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Two-body continuum states in noninteger geometry
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Wave functions, phase shifts, and corresponding elastic cross sections are investigated for two short-range
interacting particles in a deformed external oscillator field. For this we use the equivalent d method employing
a noninteger dimension d . Using a square-well potential, we derive analytic expressions for scattering lengths
and phase shifts. In particular, we consider the dimension, dE , for infinite scattering length, where the Efimov
effect occurs by addition of a third particle. We give explicitly the equivalent continuum wave functions in d and
ordinary three-dimensional space, and show that the phase shifts are the same in both methods. Consequently
the d method can be used to obtain low-energy two-body elastic cross sections in an external field.
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I. INTRODUCTION

The experimental possibilities with cold atomic gases al-
low both huge two-body interaction variation as well as an
overall confining deformed external field [1–4]. Few-body
physics quickly becomes complicated or even impossible as
the number of particles increases, and other techniques have
to be employed, see for example, Ref. [5]. One purpose of
studying these cold systems is the experimental availability,
where laboratory simulation and manipulation are possible.
These systems may themselves be of practical use, but also
able to teach us how to control and create similar properties
in systems, which so far are outside of experimental reach.
Comparing universal behavior of systems from different sub-
fields of physics, perhaps also chemistry and mathematics, is
then a tool to exchange knowledge between science subfields
[6–14].

The advantage of few-body physics is that all relevant
degrees of freedom can be accurately treated. Increasing the
number of particles from two to three is known to increase
substantially the complications, such as the appearance of new
possible structures, but also the interest. The complications
are accentuated by use of overall external fields, where the
description requires more than relative degrees of freedom. It
is then worth cashing in on a reduction of degrees of freedom,
which is very useful, by means of the use of an effective
dimension that changes continuously [9,15–18].

We will in this report concentrate on the d method, intro-
duced in Ref. [9], and subsequently developed and applied for
two and three particles [19–23]. The theoretical formulation
assumes noninteger dimensions, d , only relative degrees of
freedom, but with a d-dependent angular momentum bar-
rier, and spherical calculations without angular dependence
corresponding to zero angular momentum for d = 3. The
equivalence to the description with an external deformed os-
cillator potential is available, such that the d method results
can be translated to ordinary three-dimensional (3D) calcula-
tions, and in this way open for experimental comparison [23].

Interesting features revealed and highlighted by this
method can be understood from the continuous change of
dimension from three to two. The properties of quantum
solutions for simple two-body systems differ enormously be-
tween these two dimensions. For d = 3, even for relative s
waves, a finite attraction is necessary to bind, whereas for
d = 2 and relative s waves, an infinitely small attraction
produces a bound state [13,24–27]. For three particles the
differences are much larger, as emphasized by the existing
Efimov effect for d = 3, defined by no-bound two-body sub-
systems, but infinitely many-bound three-body systems. In
contrast, only a finite number of bound states exist for d = 2.
Thus varying d between 3 and 2 necessarily implies that some
states must change behavior from bound to continuum states
or vice versa. One especially spectacular phenomenon is that
the Efimov effect can be induced between dimensions 3 and
2, while absent in both ends of the interval [23].

The d variation amounts to varying an external field, which
is a familiar procedure. This is exemplified from the Feshbach
tuning of a magnetic field allowing huge changes of the effec-
tive two-body interaction [28,29]. This is the same principle
as for variation of an external electric field as first suggested
in Ref. [30]. The present use of the d method can then be
viewed as a theoretical application of an external field with-
out the necessary additional degrees of freedom. However,
these fields are unavoidable when comparing with practical
experiments.

Continuum or scattering calculations are usually more dif-
ficult than bound-state investigations [31,32]. It is therefore
tempting to extend the d method to the continuum, and first
to learn from the simplest system, that is, a two-body system.
The task is then to perform calculations with the d method,
and subsequently translate or interpret the results to three
dimensions with an external field. We will study two particles
interacting through simple short-range potentials. The main
properties can then be revealed by square-well potentials,
from which we can derive analytic solutions with charac-
teristic universal behavior. These square-well results may be
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compared to numerically found solutions for more realistic
Gaussian potentials.

The purpose of the present report is therefore to study
continuum properties of two-body systems with the d method,
and interpret as if obtained in an external field with the possi-
ble experimental comparison. Special attention will be paid
to the dimension, d = dE , for which the two-body binding
energy is equal to zero. This dimension is particularly inter-
esting, since for d = dE the Efimov conditions are fulfilled if
a third particle is added.

After the introduction in Sec. I, we derive in Sec. II sev-
eral analytical expressions of interest assuming a square-well
interaction. In the different subsections we provide the en-
ergy of bound states as a function of d and of the strength
of the potential, the critical dimension dE as a function of
the strength of the potential, and the phase shifts also as a
function of d and of the strength of the potential. Finally, we
also discuss in this section how these phase shifts have to be
treated in order to construct the cross sections. The results and
illustrations are provided in Sec. III, where together with the
direct applications of the expressions derived in Sec. II, we
focus on the universality of the results, investigating how the
values of dE and the phase shifts can be shown to present a
universal behavior, independent of the details of the potential.
We finish with Sec. IV, which contains the summary and
conclusions. Pertinent properties of the Bessel functions are
collected in the Appendix.

