as [23]

Q5(εdd ) = (3εdd )5/2

48
Re

[
(8 + 26ε + 33ε2)

√
1 + ε

+ 15ε3ln

(
1 + √

1 + ε√
ε

)]
, ε = 1 − εdd

3εdd
(7)

≈ 1 + 3

2
ε2

dd, (8)

where Re denotes the real part. In the present study we use
the exact expression (7). Actually, for εdd > 1, Q5 is complex,
and its small imaginary part will be neglected, as in other
studies [37,38], in the present study of stationary droplet
states. The use of the approximate expression (8), such as
in Refs. [39,42], leads to qualitatively acceptable results for
droplet and droplet-lattice formation but may lead to sizable
error in the quantitative estimate of energy, size, etc., of the
final state.

Equation (4) can be reduced to the following dimensionless
form by scaling lengths in units of l = √

h̄/mωz, time in units
of ω−1

z , energy in units of h̄ωz, and density |ψ |2 in units of
l−3:

i
∂ψ (r, t )

∂t
=

[
−1

2
∇2 + 1

2

(
f 2
x

f 2
z

x2 + f 2
y

f 2
z

y2 + z2

)

+ 3addN
∫

1 − 3 cos2 θ

|R|3 |ψ (r′, t )|2dr′

+ 4πaN |ψ (r, t )|2 + γQFN3/2|ψ (r, t )|3
]
ψ (r, t ).

(9)

Equation (9) can also be obtained from the variational rule

i
∂ψ

∂t
= δE

δψ∗ (10)

with the following energy functional (energy per atom):

E =
∫

dr

[
|∇ψ (r)|2

2
+ 1

2

(
f 2
x

f 2
z

x2 + f 2
y

f 2
z

y2 + z2

)
|ψ (r)|2

+ 3

2
addN |ψ (r)|2

∫
1 − 3 cos2 θ

R3
|ψ (r′)|2dr′

+ 2πNa|ψ (r)|4 + 2γQF

5
N3/2|ψ (r)|5

]
(11)

for a stationary state.

III. NUMERICAL RESULTS

We solve partial differential equation (9) for a dipolar BEC
numerically using the FORTRAN and C programs [46] or their
open-multiprocessing versions [48] using the split-time-step
Crank-Nicolson method [49] employing the imaginary-time
propagation rule. Often, the intensity of the system has a large
extension in the x-y plane, and it is appropriate to take a larger
number of discretization steps along the x and y directions
compared to the steps along the z direction. It is problematic
to treat numerically the nonlocal dipolar interaction integral in
the beyond-mean-free model (9) in configuration space due to
the 1/|R|3 term. To circumvent this problem, this term is eval-
uated in momentum space by a Fourier transformation using a
convolution identity [46], which is advantageous numerically
due to the smooth behavior of this term in momentum space.
The Fourier transformation of the dipolar potential in three
dimensions can be found analytically, enhancing the accuracy
of the numerical procedure.

Instead of presenting results in dimensionless units, we
prefer to relate our results to the recent experimental [37] and
related theoretical [38] studies on dipolar droplets using 164Dy
atoms. For the appearance of droplets we need a strongly dipo-
lar atom with εdd > 1 [14]. In this study we take a = 85a0,
close to its experimental estimate a = (92 ± 8)a0 [50], and
add = 130.8a0, where a0 is the Bohr radius; consequently,
εdd = 1.5388 . . . > 1. This value of scattering length is close
to the scattering lengths a = 88a0 [37,38] and a = 70a0 [39]
used in some other studies of quantum droplets in a quasi-
2D dipolar BEC. The trap frequencies along the x, z, and
y directions are taken to be fx = 33 Hz, fz = 167 Hz, and
fy = 110 Hz (trap UA), 60 Hz (trap UB), and 33 Hz (trap UC) as
in recent experimental [37] and theoretical [38] investigations
of triangular-lattice crystallization of droplets. Trap UA is of
the quasi-1D type along the x direction ( fy, fz 	 fx), and trap
UC is of the cylindrically symmetric quasi-2D type in the x-y
plane ( fx = fy 
 fz). Trap UB is an asymmetric trap ( fx �=
fy �= fz) in the transition domain from the quasi-1D to the
quasi-2D type. With these parameters—frequencies for trap
UC and scattering length a—we found simultaneously square-,
triangular-, and honeycomb-lattice crystallizations of droplets
in a trapped quasi-2D dipolar BEC of 164Dy atoms, and these
three different arrangements of droplets were found to have
similar energies for a fixed N . In this study we have m(164Dy)
= 164×1.66054×10−27 kg, h̄ = 1.0545718×10−34 m2 kg/s,
and ωz = 2π×167 Hz, and consequently, the unit of length
l = √

