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Topological phases of ultracold atoms recently have been intensively studied in both optical superlattices
and Raman lattices. However, the topological features induced by the interplay between such two lattices
remain largely unexplored. Here we present an optical Raman superlattice system that incorporates an optical
superlattice and a Raman superlattice. The Raman superlattice presented here supports tunable dimerized
spin-orbit couplings and staggered on-site spin flips. We find that such a system respects a spin-rotation symmetry
and has much richer topological properties. Specifically, we show that various topological phases could emerge
in the optical Raman superlattice, such as four different chiral topological insulator phases and two different
quantum spin Hall insulator phases, identified by spin winding and spin Chern numbers, respectively. We also
demonstrate that the spin-dependent topological invariants could be directly measured by quench dynamics.
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I. INTRODUCTION

Ultracold atoms trapped in optical lattices provide a ver-
satile synthetic system for exploring topological phases of
matter [1–3]. Much experimental progress achieved in this
field has been simply based on optical superlattices. For
instance, using ultracold atoms trapped in one-dimensional
(1D) optical superlattices, the seminal Su-Schrieffer-Heeger
(SSH) model [4] has been naturally implemented in exper-
iments [5]. It is well known that such a model supports
two-band topological insulator phases protected by chiral
symmetry [4]. The quantized Zak phases characterizing the
topological features of the Bloch bands have been directly
measured by Bloch oscillations and Ramsey interferometry
[5]. Furthermore, quantized topological pumping [6] also has
been experimentally realized [7–10] by controlling the optical
superlattices in a cyclic and adiabatic manner [11–21]. In
addition to 1D topological phenomena, the optical superlattice
system also allows one to explore 2D [22,23] and 4D integer
quantum Hall insulator phases [10].

In parallel, with the experimentally successful preparation
of spin-orbit couplings in ultracold gases [24–27], optical Ra-
man lattices have been developed into a powerful platform for
implementing spin-orbit couplings in lattice systems [28–37],
in which Raman lattice potentials are additionally applied
except for the conventional optical lattice trapping potentials.
The Raman potentials are generated through a two-photon
Raman transition which couples the spin up and the spin down
encoded by two atomic internal states [28,29]. Based on gen-
erated spin-orbit couplings in different dimensions, various
topological phases could be created and probed in optical Ra-
man lattices, including 1D topological insulator phases [33],
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2D topological Chern insulator phases [30,32,34,35], and 3D
topological Weyl [37–40] and nodal-line semimetal phases
[36,41,42]. Moreover, our recent study also shows that optical
Raman lattices have the ability to generate complex spin-orbit
couplings by designing suitable Raman lattice potentials [43],
like the 3D next-nearest-neighbor spin-orbit couplings, that
could enable exotic topological nodal chain semimetal phases
[43].

In this paper, we present an optical Raman superlattice
system that integrates an optical superlattice and a Raman
superlattice. Different from previous Raman lattices, the Ra-
man superlattice can generate dimerized spin-orbit couplings
and staggered on-site spin flips, which can be directly im-
plemented through two proper Raman lasers. We find that
the interplay between the optical superlattice and the Ra-
man superlattice can lead to much richer topological phases.
First, we reveal that the optical Raman superlattice system
satisfies a spin-rotation symmetry, which allows us to use
spin-dependent topological invariants to identify its topolog-
ical properties. Second, we demonstrate that the system in
the case of turning off the on-site terms can support four
different 1D four-band chiral topological insulator phases,
characterized by spin winding numbers. Third, with on-site
terms, the corresponding system can be mapped into a syn-
thetic 2D momentum space and support two different quantum
spin Hall insulator phases and one double Chern insulator
phase, characterized by spin Chern numbers. In both cases, the
topological properties are explored in detail by numerically
extracting topological phase diagrams and demonstrating
bulk-edge correspondences. In addition, we also show that
both the spin winding and spin Chern numbers can be directly
measured by quench dynamics.