II. TWO-BODY SCATTERING

We consider the two-body problem in d dimensions, where
2 � d � 3, and where the two-body interaction is assumed
to be of short range. Using a schematic short-range square-
well potential, we will derive expressions for bound- and
continuum-state energies, threshold conditions, phase shifts,
scattering lengths, and cross sections, all as a function of d .
In the end, these results can be interpreted as obtained by an
external deformed field and full three-dimensional space.

The derived analytic properties, properly expressed, exhibit
the highly desired universal behavior. This universality means
potential independence at distances larger than the radius of
the short-range interaction. In other words, gross properties
are sufficient to describe the results for relatively small ener-
gies. Numerical calculations using a Gaussian potential will
be used as an illustration.

A. Theoretical formulation

For two-body systems and dimension d , the reduced, R(r),
and the total, ψ (r), radial relative wave functions are re-
lated by R(r) = r (d−1)/2ψ (r), where r is the relative distance
coordinate. The reduced wave function, R(r), is obtained
as a solution, with the proper boundary conditions, of the
d-dimensional radial Schrödinger equation for the relative
motion [9]:[

− h̄2

2μ

(
∂2

∂r2
− �∗(�∗ + 1)

r2

)
+ V (r) − E

]
R(r) = 0, (1)

where V (r) is the spherical potential and μ the reduced mass.
For two-body systems the effective angular momentum �∗

takes the form

�∗ = �2b + d − 3

2
, (2)

where �2b is the relative orbital angular momentum between
the two particles.

All along the squeezing process, the momentum �2b is a
good quantum number, which for d = 3 becomes the usual
orbital angular momentum. Also, when confining from three
to two dimensions by means of an external squeezing po-
tential, it is known that the angular momentum projection
quantum number, m, is conserved [21], and, furthermore, m
is the angular momentum in the two-dimensional limit [9].
Therefore, for d = 2 we have m = �2b, which, due to the
conservation of m, implies that the same equality holds for
the initial nonsqueezed 3D state as well.

Le us assume V (r) is a spherical square-well potential, that
is,

V (r) =
{−V0, r < r0

0 r > r0
, (3)

where V0 (>0) is the depth and r0 the radius.
After introducing the dimensionless variable x = r/r0, the

equation inside the box, r < r0 (x < 1), then reads[
− ∂2

∂x2
+ �∗(�∗ + 1)

x2
− k2

]
Rin(x) = 0, (4)

and similarly outside the box, r > r0 (x > 1),[
− ∂2

∂x2
+ �∗(�∗ + 1)

x2
− κ2

]
Rout (x) = 0, (5)

where the wave numbers are given by

k =
√

2μr2
0 (E + V0)

h̄2 , κ =
√

2μr2
0E

h̄2 . (6)

Note that κ is imaginary for bound states, but real and positive
for continuum states.

The solution inside the box, Rin, is simply given by

Rin(x) = Akx j�∗ (kx), (7)

where j�∗ is the spherical Bessel function of first kind and Ak

is a normalization constant. The other Bessel function, η�∗ ,
also a solution to Eq. (4), diverges at x = 0 and is therefore
removed from Eq. (7), since the physical solution must satisfy
that Rin(x) → 0 for x → 0. Note that �∗ is in general nonin-
teger, and even negative for s waves (�2b = 0) when d < 3
[�∗ = (d − 3)/2].

B. Bound states

For a bound state (E < 0 and κ = i|κ|), the solution out-
side the box, Rout (x), takes the form

Rout (x) = Bκxh(+)
�∗ (κx), (8)

where h(+)
�∗ is the spherical Hankel function of first kind and

Bκ is a normalization constant. The other Hankel function
solution to Eq. (5), h(−)

�∗ (κx), is removed, since the bound-state
solution must fall off exponentially at large distance.
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Matching the logarithmic derivatives of Eqs. (7) and (8) at
the box radius, x = 1, we obtain the eigenvalue equation for
bound states. The normalization factors disappear and we find,
by use of the two identities Eqs. (A2) and (A3), that

1 + �∗ − k
j�∗+1(k)

j�∗ (k)
= 1 + �∗ − κ

h(+)
�∗+1(κ )

h(+)
�∗ (κ )

, (9)

where the left- and right-hand sides in Eq. (9) are the loga-
rithmic derivatives of the solutions inside and outside the box,
respectively.

Equation (9) is an equation relating the square-well param-
eter, S0, and κ in Eq. (6) through

S2
0 ≡ 2μr2

0V0

h̄2 , k2 = S2
0 + κ2. (10)

In other words, the bound-state energy, E , in units of
h̄2/(μr2

0 ), is a unique function of the square-well parameter,
S0. The oscillatory behavior of the Bessel functions provides
more and more discrete energy solutions with increasing
S0. All this is in complete analogy to the usual square-well
relative two-body problem, but now depending on �∗, and
therefore on d .

C. Efimov condition

Let us consider now a moderate square-well parameter,
S0, which is too small to support any bound state for d = 3.
However, if the system is bound in two dimensions, we then
know that, when decreasing d from 3 to 2, a bound state of
zero energy must appear at some value, d = dE . This always
happens for s waves (�2b = 0), since for d = 2 a bound state is
always present, even for an infinitesimal attraction. We label
this dimension, dE , because if an additional particle is added,
the resulting three-body system would exhibit Efimov proper-
ties, if at least two of the two-body subsystems, in a relative
s wave, are bound by precisely zero energy. In particular,
if dealing with identical particles, this critical value, dE , is
therefore the noninteger dimension where the Efimov effect
occurs on the path towards two dimensions [22].