h̄/mωz = 0.607 μm.
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For efficient and quick convergence of a single-droplet
state or of a lattice-droplet arrangement in an imaginary-
time calculation, an appropriate choice of the initial state is
essential. The numerical simulation of a single-droplet state
was started with a Gaussian wave function of small width:
φ(r) ∼ e−x2−y2

e−z2/α2
, with the width parameter α ≈ 4. The

numerical simulation for a lattice-droplet state was started
by many Gaussian droplets arranged on a desired lattice. For
example, a 49-droplet square-lattice state [see Fig. 3(f) below]
was started with the following analytic function:

φ(r) ∼
±1,±2,±3∑

i, j=0

e−(x+βi)2−(y+β j)2
e−z2/α2

, (12)

with the lattice length β ≈ 5. The calculations with
honeycomb- and triangular-lattice states were initiated simi-
larly using analytic initial functions with the droplets arranged
appropriately.

To find a 1D crystallization of droplets, we consider 25 000
164Dy atoms in the quasi-1D trap UA. With this trap fx 

fy, fz, the dipolar BEC crystallizes in droplets along the x
axis. The converged final state in this case can be obtained
by imaginary-time simulation using an initial Gaussian wave
function. However, the convergence is quicker if we use an
analytic wave function for a few droplets (three or five)
periodically arranged along the x direction with a mutual sepa-
ration β and symmetrically placed around the occupied x = 0
site. A contour plot of the z = 0 section of the 3D density
|ψ (x, y, 0)|2 is shown in Fig. 1(a) with three droplets placed
symmetrically around x = 0 (a parity-symmetric state). For
the same set of parameters, there is a parity-antisymmetric
excited state of higher energy with four droplets placed sym-
metrically around x = 0, but with the central site at x = 0
unoccupied (not shown here; see Fig. 1(a) of Ref. [38]). In
trap UB, as trap frequency fy is reduced to 60 Hz, the number
of droplets for N = 25 000 reduces from three to one, as
shown in Fig. 1(b), where we use the final converged wave
function of Fig. 1(a) as the initial state in the imaginary-time
simulation. A droplet will be formed when the density is larger
than a critical density. Inside a droplet the dipolar interaction
is so strong that the dipolar BEC becomes quasi-1D along
the z direction with a small transverse section. A weaker trap
in Fig. 1(b), compared to that in Fig. 1(a), requires a larger
number of atoms to attain the critical density required for
droplet formation [40]. Consequently, a droplet in the weaker
trap UB can accommodate a larger number of atoms, and the
number of droplets is reduced from three in trap UA to one
in trap UB. In the cylindrically symmetric quasi-2D weak trap
UC , the central density for 25 000 atoms is smaller than the
threshold for droplet formation; consequently, no droplets can
be formed, and the density is of normal Gaussian type [see
Fig. 1(c)], with a large increase in the size of the condensate.
However, for N > Ncr = 33 000 the critical density for the
formation of a droplet is attained in trap UC , and a droplet
can be formed as shown in Fig. 1(d) for N = 40 000.