The paper is organized as follows. Section II presents the
construction of optical Raman superlattices. Section III stud-
ies the symmetry of the Bloch Hamiltonian. Sections IV and
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FIG. 1. (a) Schematic illustration of the double-� configuration
for creating a Raman superlattice potential. Each Raman coupling
is induced by one standing-wave laser with Rabi frequency �1x or
�2x and one plane-wave laser with Rabi frequency �0. �1,2 are the
detunings from the auxiliary excited states |e〉1,2. (b) Implemented
lattice model with dimerized spin-orbit couplings and staggered on-
site spin flips. Specifically, each unit cell has two sublattice sites a
and b; the intra- and intercell spin-conserved hoppings are J1 and
J2, the intra- and intercell spin-flip hoppings are K1 and K2, and the
on-site spin-flip strengths for the sublattices a and b are ±M.

V exhibit that optical Raman superlattices provide a versatile
platform for exploring various four-band 1D and 2D topologi-
cal insulator phases, protected by spin winding and spin Chern
numbers, respectively. Section VI summaries the main results
of this paper and outlines future works along this line.

II. OPTICAL RAMAN SUPERLATTICES

We consider two-component ultracold fermionic 173Yb (or
40K) atoms trapped in a one-dimensional optical Raman su-
perlattice. The two components are represented by the two
magnetic sublevels |↑〉 = |5/2, 3/2〉 and |↓〉 = |5/2, 5/2〉,
respectively encoding the spin up and the spin down. The
optical Raman superlattice is produced by a spin-independent
optical superlattice potential and a spin-dependent Raman
superlattice potential. The state-independent optical superlat-
tice potential is generated by superimposing two standing-
wave lasers [5], i.e, Vx = V1 cos2(k0x) + V2 cos2(k0x/2 +
ϕ/2), where V1,2 and ϕ can be varied by tuning the intensities
and phases of the two standing-wave lasers. In contrast to
previously applied Raman potentials [28–37], here we con-
sider a superlattice Raman potential created by two sets of
two-photon Raman transitions. As illustrated in Fig. 1(a),
this is done by applying one standing-wave laser with Rabi
frequency �1x = �1 sin(2k0x) [�2x = �2 cos(k0x + θ )] and
one plane-wave laser with Rabi frequency �0 to induce the
transition between the spin up (spin down) state and the
auxiliary excited state |e〉1 (|e〉2). Note that such double-� Ra-
man transitions have been experimentally realized with 173Yb
atoms [33,36]. When both transitions have a large detuning
�1,2, we obtain two Raman potentials and their superposition
creates the Raman superlattice potential Vsoσx, where Vso =
�1 sin(2k0x) + �2 cos(k0x + θ ), �1,2 = �1,2�0/�1,2, and θ

can be controlled by tuning the intensities and phases of the
two Raman lasers.

The single-particle Hamiltonian for the optical Raman su-
perlattice system is written as

Hs = p2
x

2m
+ Vx + Vsoσx. (1)

In the second quantization, this Hamiltonian takes the follow-
ing form:

H =
∫

dxψ†(x)Hsψ (x), (2)

where the field operator ψ (x) = [ψ↑(x), ψ↓(x)]T . Here we
only consider atoms staying in the ground band. Then the field
operator can be further expanded as

ψσ (x) =
∑

x

W (x − j)Cjσ , (3)

where Cjσ is the annihilation operator with spin σ =↑ and
↓ at the lattice site j and W (x − j) is the ground-band
spin-independent Wannier function centered at the lattice site
j. Here we assume the lattice spacing a = π/k0 = 1. The
tight-binding Hamiltonian for the optical Raman superlattice
system is derived by substituting Eq. (3) into Eq. (2) [28,29].

In the case without the Raman superlattice potential, the
tight-binding Hamiltonian reads

H1 = −
∑

j

t j, j+1(C†
j↑Cj+1↑ + C†

j↓Cj+1↓ + H.c.)