To find an expression for dE , we take the limit E → 0− in
the eigenvalue equation, Eq. (9). This means that κ → 0, and

k →
√

2μr2
0V0/h̄2 = S0. Using the low-energy expansion of

the Bessel functions, Eq. (A4), we easily get:

κ
h(+)

�∗+1(κ )

h(+)
�∗ (κ )

→ 2�∗ + 1. (11)

The eigenvalue equation, Eq. (9), reduces then to

S0
j�∗+1(S0)

j�∗ (S0)
= 2�∗ + 1 = 2�2b + dE − 2, (12)

which is the condition for a zero-energy solution, and there-
fore gives d = dE as a function of the square-well parameter,
S0. We emphasize that the index, �∗, on the Bessel function
depends on d as expressed in Eq. (2).

It is important to note here that the philosophy of study-
ing scattering properties through an extension of the angular
momentum to noninteger values, �∗, is akin to the concept of
Regge poles, where the angular momentum is generalized to
a continuum, and even complex, variable, and the analytical

behavior of the S matrix is subsequently studied. In fact,
Eq. (12) can be simplified into:

J�∗− 1
2
(S0) = 0, (13)

which, as shown in Ref. [33], determines the zero-energy
position of the Regge poles for the square-well potential.
Therefore, the critical dimension, dE , for a given S0 value
corresponds to the zero-energy Regge pole of the potential.

D. Scattering length

The zero-energy condition is closely related to the scat-
tering length, which also must depend on the dimension d .
We derive an expression by first noting that the zero-energy
reduced radial wave function must by definition have the
form [9]

Rout (x) ∝ x�∗+1 −
(
a(�∗ )

d /r0
)2�∗+1

x�∗ , (14)

expressed in terms of the scattering length, a(�∗ )
d divided by

the length unit, r0. We used that the reduced, R, and total, ψ ,
radial wave functions are related by R(x) = x(d−1)/2ψ (x).

Matching the logarithmic derivatives of Eqs. (7) and (14)
at x = 1, we get

1 + �∗ − S0
j�∗+1(S0)

j�∗ (S0)
= 1 + �∗ + �∗( a(�∗ )

d
r0

)2�∗+1

1 − ( a(�∗ )
d
r0

)2�∗+1
, (15)

which immediately leads to

a(�∗ )
d

r0
=

(
1 − (2�∗ + 1) j�∗ (S0)

S0 j�∗+1(S0)

)−1/(2�∗+1)

. (16)

The scattering length depends on S0 and �∗, or S0, d and �2b,
in units of the square-well radius.

We see from Eq. (12) that this scattering length, a(�∗ )
d , is

infinitely large exactly when d = dE . Another consistency
check is for d = 3 and �2b = 0 (�∗ = 0), where Eq. (16)
reduces to the well-known expression:

a(�∗=0)
d=3

r0
= 1 − tan(S0)

S0
. (17)

E. Phase shifts

Let us consider now the case of continuum states (E > 0).
The large-distance solution in Eq. (8) should be replaced by

Rout (x) = x( cos δ�∗ j�∗ (κx) − sin δ�∗η�∗ (κx)), (18)

where η�∗ is the irregular Bessel function, and δ�∗ is the phase
shift corresponding to this continuum state of generalized
angular momentum �∗ and energy E .

The solution of δ�∗ as function of E and �∗ is found by
matching the logarithmic derivatives of Eqs. (7) and (18), that
is,

k j′�∗ (k)

κ j�∗ (k)
= cot δ�∗ j′�∗ (κ ) − η′

�∗ (κ )

cot δ�∗ j�∗ (κ ) − η�∗ (κ )
, (19)

where the prime denotes derivative with respect to the full ar-
gument of the function. The phase shift can then be calculated
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from Eq. (19) to give

cot δ�∗ = η�∗ (κ )

j�∗ (κ )

κ
η�∗+1(κ )
η�∗ (κ ) − k j�∗+1(k)

j�∗ (k)

κ
j�∗+1(κ )
j�∗ (κ ) − k j�∗+1(k)

j�∗ (k)

, (20)

where we used the derivative expressions for both j�∗ and η�∗

from Eqs. (A2) and (A3).
The low-energy limits, κ → 0, k → S0, are then to leading

order obtained from Eq. (A4),

cot δ�∗ → −1

(2�∗ + 1)κ2�∗+1

×
(

�(2�∗ + 2)

2�∗
�(�∗ + 1)

)2(
1 − (2�∗ + 1) j�∗ (S0)

S0 j�∗ + 1(S0)

)
, (21)

where � is the usual Gamma function. Note that for d = dE ,
making use of Eq. (12) in the last bracket of Eq. (21), we get
that cot δ�∗ = 0, or, in other words, δ�∗ = π/2.

Assuming that the low-energy limit of the phase shift is
proportional to κ2�∗+1, we can express this limit in terms of
the scattering length in Eq. (16), that is,

δ�∗ → −(2�∗ + 1)
22�∗

�2(�∗ + 1)

�2(2�∗ + 2)

(
2μE

[
a(�∗ )

d

]2
/h̄2

) 2�∗+1
2 .