We illustrate the quasi-1D to quasi-2D transition of a
square-lattice arrangement of droplets for a fixed number of
atoms N = 70 000 in Figs. 1(e)–1(g) for traps UA, UB and UC ,
respectively, through a contour plot of 2D density |ψ (x, y, 0)|2
in the x-y plane. In the quasi-1D trap UA, we have a linear

FIG. 1. Contour plot of the density |ψ (x, y, 0)|2 of a dipolar
BEC of N = 25 000 164Dy atoms in traps (a) UA( fy = 110 Hz),
(b) UB( fy = 60 Hz), and (c) UC ( fy = 33 Hz). (d) The same for
N = 40 000 atoms in trap UC . The same for N = 70 000 atoms in
traps (e) UA, (f) UB, and (g) UC . (h) The same for N = 132 000
atoms in trap UC . The same for N = 115 000 atoms in traps (i)
UA, (j) UB, and (k) UC . (l) The same for N = 150 000 atoms in
trap UC . All plots are labeled by the respective E and N values.
In the first column we illustrate the formation of a single droplet;
in the second column we illustrate the formation of a square-lattice
arrangement of droplets, and in the third column we illustrate that of
a triangular-lattice arrangement of droplets. Other parameters in all
calculations are fx = 33 Hz, fz = 167 Hz, a = 85a0, add = 130.8a0.
The plotted quantities in all panels are dimensionless; the length
scale l ≡ √

h̄/mωz = 0.607 μm.

chain of droplets in Fig. 1(e), and in the quasi-2D trap UC , an
x-y-symmetric arrangement of droplets is obtained, as shown
in Fig. 1(g). An arrangement of droplets in the quasi-1D to
quasi-2D transition domain in trap UB is illustrated in Fig. 1(f).
The number of droplets in a specific trap increases with N ,
as shown in Fig. 1(h) for N = 132 000 in trap UC with 11
droplets compared to 5 droplets in Fig. 1(g) for N = 70 000.
The quasi-1D to quasi-2D transition of the triangular-lattice
arrangement of droplets for N = 115 000 in Figs. 1(i)–1(k)
for traps UA, UB, and UC , respectively, is considered next
through a contour plot of 2D density |ψ (x, y, 0)|2 in the x-y
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FIG. 2. The a/a0 versus N phase plot of droplet formation in
trap UC illustrating the square-, triangular- and honeycomb-lattice
states. The region marked “BEC” represents a normal BEC of the
type displayed in Fig. 1(c), where no droplet can be formed.

plane. In the quasi-1D trap UA, again, we have a linear array
of droplets in Fig. 1(i), and a triangular lattice of droplets
in the quasi-2D trap UC is displayed in Fig. 1(k). An inter-
mediate triangular-lattice arrangement of droplets in trap UB

in the transition from quasi-1D to quasi-2D is presented in
Fig. 1(j). In the quasi-1D trap UA, the number of droplets
nd increases with N , as can be found from Figs. 1(a), 1(e)
and 1(i). In the quasi-2D trap UC , in general, nd also increases
with N [compare Figs. 1(g), 1(k) 1(h), and 1(l) with 5, 10, 11,
and 13 droplets for N = 70 000, 115 000, 132 000, 150 000,
respectively]. The number of droplets is roughly proportional
to the number of atoms. In Figs. 1(k) and 1(l) we find that
a triangle-shaped triangular lattice has changed to a star-
shaped triangular lattice with the increase of N in the same
trap UC .