−
∑

j

δ j (C
†
j↑Cj↑ + C†

j↓Cj↓). (4)

The nearest-neighbor hopping rates are calculated as

t j, j+1 = −
∫

dxW ∗(x − j)

(
p2

x

2m
+ Vx

)
W (x − j − 1)

= t0 − V2

∫
dxW ∗(x− j)

1+ cos(k0x + ϕ)

2
W (x− j−1)

= t0 + (−1) j

2
V2

∫
dxW ∗(x) sin(k0x + ϕ)W (x − 1)

= t0 + (−1) j

2
V2

[
cos(ϕ)

∫
dxW ∗(x) sin(k0x)W (x − 1)

+ sin(ϕ)
∫

dxW ∗(x) cos(k0x)W (x − 1)

]

= t0 + (−1) j[t1 cos(ϕ) + t2 sin(ϕ)], (5)

where

t0 = −
∫

dxW ∗(x − j)

(
p2

x

2m
+ V1 cos2 (k0x)

)
W (x − j − 1),

t1 = V2

2

∫
dxW ∗(x) sin(k0x)W (x − 1), (6)

t2 = V2

2

∫
dxW ∗(x) cos(k0x)W (x − 1).

The on-site energies are derived as

δ j = −
∫

dxW ∗(x − j)

(
p2

x

2m
+ Vx

)
W (x − j)
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= − V2

∫
dxW ∗(x − j)

1 + cos(k0x + ϕ)

2
W (x − j) + c.e.

= (−1) j

2
V2 sin(ϕ)

∫
dxW ∗(x) cos(k0x)W (x) + c.e.

=(−1) jδ sin(ϕ) + c.e., (7)

where

δ = V2

2

∫
dxW ∗(x) cos(k0x)W (x), (8)

Here, c.e. denotes constant energy and can be neglected.
cos2(k0 j) = 0 is used in the analytical calculations. As we can
see, the parameters t j, j+1 and � j are dependent on the parity
of the lattice site j. When ϕ = 0 and π , the on-site en-
ergy vanishes, the corresponding system implements the SSH
model [5], but with spins, where nontrivial (trivial) topologi-
cal phases can be prepared by tuning ϕ = 0 (π ).

Similarly, the tight-binding Hamiltonian created by the
Raman superlattice potential is derived as

H2 = −
∑

j

t so
j, j+1(C†

j↑Cj+1↓ + C†
j↓Cj+1↑ + H.c.)

−
∑

j

m j (C
†
j↑Cj↓ + H.c.), (9)

where the spin-orbit coupling strengths and the on-site spin-
flip rates are given by

t so
j, j+1 = t so

0 + (−1) j
[
t so
1 cos(θ ) + t so

2 sin(θ )
]
,

mj = (−1) jm sin(θ ), (10)

with

t so
0 = �1

∫
dxW ∗(x) sin(2k0x)W (x − 1),

t so
1 = �2

∫
dxW ∗(x) sin(k0x)W (x − 1),

t so
2 = �2

∫
dxW ∗(x) cos(k0x)W (x − 1),

m = �2

∫
dxW ∗(x) cos(k0x)W (x). (11)

We find that t so
j, j+1 and Mj are also dependent on the parity

of the lattice site j. When θ = 0 and π , the Raman superlat-
tice potential only generates dimerized spin-orbit couplings.
When θ �= 0 or π , in addition to the dimerized spin-orbit
couplings, staggered on-site spin flips are also induced by the
Raman superlattice potential.

Due to the parity-dependent feature of the lattice param-
eters in both H1 and H2, each unit cell in the optical Raman
superlattice has two sites. Suppose the two lattice sites in the
jth unit cell are labeled as a j and b j . The total Hamiltonian
H = H1 + H2 can be rewritten as

H =
∑

j

J1(a†
j↑b j↑ + a†

j↓b j↓ + H.c.)

+
∑

j

J2(a†
j↑b j−1↑ + a†

j↓b j−1↓ + H.c.)

+ �
∑

j

(a†
j↑a j↑ + a†

j↓a j↓ − b†
j↑b j↑ − b†

j↓b j↓)

+
∑

j

K1(a†
j↑b j↓ + a†

j↓b j↑ + H.c.)

+
∑

j

K2(a†
j↑b j−1↓ + a†

j↓b j−1↑ + H.c.)

+ M
∑

j

(a†
j↑a j↓ − b†

j↑b j↓ + H.c.), (12)

where J1,2 = ±[t1 cos(ϕ) + t2 sin(ϕ)] − t0, K1,2 =
±[t so

1 cos(θ ) + t so
2 sin(θ )] − t so

0 , � = δ sin(ϕ), and
M = m sin(θ ). This model is highly tunable, in that the
dimerized spin-conserved hoppings, dimerized spin-orbit
couplings, staggered on-site spin filps and staggered on-site
energies all can be individually controlled by tuning the laser
intensities and phases, which allows the system to enter into
different topological phases.