(22)

F. Cross sections

As mentioned several times, the d method has been in-
troduced as a tool that simplifies the description of systems
squeezed due to the presence of an external field. It is obvious
that any observable will be measured in the squeezed 3D
space, and therefore, in order to compare the calculations
with whatever available experimental data, it is necessary to
translate the observable from the d-dimensional space into the
3D space.

This is in particular necessary when computing cross sec-
tions. It is not obvious that the phase shifts derived in Sec. II E
can be directly employed to get the cross sections simply by
using them in the usual 3D cross-section expressions in terms
of the phase shifts.

To understand how to proceed, we first interpret the
d-dimensional wave function as described in Ref. [20], that
is, as a wave function in the ordinary 3D space where the
relative coordinate in the d space, r, is now understood as a
3D vector, denoted as r̃, but where the third coordinate (the z
axis is chosen along the squeezing direction) is squeezed by
means of a scale parameter s. In other words, the d coordinate,
r, is then understood as a 3D coordinate as:

r → r̃ = (x, y, z̃) = (x, y,
z

s
), (23)

where x, y, and z are the usual Cartesian coordinates in three
dimensions of the actual relative coordinate, r, in the 3D-
squeezed space. In this way:

r̃2 = x2 + y2 + z2

s2
= r2

⊥ + z2

s2
= r2

(
sin2 θ + cos2 θ

s2

)
,

(24)
where θ is the usual polar angle.

In the same way, the direction of the 3D coordinate, r̃,
is given by the polar and azimuthal angles θ̃ = arctan(r⊥/z̃)

and ϕ̃ = arctan(y/x). They can be easily related to the polar
and azimuthal angles of the actual relative coordinate, θ =
arctan(r⊥/z) and ϕ = arctan(y/x), leading to:

tan θ = 1

s
tan θ̃ , ϕ = ϕ̃, (25)

which reflects the fact that the squeezing is taken along the z
axis, and in the case of large squeezing (very small s) only val-
ues of θ very close to θ = π/2 are allowed, as it corresponds
to a system moving in the xy plane.

To determine the value of the scale parameter s we use the
approximate expression derived in Ref. [22]:

1

s2
=

[
1 +

(
(3 − d )(d − 1)

2(d − 2)

)2]1/2

, (26)

which is based on the assumption of harmonic oscillator
particle-particle interactions. For identical particles, only the
harmonic frequency of the interaction enters and it can be
adjusted to give the same d = 2 binding energy as the general
short-range interaction. Numerical tests show that this is a
good approximation [22].

However, for continuum states this interpretation of the
radial coordinates is still not enough. Even for very small
values of the scale parameter s (which imply a large squeezing
along the z direction) the asymptotic wave function (18) is still
oscillating, and not vanishing, for sufficiently large values of
z. Therefore, it is necessary to introduce an additional factor
imposing the confinement along the squeezing direction. In
particular, assuming a harmonic oscillator squeezing, we write
the asymptotic form as:

R(r̃)
r→∞−→ [r̃(cos δ�∗ j�∗ (kr̃) − sin δ�∗η�∗ (kr̃))]e

− z2

2b2
ho , (27)

where z = r cos θ and bho is the harmonic oscillator length
associated to the squeezing potential. According to our esti-
mates [22], the connection between d and bho is given by:

bho =
√

2(d − 2)

(d − 1)(3 − d )
, (28)

which is given in units of the range of the particle-particle
interaction.

The idea now is to interpret the d-wave function as an
ordinary wave function in three dimensions whose radial part
depends on r̃, and whose angular part is an ordinary spherical
harmonic depending on θ̃ and ϕ̃ = ϕ. Remembering that in
three dimensions, as discussed below Eq. (2), we must have
that m = �2b we can then write:

R(r̃)

r̃
d−1

2

Y�2b�2b (θ̃ , ϕ) =
∑
�m

u�(r)

r
Y�m(θ, ϕ), (29)

such that we expand the wave function in terms of the
spherical harmonics expressed as function of the polar and
azimuthal angles of the 3D relative coordinate.

From the equation above we can extract the projected radial
wave functions as:

u�(r)

r
=

∫
d�

R(r̃)

r̃
d−1

2

Y�2b�2b (θ̃ , ϕ)Y ∗
�m(θ, ϕ), (30)
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which, after integrating over ϕ (leading to δm,�2b) and getting
rid of the constants factors, becomes:

u�(r) ∝ r
∫ π

0
dθ sin θ

R(r̃)

r̃
d−1

2

P(�2b)
�2b

(cos θ̃ )P(�2b)
� (cos θ ) (31)

whose asymptotic behavior can be computed by introducing
Eq. (27). For a given r, the integrand in the equation above is
just a function of θ through Eqs. (24) and (25).

By fitting the u� functions to the expected asymptotic be-
havior,

u�(r)
r→∞−→ r( cos δ� j�(kr) − sin δ�η�(kr)) (32)

we can extract the phase shift for each partial wave �.
However, it is important to keep in mind that Eq. (32)

gives the asymptotic behavior of the continuum wave func-
tions in the ordinary, nonsqueezed 3D space. The effect of
the confining external potential is not present in Eq. (32).
In fact, in the case of no interaction between the particles,
the d-phase shift, δ�∗ , obtained from the asymptotic behavior
(18) is trivially equal to zero, and the radial wave function is
simply given by x j�∗ (kx). When introducing this function into
Eq. (31), and making use of Eq. (32), we can easily observe
that the corresponding computed 3D phase shift is not zero.
This nonzero phase shift, which we denote as δfree, reflects the
effect of the confining external potential.