In all cases, a cloud of atoms is found surrounding the
lattice arrangement of droplets. It was not possible to avoid
this cloud; if the calculation is repeated with a smaller N ,
the droplets at the four corners start to disappear, leaving the
cloud intact. A similar cloud was also found in other the-
oretical [38–40] and experimental [37] investigations. After
having established the formation of dipolar droplets of differ-
ent symmetries, we now present an a/a0 versus N phase plot
for droplet formation in trap UC (our study will be confined
to this quasi-2D trap) in Fig. 2, where the experimental scat-
tering length a = 92a0 [50] and the present scattering length
a = 85a0 are marked by arrows. This phase plot bears some
similarity to the phase plot presented in Fig. 3 of Ref. [40]
for add = 130a0 in spite of the different trap frequencies in
that reference. Although the region of droplet formation of
Ref. [40] is quite similar to that in Fig. 2, only triangular-
lattice formation is reported in Ref. [40]. Here we show
that it is possible to have periodic square-, honeycomb-, and
triangular-lattice arrangements of droplets in the same region.
The stripe and honeycomb structures (and not the honeycomb-
lattice droplet as reported in this paper) of Fig. 3 of Ref. [40]
are possible beyond N = 6×105, which is not considered in
Fig. 2. In this study, we employ a = 85a0 and a large N deep
inside the region of droplet formation in Fig. 2, where a large
number of droplets can be formed.

To study the square-lattice crystallization of droplets in
the cylindrically symmetric quasi-2D trap UC we note that
there are two types of square-lattice crystallization: an even
number of droplets on each side of the square (with 2×2 =

FIG. 3. Contour plot of the density |ψ (x, y, 0)|2 of square-lattice
crystallization of 4, 9, 16, 25, 36, and 49 droplets, respectively,
for (a) N = 48 000, (b) N = 108 000, (c) N = 192 000, (d) N =
300 000, (e) N = 432 000, and (f) N = 588 000 in trap UC .

4, 4×4 = 16, 6×6 = 36, etc., droplets) and an odd number
of droplets on each side of the square (with 3×3 = 9, 5×5 =
25, 7×7 = 49, etc., droplets); the corresponding density
|ψ (x, y, 0)|2 in trap UC is plotted in Figs. 3(a)–3(f) for N =
48 000, 108 000, 192 000, 300 000, 432 000, and 588 000, re-
spectively. For a symmetric distribution of the droplets, for
the first (second) type, the central site at x = y = 0 has to
be vacant (occupied), corresponding to a parity-antisymmetric
(parity-symmetric) state. All states are obtained by imaginary-
time simulation using an analytic initial wave function on
a square lattice with lattice spacing β [see Eq. (12)]. The
appropriate N per droplet in a calculation for an efficient
square-lattice formation was found to be of the order of
12 000. For a smaller N, the droplets at the corners may
disappear, and for a larger N, an intense cloud forms around
the droplets. With a further increase in the number of atoms,
multiple (about two to four) droplets will form, thus reducing
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FIG. 4. Isodensity contour of the 3D density |ψ (x, y, z)|2 for
(a) the square-lattice crystallization in Fig. 3(d) for N = 300 000,
(b) the honeycomb-lattice crystallization in Fig. 5(b) for N =
264 000, and (c) the triangular-lattice crystallization in Fig. 6(b) for
N = 228 000 in trap UC .

the cloud. In Fig. 4(a) we display the isodensity contour of
density |ψ (x, y, z)|2 for the square-lattice crystallization in
Fig. 3(d).

A numerical simulation of the honeycomb-lattice crys-
tallization of droplets needed much more care than the
square- and triangular-lattice arrangements of droplets. This
is because this arrangement is basically a triangular-lattice
arrangement of droplets with a missing droplet at the center of
all closed adjacent hexagons, and if the initial state is not prop-
erly chosen, the imaginary-time numerical simulation may
converge to the triangular-lattice arrangement of droplets, fill-
ing in the vacant positions at the center of the closed hexagons
with droplets. The densities of the honeycomb-lattice crys-
tallization for 6 and 24 droplets in trap UC are displayed in
Figs. 5(a) and 5(b), respectively, for N = 72 000 and 264 000.
In Fig. 4(b) we present the isodensity contour of the 3D
density |ψ (x, y, z)|2 for the honeycomb-lattice crystallization
in Fig. 5(b).