III. SPIN-ROTATION SYMMETRY

Topological features of optical Raman superlattices are
rooted in the momentum space. Through defining a four-
component operator C(kx ) = [akx↑, akx↓, bkx↑, bkx↓]T and im-
plementing a Fourier transformation, the momentum-space
Hamiltonian is derived as H (kx ) = ∑

kx
C†(kx )h(kx )C(kx ),

with

h(kx ) = [J1 + J2 cos(kx )]τxσ0 + J2 sin(kx )τyσ0

+ [K1 + K2 cos(kx )]τxσx + K2 sin(kx )τyσx

+ �τzσ0 + Mτzσx, (13)

where τi and σi are the Pauli matrices respectively defined on
the sublattice and the spin degree of freedom. We find that the
Bloch Hamiltonian h(kx ) satisfies a spin-rotation symmetry,
i.e.,

Rxh(kx )R−1
x = h(kx ), (14)

where Rx = τ0σx is the spin-rotation symmetry operator. As a
result, the optical Raman lattice model is invariant under the
spin rotation (↑,↓) → (↓,↑).

Since [Rx, h(kx )] = 0, the Bloch Hamiltonian h(kx ) can be
block diagonalized in the eigenspace of Rx, i.e.,

|+〉1 = 1√
2

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠, |+〉2 = 1√

2

⎛
⎜⎝

0
0
1
1

⎞
⎟⎠,

|−〉1 = 1√
2

⎛
⎜⎝

1
−1
0
0

⎞
⎟⎠, |−〉2 = 1√

2

⎛
⎜⎝

0
0
1

−1

⎞
⎟⎠, (15)

with eigenvalues ±1, respectively. In the following, we name
the eigenvector spaces {|±〉1, |±〉2} as the ±1 spin-rotation
subspaces. In two such subspaces, the Bloch Hamiltonian
h(kx ) is block diagonalized into

h̄(kx ) =
(

h+(kx ) 0
0 h−(kx )

)
, (16)
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FIG. 2. Topological phase diagram and spin winding number values in the parameter space of K1/J0 and K2/J0 for (a) J1 = 2J0 and
J2 = J0, (b) J1 = J2 = J0, and (c) J2 = 2J0 and J1 = J0. The transitions between different topological phases are determined by the gap-
closing conditions E+ = 0 (red solid line, A+ = ±B+) and E− = 0 (blue dashed line, A− = ±B−). The energy spectra with open boundary
conditions are shown in (d) K1 = 1.5J0 and K2 = 4J0, (e) K1 = −3J0 and K2 = 3J0, (f) K1 = 3J0 and K2 = 1J0, and (g) K1 = 4J0 and K2 =
−3J0, corresponding to the four topological phases shown in panel (c), manifesting the bulk-edge correspondence. Here J0 is used as the energy
unit.

where ± denote the ±1 spin-rotation subspaces. The block
Hamiltonian takes the following form:

h±(kx ) =dx±sx± + dy±sy± + dz±sz±, (17)

with dx± = A± + B± cos(kx ), dy± = B± sin(kx ), and dz± =
� ± M, where A± = J1 ± K1, B± = J2 ± K2, and sx±,y±,z±
are the Pauli matrices defined in the ±1 spin-rotation sub-
spaces. The eigenvalues of the block Hamiltonian h±(kx ) are

Es = ±
√

A2
s + B2

s + (� + sM )2 + 2AsBs cos(kx ), (18)

where s = ±.
Below we demonstrate that the presence of the spin-

rotation symmetry simplifies the characterization of the
topology of h(kx ). We exhibit that the four-band topological
features associated with h(kx ) can be characterized through
two spin-dependent topological invariants, which are defined
in the ±1 spin-rotation subspaces based on h±(kx ).