By definition, the phase shift is just the shift of the asymp-
totic wave function when compared to the free wave function.
It is then clear that the phase shift in the confined 3D space,
δ

(�)
conf, is then given by:

δ
(�)
conf = δ� − δfree, (33)

where δ� and δfree are then the phase shifts obtained
from Eqs. (31) and (32) for interacting and free particles,
respectively.

We will later show that δ
(�)
conf is actually independent of �,

which permits us to associate a single phase shift δconf ≡ δ
(�)
conf,

to the two-body continuum state in the relative �2b wave in the
squeezed 3D space. Furthermore, we will also show the nice
result that δ�∗ = δconf, which in fact means that the phase shifts
obtained with the d method are actually the phase shifts in the
squeezed 3D space, and therefore they can be directly used to
compute the cross section in the 3D space, which is given by
the simple well-known formula:

σ = 4π

k2
(2�2b + 1) sin2 δ�∗ . (34)

III. RESULTS

In this section we show the results for the key quantities an-
alyzed in the previous section for two-body continuum states,
i.e., critical dimension, scattering length, and phase shifts.
The derivations have been carried out assuming a square-well
potential, and therefore the derived formulas, which of course
depend on the dimension d , will depend as well on the square-
well parameter, S0. This dependence has been obtained in a
very specific model, and provides results that, in principle,
are not universal. However, as we will show, it is possible
to extract a universal behavior, such that the square-well re-
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FIG. 1. The critical dimension, dE , for s waves, as a function of
the potential parameter, S0, defined in Eq. (10).

sults previously derived can be exported to any short-range
potential.

A. Critical dimension

The critical dimension, dE , is obtained by solving Eq. (12)
as function of S0. This dimension always exists for relative
s waves (�2b = 0), which is particularly relevant, since this is
the dimension for which the Efimov effect arises in the three-
body case.

The resulting dependence, shown in Fig. 1 for �2b = 0, is
a smoothly increasing function of S0, changing from dE = 2
at S0 = 0, to dE = 3 for S0 = π/2. This reflects the fact that
an infinitely small attractive potential is, for relative s waves,
sufficient to bind for d = 2, but a finite potential is necessary
to support bound states as the dimension approaches d = 3.
The value of S0 = π/2 for d = 3 is the well-known critical
size for binding in a square well. Note also that, as shown in
Eq. (13), for d = 3 the values of the critical dimension, dE ,
appear for the S0 values matching with the zeros of J−1/2(S0),
which are given by S0 = (2n + 1)π/2, with n = 0, 1, 2, · · · .

Increasing the attraction of the potential still smoothly
increases dE above 3, as shown in the inset of Fig. 1. This
behavior is abruptly broken by a sudden downwards jump at
S0 = 3.83171, where a second bound state appears at zero
energy. The following increase is the beginning of repeating
this behavior reflecting the discrete increase of bound states.
In fact, again, we can from Eq. (13) see that for d = 2 the
dE values for which new bound states appear are determined
by the zeros of J−1(S0) = −J1(S0), whose first three values
are S0 = 3.83171, 7.01559, 10.17347, and which give the po-
sition of the jumps in the curve shown in the inset of Fig. 1.

The square-well parameter is by definition not a universal
quantity that could be used for other short-range potentials.
Instead, in order to pursue such a universality, we turn to the
scattering length for d = 3, which is a unique characteristic
for any short-range potential, as well as definable, measur-
able, and reflecting a gross property independent of potential
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FIG. 2. The critical dimension, dE , as a function of the scatter-
ing length, a(�2b=0)

d=3 /reff, for the square-well (blue thick-solid) and
the Gaussian potentials (green thick-dashed). The dimension dE

corresponds to the appearance of the first bound state. The green thin-
dashed curve shows the dE values corresponding to the appearance
of the second bound state with the Gaussian potential.

details. It determines rather accurately all low-energy scatter-
ing properties, and as such is a universal quantity.

Although in principle possible as well for relative angular
momenta larger than zero, universality features are specially
relevant for s waves, for which the wave function can more
easily extend beyond the range of the interaction, becom-
ing then less sensitive to the details of the potential. As
shown in Eq. (22), for small energy the phase shifts behave
as E (2�2b+d−2)/2, meaning that the s-wave scattering clearly
dominates in the low-energy limit, and for this reason we
will focus here on universal behavior in the �2b = 0 case
(an exception could be the case, not considered here, of two
identical fermions, for which a relative s wave is not possible
[34]).

In Fig. 2 we show the critical dimension, dE , as a func-
tion of a(�2b=0)

d=3 for both square-well and Gaussian potentials.
Different length units have been considered, and we have
found that clearly the length scale with the effective range, reff,
provides the most satisfactory universal behavior. This is in
accordance with the findings for three-body systems [35]. The
results for the two potentials are pretty close to each other, and
we therefore have, to a very large extent, the desired, accurate
universal function, dE , as function of scattering length in units
of the effective radius, both obtained in the ordinary three
dimensions. This is what is shown by the two thick curves in
the figure, solid (blue) and dashed (green), which have been
obtained with potential strengths such that dE corresponds
to the appearance of the first bound state, i.e., to potential
strengths unable to bind the system in three dimensions.