Finally, we investigate the triangular-lattice crystallization
of droplets in trap UC . In Figs. 6(a), 6(b) and 6(c) we display
the contour plot of the density |ψ (x, y, 0)|2 of the triangular-
lattice crystallization for 7, 19, and 37 droplets in trap UC

for N = 84 000, 228 000, and 444 000, respectively, calcu-
lated using an initial state with similar symmetry properties.
In Fig. 4(c) we display the isodensity contour of the den-
sity |ψ (x, y, z)|2 for the triangular-lattice crystallization in
Fig. 6(b). It is pertinent to ask the following: of the states
of different arrangements of dipolar droplets, which is the

FIG. 5. Contour plot of the density |ψ (x, y, 0)|2 of the
honeycomb-lattice crystallization of droplets for (a) N = 72 000 and
(b) N = 264 000 in trap UC .

FIG. 6. Contour plot of the density |ψ (x, y, 0)|2 of the triangular-
lattice crystallization of droplets for (a) N = 84 000, (b) N =
228 000, and (c) N = 444 000 in trap UC .

ground state(s) and which are the excited states? There are
two types of arrangement of droplets: one with the central site
at x = y = 0 occupied (the square lattice with an odd number
of droplets and the triangular lattice) and one with the central
site vacant (the square lattice with an even number of droplets
and the honeycomb lattice). We find that the first of these
types forms quasidegenerate ground states and the second
type forms low-lying excited states. To demonstrate this claim
we display in Figs. 7(a)–7(c) contour plots of the density
|ψ (x, y, 0)|2 for N = 264 000 for triangular-lattice symmetry
and two types of square-lattice symmetries. We find from
Figs. 6(b) and 7(a) that we can have a 19-droplet triangular-
lattice state for N = 228 000 and N = 264 000, respectively;
with the increased N in Fig. 7(a) we have an increased density
of the atom cloud. Similarly, in Figs. 3(d) and 7(c) we find
a 25-droplet square-lattice state for N = 300 000 and N =
264 000, respectively. In this case with larger N in Fig. 3(d),
we have an increased density of the atom cloud. From Figs. 7
and 5(b), for a fixed N = 264 000, we find that the parity-
symmetric square-lattice state with an occupied central site
[Fig. 7(c)] and the triangular-lattice state [Fig. 7(a)] consti-
tute the quasidegenerate ground states of energy E = 8.77
and E = 8.78, respectively. The parity-antisymmetric square-
lattice state with vacant central site [E = 8.80; Fig. 7(b)] and
the honeycomb-lattice state [E = 8.85; Fig. 5(b)] are low-
lying excited states. A similar result was found to be true for a
few other N values (the details are not reported in this paper).
In addition to the states of droplet arrangements on periodic
lattices, which are highlighted in this paper, there could also
be states of droplet arrangements with no specific symmetry.
For a specific trap and for a fixed N all these states have
nearby energies (not illustrated in this paper). In addition to

FIG. 7. Contour plot of the density |ψ (x, y, 0)|2 of (a) the
triangular-lattice crystallization, (b) the square-lattice crystallization
with a vacant central site, and (c) the square-lattice crystallization
with an occupied central site for N = 264 000 in trap UC .
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FIG. 8. (a) Energy per atom E and (b) number of droplets nd versus N for all lattice states in trap UC on log-log scale; sq: square-lattice states
in Figs. 1(g), 1(h) and 3; tr: triangular-lattice states in Figs. 1(k), 1(l) and 6; ho: honeycomb-lattice states in Fig. 5; mix: the states presented
in Fig. 7 and a few more not shown in this paper; BEC: normal BEC superfluid for smaller N [states of the type presented in Fig. 1(c)]; [39]:
one- to seven-droplet states from Fig. 2(a) of [39] employing fx = fy = 60 Hz, fz = 300 Hz, a = 70a0, and approximation (8) in arbitrary
units. The points are numerical results, and the straight lines labeled (a) “Eq. (13)” and (b) “fit” are the scaling relations E ≈ 0.06×N0.4 and
nd ≈ N/12000, respectively. The regions of normal BEC and droplet formation in trap UC are marked “BEC” and “droplet,” respectively.

the quasidegenerate stable ground states, the imaginary-time
approach also finds excited states with a specific symmetry,
e.g., the parity-antisymmetric square-lattice and honeycomb-
lattice states, which could be metastable.