IV. TOPOLOGICAL PHASES PROTECTED BY SPIN
WINDING NUMBERS

We first study the case without on-site energies and on-site
spin flips by tuning the laser phases ϕ = θ = 0. In this case,
the block Hamiltonians h±(kx ) respect a chiral symmetry,
allowing us to employ winding numbers to characterize their

topology. In each spin-rotation subspace, a spin winding num-
ber can be defined, i.e.,

ν± = 1

2π

∫
dkxn± × ∂kx n±, (19)

where n± = (dx±, dy±)/(d2
x± + d2

y±)1/2. The spin winding
numbers ν+ and ν− separately characterize the topology of
the block Hamiltonians h+(kx ) and h−(kx ). By substituting
Eq. (17) into Eq. (19), the spin winding numbers are calcu-
lated as

ν± =
{

1 if |A±| < |B±|,
0 otherwise. (20)

The topological phase diagrams in terms of (ν+, ν−) are
studied in Figs. 2(a)–2(c). We can find that the Raman super-
lattice system features four different chiral topological phases.
The transitions between different topological phases, signified
by the change of spin winding number values, are usually
accompanied by gap closings. Through examining the gap
closings in Figs. 2(a)–2(c), we find that the optical Raman
lattice supports abundant topological phase transitions. For
the bloch Hamiltonians h±(kx ), the gap-closing conditions
are E± = 0 and give the gap-closing lines |A±| = |B±|. The
topological invariant ν+ (ν−) would change once crossing the
gap-closing lines E+ = 0 (E− = 0), agreeing well with the
theoretical predictions obtained with Eq. (20).
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Figure 2(a) investigates the spin winding numbers as a
function of the spin-orbit coupling strengths for J1 > J2.
When the spin-orbit couplings are turned off, the correspond-
ing optical Raman lattice is described by two independent
SSH models and in the trivial topological phases, with the
topological invariants being (ν+ = 0, ν− = 0). When the spin-
orbit couplings are turned on, with the increase of K1,2, the
energy gap will first close at E+ = 0 (A+ = ±B+) or E− = 0
(A− = ±B−). After the gap reopening, the system will come
into a nontrivial topological phase with (ν+ = 1, ν− = 0) or
(ν+ = 0, ν− = 1). While if the energy gap successively closes
at E+ = 0 and E− = 0, the final topological phase is (ν+ = 1,
ν− = 1).

Figure 2(b) shows that the gap-closing lines A+ = B+ and
A− = B− coincide for J1 = J2. In contrast to Fig. 2(a), the
region between two such lines vanishes, and topological phase
transitions could take place directly between (ν+ = 1(0),
ν− = 1) and (ν+ = 0(1), ν− = 0). It is also worth pointing
out that in this case the topological features mainly come from
the Raman superlattice. Figure 2(c) further displays that, for
J1 < J2, the region between the gap-closing lines A+ = B+
and A− = B− reopens, in which the three phases simultane-
ously undergo a topological phase transition as compared to
Fig. 2(a). As a consequence, when the spin-orbit coupling is
fixed, tuning J1,2 could also drive the system into different
topological phases.

Figures 2(d)–2(g) exhibit the bulk-edge correspondence
associated with the four topological phases (ν+ = 0 and 1,
ν− = 0 and 1) shown in Fig. 2(c). The edge modes guaranteed
by the bulk topological invariants are investigated by calculat-
ing the energy spectra of H , with an open boundary condition.
For the topological phase with (ν+ = 1, ν− = 1), Fig. 2(d)
shows that there are four degenerate zero-energy topological
edge states, i.e., two left and two right zero-energy edge states.
The wave functions (not normalized) for the four edge states
are directly calculated as [44,45]

|ψL
±〉 =

N∑
j=1

(−1) j

(
A±
B±

) j a+
j↑ ± a+

j↓√
2

|0〉,

|ψR
±〉 =

N∑
j=1

(−1) j−N

(
A±
B±

) j−N b+
j↑ ± b+

j↓√
2

|0〉. (21)

While for [ν+ = 1(0), ν− = 0(1)], there are only two zero-
energy topological edge states [see Figs. 2(e) and 2(g)], i.e.,
one left edge state |ψL

+〉 (|ψL
−〉) and one right edge state |ψR

+〉
(|ψR

−〉). By contrast, for (ν+ = 0, ν− = 0), there are no zero-
energy edge states [see Fig. 2(f)].