In principle one could still increase S0 such that a second
bound state appears (as indicated by the jump in the curve
shown in the inset of Fig. 1). As exemplified in previous
works, the depth of the two-body potential could be an impor-
tant factor for universality [35,36]. Although this interesting

2 2.5 3
-50

0

50

0 0.5 1 1.5 2
-50

0

50

FIG. 3. (a) Scattering length, a(�2b=0)
d , as function of d for S0 	

4/3, such that dE = 2.75. (b) Scattering length as function of S0 for
d = 2.75.

relationship goes beyond the scope of this work, we show in
Fig. 2, as an indication, the curve (thin-dashed) obtained for
the critical dimension dE corresponding to the appearance of
the second bound state with the Gaussian potential. As we can
see, this curve does not follow the universal curve obtained
when dE indicates the appearance of the first bound state.

The scattering length and effective range ratio for �2b = 0
and d = 3 is therefore adopted as the easy accessible uni-
versal quantity. This has the advantage of requiring only one
adjustment, the a(�2b=0)

d=3 /reff ratio, when two potentials should
be compared. Another possibility could perhaps be to use the
same a(�∗ )

d for different potentials as defined in Eq. (16), or
may be the same ratio between a(�∗ )

d and the corresponding
d-dependent effective range. However, this would require cal-
culation with different potentials for any d . The simplicity of
the method would be lost, and we therefore we maintain the
simple procedure.

B. Scattering length

In any case, even if not used in the universal curve shown in
Fig. 2, a given two-body potential, has associated a different
scattering length for different values of the dimension d , as
shown in Eq. (16) for the case of the square-well potential.
This d-dependent scattering length is a function of S0, as
shown in Fig. 3 for the square-well potential and �2b = 0. The
left and right parts show the dependence on d for a given
S0 (S0 	 4/3 such that dE = 2.75), and on S0 for a given d
(d = 2.75), respectively. If desired S0 can, through Fig. 1, be
substituted by a(�2b=0)

d=3 . The qualitative features are precisely
the same.

The most pronounced feature is that the scattering length
diverges at the critical dimension, dE , see Fig. 3(a). For S0 	
4/3 we can see from Fig. 1 that dE ≈ 2.75, which is the d
value where the divergence of the scattering length shows up.
This demonstrates the existence of a zero-energy bound state
for this dimension. The picture would be very similar for other
values of S0, where the zero energy would appear at another d .
For illustration, we show in Fig. 3(b) the other dependence of
the scattering length as a function of S0 for given d (d = 2.75).
Again we observe a divergence of a(�2b=0)

d for a specific S0,
S0 ≈ 4/3, which agrees with the value observed in Fig. 1 for
dE = 2.75, and defines the parameter set producing a zero-
energy bound state.
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FIG. 4. Phase shifts, δ�∗ , for �2b = 0 as function of d for different values of κ/S0. The thick solid-black curves are square-well results from
Eq. (22), the thick dashed-red curves are the square-well low-energy approximation from Eq. (21), the thin solid-blue curves are for a Gaussian
interaction comparing results for equal a(�2b=0)

d=3 /r0 (scattering length divided by the Gaussian or square-well range) in three dimensions, and the
thin dashed-green curves are for a Gaussian interaction comparing results for equal a(�2b=0)

d=3 /reff (scattering length divided by effective range)
in three dimensions. The potential parameters produce dE = 2.50 for the square-well interaction.

C. Phase shifts

The phase shifts contain the crucial information about
the continuum states. They provide the information about the
asymptotic behavior of the wave function, and they are the key
ingredient to obtain an important observable such as the cross
sections.

In Fig. 4 we show the dependence of the s-wave phase
shifts on the dimension d and on the energy [through κ ,
Eq. (6)]. Each subfigure compares four computed phase shifts
as function of the d for given values of κ/S0.

The first two curves on each panel, thick solid-black
and thick dashed-red, are the analytic square-well results in
Eq. (20) and the related low-energy approximation in Eq. (22),
respectively. Not surprisingly, we find the approximation im-
proves with decreasing energy (decreasing κ), but apparently
also with increasing d . The mathematical reason can be found
in the size of the d-dependent expansion parameter leading to
Eq. (22). The parameters for the square-well potential have
been chosen such that dE = 2.50. The consequence is that for
this value of d , as mentioned below Eq. (21), the low-energy
curves (thick dashed-red) always take the value δ�∗ = π/2.

For d = 2 the low-energy phase shifts are always π cor-
responding to a bound state. The exact model results are
also close to π for d ≈ 2 and sufficiently small energies.
The validity range of the low-energy expansion seem to be
energies less than κ/S0 � 0.001. For all these lower energies
we observe a very sharp transition around dE from phase shifts
of π to zero moving towards larger d values. This behavior is
connected to the general property of at least one bound state
for any attraction for d = 2 and in our case for d < dE . The
phase shift is passing π/2 and a bound state of zero energy
appears for d = dE . For d > dE there is no bound state, but
a negative centrifugal barrier leading to phase shifts close to
zero, whereas there is at least one bound state for d < dE ,
perhaps also conditions corresponding to a resonance with
phase shifts π .

