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We investigate formation of Bose-Einstein condensates under nonequilibrium conditions using numerical
simulations of the three-dimensional Gross-Pitaevskii equation. For this, we set initial random weakly nonlinear
excitations and the forcing at high wave numbers and study propagation of the turbulent spectrum toward the
low wave numbers. Our primary goal is to compare the results for the evolving spectrum with the previous
results obtained for the kinetic equation of weak wave turbulence. We demonstrate existence of a regime for
which good agreement with the wave turbulence results is found in terms of the main features of the previously
discussed self-similar solution. In particular, we find a reasonable agreement with the low-frequency and the
high-frequency power-law asymptotics of the evolving solution, including the anomalous power-law exponent
x∗ ≈ 1.24 for the three-dimensional wave action spectrum. We also study the regimes of very weak turbulence
when the evolution is affected by the discreteness of the Fourier space, and the strong turbulence regime when
the emerging condensate modifies the wave dynamics and leads to formation of strongly nonlinear filamentary
vortices.
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I. INTRODUCTION

Bose-Einstein condensation (BEC), a macroscopic quan-
tum phenomenon, is now routinely realized in laboratory
experiments in systems involving ultracold atoms, polaritons-
excitons, photons, magnons, etc. Moreover, BECs are sug-
gested to play an important role in the physics of astrophysical
objects, such as neutron stars [1–6] and provide interest-
ing analogies in cosmology [7–9]. Formation of BEC under
equilibrium settings and its properties have been extensively
studied since the prediction of the phenomenon. Its con-
nection with the phenomenon of superfluidity and the later
experimental realizations in different systems makes it one
of the most fascinating but challenging quantum many-body
systems with many nontrivial macroscopic effects [10,11].

Paths leading to a BEC need not be in equilibrium, it is well
known that ultracold Bose gases under cooling quenches pass
through highly nonequilibrium states and may eventually lead
to the formation of a condensate [12–19]. This nonequilibrium
relaxation dynamics of the quantum Bose gases and other
quantum many-body systems has attracted a major attention,
still the full understanding and characterization of the ensuing
dynamics is far from complete [20–28]. It has been argued
that the dynamical evolution depends on the strength and
nature of the cooling quench in closed systems leading to ei-
ther wave turbulence-dominated states [29–33] or nonthermal
fixed points with universal scaling laws [16,17,34,35].
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Important insights into the dynamical evolution of such
systems have been obtained based on the Boltzmann-like
kinetic description involving the particle momentum distribu-
tion function [36–42]. It has been suggested that the system
passes through three stages: In the first stage the distribu-
tion function undergoes a kinetic redistribution, essentially
transporting particles in momentum space towards lower mo-
menta; the second stage is characterized by the nucleation
of a condensate; finally, the third stage involves growth of
the condensate and its interaction with uncondensed particles.
However, the kinetic approach is not applicable for the second
stage, so it cannot describe the development of coherence
[39,40,42].

A more general framework to study the nonlinear nonequi-
libirum dynamical evolution of either quenched or forced-
dissipated systems of weakly interacting ultracold Bose gases
is the Gross-Pitaevskii equation (GPE) and its variants that
provide a semiclassical description [31,43–45]. GPE is also
referred to as the nonlinear Schrödinger equation. GPE-based
theories can describe the dynamics of the uncondensed waves,
formation of the condensate and, subsequently, its interac-
tion with the uncondensed component both in equilibrium
and out of it [32,46–49]. Moreover, it provides a quantitative
description of weakly interacting BECs, whereas it applies
only qualitatively if the boson-boson interactions are strong,
for example, in the case of superfluid helium. Therefore, it
seems to be an appropriate choice to examine the postquench
dynamics of both closed and open systems. In particular, our
emphasis in this paper is on the forced-dissipated systems to
understand the universal features of the dynamics leading to
the condensation and test them against the theoretical wave
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turbulence predictions and existing numerical simulations of
the wave-kinetic equation (WKE). This may also serve as a
broad qualitative and an oversimplified model for exciton-
polariton condensates or certain astrophysical systems, such
as Bose stars.

As mentioned above, BEC may occur out of initial states
that are far from thermal equilibrium. This situation is par-
ticularly interesting because the condensation process in such
cases is strongly nonequilibrium, and it shares fundamental
features that are common for turbulent systems—cascadelike
transfer of excitations through the momentum space. More-
over, in the absence of forcing and dissipation, the system has
two conserved quantities the total energy and the total number
of particles. Therefore, it has a dual-cascade property similar
to the one in turbulence of classical two-dimensional (2D)
flows that conserve the total energy and the total enstrophy
[29,50–52]. This analogy allows us to interpret the nonequi-
librium condensation process as an inverse cascade of mass
in the momentum space (i.e., from large to low momenta),
whereas the creation of high-momentum particles and their
eventual escape from the system (“evaporation”) as a direct
energy cascade [51,53]. Of special interest is the universal
scaling behavior in the evolving turbulent spectrum that is
anticipated and was previously discussed in literature in the
context of the nonequilibrium condensation [40,41,54,55].