The winding numbers could be measured through quench
dynamics [46,47]. Here we show that a single quench pro-
cess could be used to simultaneously measure the two
spin winding numbers ν±. Suppose the initial state of
the system is prepared into an equal superposition of the
ground state of the block Hamiltonian h± = dx±sx± + (dy± +
my±)sy±, with my± 	 1, i.e., |ψ (t = 0)〉 = (|+〉1 − i|+〉2 +
|−〉1 − i|−〉2)/2. After that, the Hamiltonian governing the
time evolution is h(kx ), which is equivalent to h±(kx ) with
my± = 0, which thus accomplishes a y-direction quantum
quench for both block Hamiltonians, i.e., from my± 	 1 to

my± = 0. From the measured time-resolved spin polariza-
tions 〈sx±,y±(kx )〉t = 〈ψ (t = 0)|eih(kx )t sx±,y±e−ih(kx )t |ψ (t =
0)〉, the time-averaged spin polarizations are extracted as
〈sx±,y±(kx )〉 = 1

T

∫ T
0 dt〈sx±,y±(kx )〉t . When T is long enough,

the spin winding numbers can be measured by

v± = 1
2 [gx±(kR) − gx±(kL )], (22)

where gx±(kL,R) = −sgn(∂k⊥〈sx±〉) [46,47], with kL,R being
the band inversion surfaces (BISs) given by 〈sy±(kL,R)〉 = 0,
and k⊥ being the momentum pointing from the region dy± < 0
to dy± > 0.

Figure 3 presents the time-averaged spin polarizations as
a function of kx for different lattice parameters. According to
Fig. 2(c), the spin winding numbers corresponding to the lat-
tice parameters in Figs. 3(a) and 3(b) are ν+ = 0 and ν− = 1.
Figures 3(a) and 3(b) clearly show that the time-averaged spin
polarizations 〈sy±〉 vanish at the BISs, yielding the locations
of the BISs as kx = kL,R. The time-averaged spin polarizations
near the BISs give gx+(kR) = gx+(kL ) = −1 and gx−(kR) =
−gx−(kL ) = 1. Based on Eq. (22), the spin winding numbers
are measured as ν+ = 0 and ν− = 1, fully agreeing with the-
oretical predicted values. The results in Figs. 3(c) and 3(d)
show that gx+(kR) = gx+(kL ) = 1 and gx−(kR) = gx−(kL ) =
1, giving the the spin winding numbers ν+ = 0 and ν− = 0.
Similarly, the spin winding numbers measured in Figs. 3(e)–
3(h) are respectively (ν+ = 1, ν− = 0) and (ν+ = 1, ν− = 1).

V. TOPOLOGICAL PHASES PROTECTED BY SPIN
CHERN NUMBERS

We further find that, by associating the laser phases ϕ = θ

[∈ (0, 2π )] with a synthetic momentum, the optical Raman
superlattice is described by h(kx, ϕ) and provides a natural
platform for exploring two-dimensional quantum spin Hall
insulator phases, where the two-dimensional Brillouin zone
is defined by the genuine momentum kx ∈ (0, π ] and the
synthetic momentum ϕ ∈ (0, 2π ]. In this case, the block
Hamiltonians h±(kx ) are mapped onto h±(kx, ϕ), and the
corresponding topologies are characterized by spin Chern
numbers instead, defined as

C± = 1

4π

∫∫
dkxdϕ

(
∂kx n± × ∂ϕn±

) · n±, (23)

where n± = (dx±, dy±, dz±)/(d2
x± + d2

y± + d2
z±)1/2. As indi-

cated in Eqs. (8) and (11), the ratios of the lattice parameters
α = t so

0 /t0 and β = t so
1 /t1 = t so

2 /t2 = m/δ can be flexibly con-
trolled through tuning V1,2 and �1,2. Below we show that
tuning α and β allows us to explore different two-dimensional
topological phases.