In Fig. 4 the results arising from the use of a Gaussian
potential are also shown. To investigate the proper comparison
between different potentials we first consider the square-well
and the Gaussian potentials having the same scattering length
ratio to the interaction range, r0, for d = 3. The results for
the Gaussian case are given by the thin solid-blue curves.
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FIG. 5. Projected radial wave functions u�(r) for �2b = 0, d = 2.9, and � = 0 (black), 10 (red), and 40 (blue) and the Gaussian potential
in Ref. [23]. The incident energy [in units of h̄2/(μb2)] is equal to 1 (a), 0.1 (b), and 0.01 (c). The solid curves are the results from Eq. (31),
and the dots are the asymptotic behavior given in Eq. (32). The wave functions, u�(r), and the radial coordinate, r, are multiplied by b1/2 and
divided by b, respectively, to make them dimensionless (b is the range of the potential).

When compared to the square-well results (thick solid-black)
we see that both curves are quantitatively very similar, al-
though the agreement between them is not perfect. In fact, the
Gaussian potential constructed as mentioned above leads to a
critical dimension dE = 2.43, which implies that the crossing
through δ�∗ = π/2 at low energies can be easily distinguished
from the one of the square-well potentials, which happens at
dE = 2.50.

However, when the Gaussian potential is constructed hav-
ing the same ratio between the scattering length and the
effective range as in the square-well potential for d = 3, we
then observe a clearly better agreement between both cases,
as seen when comparing the thin dashed-green and the thick
solid-black curves in Fig. 4 (the Gaussian potential has now
dE = 2.53). The universal function describing the critical di-
mension as function of the scattering length divided by the
effective range is therefore also valid for continuum states.
This result is consistent with the universal curve shown in
Fig. 2, also a function of a(�2b=0)

d=3 /reff.
This is very reassuring, because we can then compare

potentials with the same gross properties such as scattering
length and effective range, and claim the computed universal
relation between phase shifts and dimension. In other words
one can use the analytic square-well results and translate to
any other potential by use of the potential-independent param-
eters, scattering length and effective range.

D. Cross sections

As described in Sec. II F, the d-dimensional wave function
is interpreted as a wave function in the squeezed 3D space.
As shown in Eq. (29), this wave function can be expanded in
terms of the usual spherical harmonics, which permits us to
extract the projected radial wave functions u�(r) as shown in
Eq. (31).

In Fig. 5 we show, for �2b = 0, the large distance part
of the u�(r) functions after the calculation in Eq. (31) for
d = 2.9, � = 0 (black), 10 (red), and 40 (blue), and three
different energies, E = 1 [Fig. 5(a)], E = 0.1 [Fig. 5(b)], and
E = 0.01 [Fig. 5(c)] in units of h̄2/(μb2), where b is the range
of the Gaussian two-body interaction used in the calculation.
To be precise, we have used the Gaussian two-body potential
given in Ref. [23], for which dE = 2.75. In the figure we have
multiplied u�(r) by b1/2 and divided r by b in order to make
both quantities dimensionless.

We can see that the larger �, the smaller the weight of
the corresponding u�(r) wave function. Therefore, one would
expect that for sufficiently high values of �, the contribution
of the u� wave functions to the total wave function (29) can be
neglected. In general, the larger the squeezing, the larger the
number of � values contributing. In fact, for d = 3 only the
u�=0(r) function enters.

After matching the u� functions with the analytic asymp-
totic behavior in Eq. (32) we can extract the δ� phase shifts.
The result of this matching is shown in the figure by the dots,
which we can see lie very much on top of the solid curves.
We can also see that, as expected, the smaller the energy, the
slower the oscillations of the wave functions. An important
point in the figure is that, for each energy E , all the wave
functions, independently of �, have the zeros at the same r
values. Although not shown in the figure, this happens no
matter the value chosen for the dimension d . Therefore, as
one could expect, it is possible to assign a single phase shift, �
independent, to the 3D wave function introduced in Eq. (29).

We illustrate this same result in Fig. 6, where we show
sin2 δ� as a function of � for the case in Fig. 5(a), i.e., �2b = 0,
d = 2.9, and E = 1. The different curves in the figure cor-
respond to different values of the radial coordinate r used
to match the computed u�(r) function and the asymptotic
behavior in Eq. (32). The result is that the larger the value of
r chosen for the matching, the closer the curve to a horizontal
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FIG. 6. Value of sin2 δ�, as a function of the angular momentum
�, for the E = 1 case in Fig. 5. The different curves correspond to
different values of the large r values used to extract δ�. The larger the
r values, the closer the curve to a constant value of δ�.

line, corresponding to a constant value of δ�. This is due to
the fact that the larger the value of �, the farther one has to
go in the wave function in order to get the correct asymptotic
behavior. Again, the results shown in Fig. 6 are qualitatively
the same as the ones obtained for a different value of d and a
different energy.

Finally, as mentioned in Eq. (33), the phase shift, δconf, in
the squeezed 3D space is not given just by δ�, but by the shift
of the wave function for two interacting particles compared
to the wave function corresponding to two free particles. The
phase shift obtained from Eq. (32) for two noninteracting
particles is what in Eq. (33) is denoted by δfree.

In Fig. 7 we show δ�, δfree, δconf, and δ�∗ as a function
of d for the same Gaussian potential as in Fig. 5, and the
same three energies. The phase shifts are given by the solid-
black, dashed-red, dot-green, and long dashed-blue curves,
respectively.