To study the universal nature of the formation of droplets
for different N and different lattice symmetries in trap UC ,
we plot in Figs. 8(a) and 8(b) the energy E per atom and the
number of droplets nd versus the corresponding N . In addition,
we plot the energy from Fig. 2(a) of Ref. [39] for one- to
seven-droplet states, in arbitrary units, calculated with differ-
ent trap parameters ( fx = fy = 60 Hz and fz = 300 Hz) and
a different scattering length, a = 70a0. We could reproduce
the results of Fig. 2(a) of Ref. [39] using the approximate
auxiliary function (8) in place of the exact expression (7) used
in this paper. For example, using Eq. (8), for the one-droplet
state of Ref. [39] we obtain energy per atom E/h ≈ 348 Hz,
and for the seven-droplet state we obtain E/h ≈ 840 Hz, close
to the results illustrated in Fig. 2(a) of Ref. [39]. The use of
Eq. (7) leads to much larger energies. From Fig. 8(a) we find
the scaling relation between E and N in the region of droplet
formation (N > Ncr = 33 000 in trap UC),

E ≈ 0.06 × N0.4, (13)

independent of the lattice symmetry, scattering length a, and
trap parameters. We multiplied the results of Ref. [39] by
an arbitrary factor (∼1.5) to take care of the prefactor in
scaling (13); nevertheless, it is remarkable that all points lie on
the same universal line and the exponent (0.4) is independent
of scattering length and trap parameters. The point with the
smallest number of atoms from our calculation in Fig. 8(a)
is N = 35 000 with one droplet. By including the results of
Ref. [39], we could include six points with N < 40 000 con-
taining one to seven droplets covering about one order of
magnitude in Fig. 8(a): with the parameters of Ref. [39] one
droplet can be generated with a much smaller number N =
3980 of atoms. The points labeled BEC in Fig. 8(a) represent a
normal superfluid BEC without droplet formation (see Fig. 2).
These points deviate a bit from the universal scaling (13)

valid for droplets, especially for small N . From Fig. 8(b), with
exactly the same points as in Fig. 8(a), the number of droplets
nd in an arrangement is approximately linearly proportional to
N : nd ≈ N/12 000, indicating the average number of 12 000
atoms per droplet; we note that the points generating the large
width of the scaling in Fig. 8(b) have collapsed on the straight-
line fit (13) in Fig. 8(a). The small difference in energy
between the ground and excited states [see Figs. 7 and 5(b)] is
not noticeable in Fig. 8(a). We have established the universal
nature of scaling (13) in the fact that the exponent is indepen-
dent of not only the value of N extended over about two orders
of magnitude but also of different parameters of the problem,
trap frequencies, and scattering length. It remains to be seen
whether this exponent is independent of large variation of the
dipole moment or of the details of the beyond-mean-field cor-
rection, which stops the collapse. Only after establishing the
true universality can the physical origin of the scaling relation
be addressed [51], which will be an interesting topic of future
investigation.