According to the spin Chern numbers (C+,C−), the topo-
logical phase diagram in the parameter space of α and β is
obtained in Fig. 4(a). The values of (C+ and C−) are calcu-
lated as C+ = 1(−1) for α > −1 (α < −1) and C− = 1(−1)
for α > 1 (α < 1). From which we find that there are two
different quantum spin Hall insulator phases identified by
(C+ = −1, C− = 1) and (C+ = 1, C− = −1), separated by a
double Chern insulator phase identified by (C+ = 1, C− = 1).
Through the gap closings, as plotted in Fig. 4(a), we also
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Time-averaged spin polarizations 〈sx±,y±〉 as a function of kx for (a), (b) K1 = 4J0 and K2 = −4J0, (c), (d) K1 = 3J0 and K2 = J0,
(e), (f) K1 = −3J0 and K2 = 4J0, and (g), (h) K1 = 1.5J0 and K2 = 4J0. The sign + (−) denotes the region where dy± > 0 (dy± < 0). The other
parameters are J1 = J0, J2 = 2J0, and T = 10/J0.

find that the topological phase transitions in this synthetic
two-dimensional system have an interesting characteristic.
The gap-closing conditions for h± are E± = 0, respectively
giving the gap-closing lines α = ∓1 and β = ∓1. As we
can see, topological phase transitions do occur at the gap-

closing lines α = ∓1, signified by the change of the spin
Chern number values C± crossing theses lines. However,
there are no topological phase transitions at the gap-closing
lines β = ∓1, across which the spin Chern numbers C±
are same.

FIG. 4. (a) Topological phase diagram and spin Chern number values in the parameter space of α and β. The solid (dashed) lines α = −1
and β = −1 (α = 1 and β = 1) are the gap-closing lines in which E+ = 0 (E− = 0). The integer values in the coordinates represent the spin
Chern number values C±, while the values of the laser phase ϕ in the coordinates reflect the positions at which the edge states of h± cross. For
example, (1,−1) represents that the spin Chern number values are (C+ = 1, C− = −1); (0, π ) represents that the edge states of h+ and h− in
this region of parameter space respectively cross at ϕ = 0 and π [see panels (g)–(k)]. The bulk energy spectra in the synthetic first Brillouin
zone for (b) α = 1 and β = 0.5, (c) α = −1 and β = 0.5, (d) α = 0.5 and β = −1, (e) α = 0.5 and β = −1, and (f) α = 1 and β = 1. With an
open boundary condition along the genuine dimension, the corresponding energy spectra in the five regions of parameter space [labeled A–E in
panel (a)] are respectively plotted in panels (g)–(k) and the spectra for the flat band case are shown in panel (l). The specified parameters are (g)
α = 0.5 and β = 0.5, (h) α = 1.5 and β = 0.5, (i) α = −1.5 and β = 0.5, (j) α = 0.5 and β = 1.5, (k) α = 0.5 and β = −1.5, and (l) α = 1
and β = 1. The red solid and black dashed lines respectively denote the left and right in-gap topological edge states. The other parameters are
t1 = 0.8t0, t2 = 0.3t0, and δ = −t0. Here t0 is used as the energy unit.
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FIG. 5. (a)–(c) Time-averaged spin polarizations 〈sx±,y±,z±〉 as a function of kx and ϕ. The black dashed lines denote the BISs that divide
the synthetic Brillouin zone into two regions, i,e., V+ with dx± > 0 and V− with dx± < 0. The spin textures for the dynamic fields �g± on the
BISs are given in panel (d). The parameters are chosen as t1 = 0.8t0, t2 = 0.3t0, δ = −t0, α = 4, β = 0.3, and T = 10/t0.

As shown in Figs. 4(b)–4(e), this is attributed to the
physical mechanism for producing the gap closings being
quite different. For α = ±1, the energy gaps close at the
two-dimensional Dirac points [see Figs. 4(b) and 4(c)], ac-
companied by band inversions after the reopening of the gaps,
leading to topological phase transitions. While for β = ±1,
the energy spectra for the middle two bands have nothing to
do with the synthetic momentum ϕ [see Figs. 4(d) and 4(e)],
and the energy gap closes at one-dimensional Dirac points
kx = ±π . This means that the couplings along the synthetic
dimension are turned off and the system is decoupled into in-
dependent one-dimensional lattices in the genuine dimension.
Consequently, band inversions and topological phase transi-
tions do not take place in the two-dimensional momentum
space in this situation. In addition, the energy bands for α =
β = ±1 present an interesting feature, where the middle two
energy bands merge into degenerate zero-energy flat bands,
with the sum of spin Chern numbers being zero, as depicted
in Fig. 4(f).