Except for d = 3, where by definition they are the same,
we can see that δ� and the phase shift computed directly
with the d method, δ�∗ , are very different. Also, when the
two particles do not interact, the phase shift, δfree, obtained
from Eq. (32) is clearly different from zero [except of course
for d = 3, where the asymptotics in Eq. (32) is exact]. The
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FIG. 8. The same as Fig. 7 for �2b = 1.

important result is that, as shown by the dotted curves in
the figure, the difference between δ� and δfree, that is, δconf,
coincides perfectly with δ�∗ , i.e., with the phase shift obtained
directly from the d method.

Therefore, as anticipated in Sec. II F, the phase shifts ob-
tained with the d method are the phase shifts in the squeezed
3D space, and they can be used to compute the cross section
in the 3D space.

The result shown in Fig. 7 is actually general, not restricted
to the �2b = 0 case. As an illustration we show in Fig. 8 the
same as in Fig. 7 but for �2b = 1. As we can see, the equality
δconf = δ�∗ is also perfectly obtained, even in the case of very
small energy, Fig. 8(c), where δ� and δfree, are very similar,
leading to very small values of the true phase shift.

IV. SUMMARY AND CONCLUSIONS

In this work we have used the d method in order to in-
vestigate two-body continuum states in a squeezed scenario.
The method describes the system in a noninteger dimensional
space, which can be later translated to the usual 3D space with
an external confining potential. The d method is technically
simpler, since the degrees of freedom associated to the exter-
nal field do not enter in the formalism.

We focus on two-body properties for short-range potentials
in noninteger geometry by use of a square-well potential. The
details are independent of this practical choice of the potential.

We first derive conditions for bound states expressed by
the square-well parameter. The depth-radius combination has
to be large enough to support at least one bound state. We
show how the threshold value of the dimension for binding is
uniquely determined by the square-well parameter. This is in
close analogy to three dimensions, but for smaller dimensions
less attraction is necessary, and for d = 2 even infinitesimally
small attraction provides binding.

The point of zero-energy binding defines the Efimov di-
mension, dE , since for this dimension the Efimov effect may
become effective by adding another particle. We have derived
the equation determining the value of dE as a function of
the strength of the square-well potential. This value of dE

is shown to correspond to infinite scattering length, which in
turn has also been derived as a function of the same strength
for each dimension d .

We have closed the theoretical part of this paper deriving
the expressions for the d-dependent phase shifts as a function
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of the potential strength. These phase shifts have also been
related to the ones corresponding to the physical squeezed 3D
space.

The main purpose of the illustrations shown in this work
is to show that, even if the derived expressions, obtained
for a square-well two-body interaction, are not necessarily
universal, it is, however, possible, using the proper length and
energy units, to obtain a universal behavior, independent of
the details of the potential, for the Efimov dimension dE as
well as for the phase shifts.

In particular, focusing on the dominant s-wave case, we
have shown that the critical dimension dE follows a universal
path when plotted as a function of a(�=0)

d=3 /reff, showing that the
effective range in three dimensions is the appropriate length
unit. Given the value of a(�=0)

d=3 /reff for any two-body short-
range potential it is then possible, by means of the universal
curve, to obtain the corresponding dimension dE .

It is reassuring that potentials having the same value of the
a(�=0)

d=3 /reff ratio follow as well a pretty much universal curve
for the phase shifts as a function of the dimension and for
given values of κ/S0. In other words, for the universal curve
to show up, the incident momentum has to be taken in units
of S0, which contains the dependence on the strength of the
potential.

Finally, we have related the computed phase shifts in the d
method with the ones corresponding to a squeezed 3D space.
This is done by considering the d-dimensional two-body wave
function as an ordinary wave function in three dimensions, but
squeezing the coordinate along the direction of the external
field after inclusion of a scale parameter. When this is done,
we have shown that, in case of noninteracting particles, the
usual asymptotic form of the continuum wave functions in
three dimensions gives rise to nonzero phase shifts, δfree. This
is simply reflecting the presence of the squeezing potential.
When the interaction is introduced, the relevant phase shift is
the difference between the new computed phase shift and δfree.
We have shown that this difference, δconf, is precisely the same
as the phase shift obtained directly from the d method. This
result opens the door to using the d-computed phase shifts

directly in order to obtain the cross sections in a squeezed
scenario.

In conclusion, we have investigated and illustrated two-
body scattering processes in an analytic schematic model. The
cross-section behavior and the insight obtained are very hard
to imagine found in any other way. Such results are, to a
large extent, universal, that is, independent of the details of
the employed short-range potentials. The translation from d
to external field is necessary, available and at least a semiac-
curate description. The perspective in our investigations is that
scattering between particles confined by deformed external
fields may be useful tools in investigations of, for exam-
ple, structures related to Efimov physics. Transitions between
other dimensions may also be of interest.
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APPENDIX: BESSEL FUNCTION PROPERTIES

The two regular spherical Bessel functions with indices 0
and 1 are

j0(z) = sin z

z
, j1(z) = sin z

z
− cos z

z2
. (A1)

We have two useful identities between any, Bl , of the regular,
jl , and irregular, ηl , Bessel and Hankel, h(±)

l = ηl ± i jl func-
tions, that is,

z
dBl (z)

dz
= lBl (z) − zBl+1(z), (A2)

(2l + 1)Bl (z) = z(Bl+1(z) + Bl−1(z)). (A3)

Limits for zero arguments are useful. For z → 0 we have

jl (z) → zl

(2l + 1)!!
, ηl (z) → (2l + 1)!!

(2l + 1)

1

zl+1
. (A4)
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