In this theoretical study we have neglected the effect of
the three-body recombination loss of atoms. A matter of
concern for the experimental observation [15,42] of a spa-
tially periodic lattice of droplets is the large atom number
(N ∼ 105) required, where the effect of the three-body re-
combination loss of atoms might not be negligible [40].
Nevertheless, a reasonably small value of the loss parameter
(= 1.25×10−41 m6/s) is estimated for 164Dy atoms [15,29]
from measurements on a thermal cloud and is assumed to
be constant over the small range of scattering lengths near
a = 60–80a0 close to the experimental estimate a = 92a0 [50]
and the value a = 85a0 used in this study. Considering the
upper estimate of N = 106 atoms in this study (see Figs. 3
and 4) with a volume of 40×40×10 in dimensionless units
with length scale l = 0.607 μm, we obtain a typical atomic
density of 3×1014 cm−3 = 3×1020 m−3, which is within the
acceptable limit for the formation of droplets in an exper-
iment, as established in previous experimental [15,29] and
theoretical [40,42] investigations.
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IV. SUMMARY

We have demonstrated, using the GP equation including
the quantum-fluctuation LHY interaction, supersolid-like spa-
tially periodic crystallization of droplets of a cylindrically
symmetric quasi-2D trapped dipolar BEC on square and
honeycomb lattices in addition to the triangular-lattice crys-
tallization observed experimentally [14] and studied theoret-
ically [38,39]. There are two possible types of square-lattice
crystallization of droplets, e.g., with the central site at x =
y = 0 occupied (parity symmetric) or vacant (parity antisym-
metric). The parity-symmetric square-lattice crystallization
and triangular-lattice crystallization form two quasidegenerate
ground states. The parity-antisymmetric square-lattice crystal-
lization and honeycomb-lattice crystallization, both with the
central site vacant, form two low-lying excited states. The
number of droplets in these lattice arrangements increases
with the number of atoms in an approximately linear fash-
ion. We established a robust scaling relation (13) valid for
about two orders of magnitude between the energy per atom
and the number of atoms in the region of droplet formation,
independent of the lattice symmetry (square, honeycomb,
or triangular) of droplets, so the three lattice crystalliza-

tions should be of phenomenological interest. The stability
of each of these crystallizations can be theoretically es-
tablished by a linear stability analysis. However, this is a
formidable task of future interest, considering the nonlocal
nature of dipolar interaction. Nevertheless, both the triangular-
and square-lattice structures are close-packed quasidegener-
ate structures with a predominantly repulsive “interdroplet”
interaction and are expected to be stable, whereas the ex-
cited honeycomb-lattice structure has an empty site at the
center of a hexagon and is conjectured to be unstable.
Hence, from an energetic consideration, the parity-symmetric
square-lattice crystallization, with the central site at x = y = 0
occupied, is a likely candidate for experimental observa-
tion in addition to the already observed triangular-lattice
crystallization. The results of this paper can be tested in exper-
iments with strongly dipolar atomic BECs of 164Dy or 168Er
atoms with present knowhow.
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Adhikari, and A. Balaž, Comput. Phys. Commun. 209, 190
(2016).

[49] P. Muruganandam and S. K. Adhikari, Comput. Phys. Commun.
180, 1888 (2009).

[50] Y. Tang, A. Sykes, N. Q. Burdick, J. L. Bohn, and B. L. Lev,
Phys. Rev. A 92, 022703 (2015).

[51] M. D’Onofrio, P. Marziani, and C. Chiosi, Front. Astron. Space
Sci. 8, 694554 (2021).

033311-9

https://doi.org/10.1038/s41586-019-1568-6
https://doi.org/10.1103/PhysRevLett.119.250402
https://doi.org/10.1038/s41586-021-03725-7
https://doi.org/10.1103/PhysRevA.104.063307
https://doi.org/10.1103/PhysRevLett.121.195301
https://doi.org/10.1103/PhysRevA.104.013310
https://doi.org/10.1103/PhysRevResearch.3.033125
https://doi.org/10.1103/PhysRevLett.123.015301
https://doi.org/10.1103/PhysRevLett.127.155301
https://doi.org/10.1038/nature21067
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.1088/1555-6611/aa9150
https://doi.org/10.1016/j.cpc.2016.07.029
https://doi.org/10.1016/j.cpc.2009.04.015
https://doi.org/10.1103/PhysRevA.92.022703
https://doi.org/10.3389/fspas.2021.694554