Figures 4(g)–4(k) plot the energy spectra of edge states cor-
responding to the five regions (labeled by A–E, respectively)
in the topological phase diagram. The results show that there
is one pair of in-gap edge states connecting the energy bands
of h+ and h− respectively, agreeing with the prediction by the
bulk-edge correspondence and the corresponding spin Chern
number values C±. Moreover, the crossing points for the left
(red solid lines) and right (black dotted lines) edge states of h+
and h− both cross at ϕ = 0 or π , which has been specifically
given in Fig. 4(a). For example, in region B, (0, π ) denotes
that the edge states of h+ and h− respectively cross at ϕ = 0
and π , as shown in Fig. 4(h). We also notice that, for the edge
states of h+ (h−), once crossing the gap-closing lines E+ =
0 (E− = 0), the crossing points change from ϕ = 0(π ) to

ϕ = π (0), regardless of whether topological phase transition
occurs. The differences between different topological phases
are manifested by the group velocities of the edge states. For
instance, by making a comparison between Figs. 4(g) and
4(h), we can observe that the group velocities for the left
or right edge state of h− (h+) are opposite (same), reflect-
ing that the sign of the spin Chern numbers C− (C+) are
opposite (same), revealing the difference between the topo-
logical phases (C+ = 1, C− = 1) and (C+ = 1, C− = −1).
The edge states for α = β = ±1 are presented in Fig. 4(l),
where there is only one pair of edge states, due to the merging
of the two middle bands into a single topologically trivial flat
band.

Quench dynamics also allows us to measure Chern num-
bers [46,48]. We show that the two spin Chern numbers C±
can be simultaneously measured from a single quench pro-
cess. As an example, the measurement of (C+ = 1, C− = −1)
is exhibited as follows. Similarly to measuring spin winding
numbers, here we perform an x-direction quantum quench
by initially preparing the system in |ψ (t = 0)〉 = (|+〉1 −
|+〉2 + |−〉1 − |−〉2)/2 and letting it evolve under h(kx, ϕ).
After that, the time-averaged spin polarizations 〈sx±,y±,z±〉
are measured, as numerically shown in Figs. 4(a)–4(c). From
them, the BISs for h± are determined by dx± = 0 and mea-
sured through 〈sx±〉 = 0; the dynamic fields �g± = (gy±, gz±)
are extracted by gi± = −∂k⊥〈si±〉 [46,48], with k⊥ being the
momentum pointing from the region V− to V+. Figure 5(d)
shows the dynamic fields �g± on the BISs. The Chern number
is given by the winding number of the dynamic fields along
the BISs [46,48]. As plotted in Fig. 5(d), the dynamic fields �g±
both wind the BISs one time, but with opposite winding direc-
tions, giving the spin Chern numbers C+ = 1 and C− = −1,
respectively.
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VI. SUMMARY AND OUTLOOK

In summary, we have proposed an experimentally relevant
optical Raman superlattice system and systematically studied
its topological properties. We have found that such a system
respects a spin-rotation symmetry that allows us to charac-
terize its topological property through spin winding and spin
Chern numbers, which can be directly measured by nonequi-
librium quench dynamics. We have further exhibited that this
system features various topological phases, such as the four-
band chiral topological insulator phases, quantum spin Hall
insulator phases, and double Chern insulator phases, with
several interesting topological features, like the multifarious
topological phase transitions, tunable zero-energy modes, and
degenerate zero-energy flat bands.

The results in our study clearly show that, due to the
interplay between the optical superlattice and the Raman su-
perlattice, the optical Raman superlattice system has much
richer topological properties, which could provide more op-
portunities for implementing and probing topological phases
of ultracold atoms. For example, when the optical superlat-
tice system is prepared into the quantum spin Hall insulator

phases, Z2 topological pumping [49] can be naturally im-
plemented by adiabatically controlling the laser phase over
one period. In the near future, it will be quite interesting
to generalize optical Raman superlattices to two and three
dimensions to explore diverse high-dimensional topological
phases, including the topological semimetal phases [50–52],
higher-order topological insulator phases [53,54], and four-
dimensional topological insulator phases [10,55,56].
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