Our primary objective in this paper is to elucidate the
dynamics leading to the formation of a BEC under nonequilib-
rium settings within the GPE framework in three dimensions
(3D). In particular, we numerically solve the GPE in the
inverse cascade setting, whereas suppressing the direct energy
cascade which occurs alongside it in the dual-cascade scenario
discussed above. We compare results so obtained with those
of the WKE, including the pre-t� self-similar behavior and
the post-t� thermalization process, where t� denotes the finite
time in which the WKE-described distribution function blows
up to infinity. We also consider setups where the applicability
conditions for the WKE are violated (initially or as a result of
evolution) either because the nonlinearity is too weak, leading
to the k-space discreteness effects, or too strong, leading to
presence of coherent structures, such as strong condensate and
hydrodynamic vortices.

The remainder of this paper is organized as follows. In
Sec. II we give an overview of the GPE framework as ap-
propriate for this paper. Section III provides a brief account of
the wave turbulence theory where focus is on the WKE predic-
tions for the nonequilibrium BEC. In Sec. IV we summarize
the numerical methods and the parameters that are used in this
paper. Section V contains results of our numerical simulations
and their discussion, whereas in Sec. VI we give the conclu-
sions drawn from results and discuss the significance of our
paper.

II. GROSS-PITAEVSKII THEORY

In the present paper, we study the nonequilibrium con-
densation by computing the spatio-temporal (ST) evolution
of the complex, classical wave-function ψ (r, t ) of a weakly
interacting Bose gas described by the GPE, which has been

modified to include forcing and dissipation,

i
∂ψ

∂t
= −α∇2ψ + g|ψ |2ψ + iF (r, t ) − iνh(−∇2)8ψ, (1)

where α ≡ h̄/2m, m is the mass of a constituent boson, h̄ is the
Planck constant, and g is the coefficient of nonlinearity, and it
controls the effective interaction strength (see Appendix A).
To investigate the nonequilibrium Bose-Einstein condensa-
tion, we introduce a forcing that excites the system at short
length scales. The explicit form of the forcing term F , written
in Fourier space, reads F̂ = f0 exp [i�(k, t )] wherein f0 is the
forcing amplitude, which is finite within a wave-number shell
k f 1 � |k| � k f 2 and zero otherwise, and �(k, t ) represents
the random (forcing) phase which is uniformly distributed in
(0, 2π ] and independent at each time step and at each wave
number. Our attention will be on the range of wave numbers
among k = 0, the mode at (and near) which the condensation
occurs, and the forcing wave numbers. Moreover, in this paper
we do not focus on the forward cascade process from the
forcing wave numbers to higher wave numbers as the cost
of resolving both the cascades in a numerical simulation is
prohibitively expensive.

In order to achieve a large range of wave numbers for the
inverse cascade, the forcing range boundaries k f 1 and k f 2 are
shifted to higher wave numbers followed by introduction of a
dissipation that acts at still higher wave numbers, effectively
killing the forward cascade process. This dissipation mech-
anism is modeled by using a hyperviscosity represented by
the last term in Eq. (1) (with hyperviscosity coefficient νh =
const), which is often used in numerical simulations of turbu-
lent flows; see, e.g., Ref. [44]. If used carefully, hyperviscosity
helps in obtaining a large wave-number range for a cascade
process, whereas avoiding the effects of truncation (finite
wave numbers). We do not introduce any dissipation mecha-
nism at large scales (low wave numbers) where condensate is
formed. This allows us to obtain nonstationary turbulent states
with condensation and study the self-similar evolution that is
not influenced by the dissipation.

Note that our forced-dissipated system is not only useful
for the theoretical and numerical studies, but it also quali-
tatively models a recent forced-dissipated BEC experiment
where the forcing was performed via “shaking” the retaining
trap and the dissipation—via using a finite-height trap allow-
ing energetic atoms to escape from the system [56].

In the absence of forcing and dissipation, the total mass and
the total energy of the bosons are conserved

M ≡
∫
V

dr ρ(r, t ) = const, (2)

where ρ(r, t ) ≡ |ψ (r, t )|2 is the condensate mass density, and

E ≡ 1

2

∫
V

dr[α|∇ψ (r, t )|2 + g

2
|ψ (r, t )|4] = const. (3)

Here, the integration is performed over the entire volume
of the system assuming suitable boundary conditions. In the
present paper, V is a periodic cube of side L in the 3D space.
The energy functional serves as a Hamiltonian for the GPE (in
the absence of forcing and dissipation) with its quadratic part,

E2 = α

2

∫
dr|∇ψ (r, t )|2, (4)
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and the quadric part,

E4 = g

4

∫
dr ρ(r, t )2 (5)

corresponding to the linear and the nonlinear terms, respec-
tively.

In the presence of forcing and dissipation, the total mass
and energy vary with time. Other useful quantities are the
local speed of sound c = √

2αgρ, and the healing length
ξ = √

α/gρ. The healing length quantifies the distance over
which the condensate density recovers from being zero at
infinitely hard confining walls to a bulk value; it also gives
the radius of the superfluid vortex core. Note that 4πα = h/m
is the quantum of circulation.

III. WAVE TURBULENCE PREDICTIONS

A strongly turbulent state of a 3D superfluid involves an
interacting dynamic tangle of quantized vortices on top of
a condensate in the presence of random waves and other
coherent structures. But strong turbulence is not the only pos-
sibility: Nonlinearly interacting random waves give rise to an
out-of-equilibrium system, called wave turbulence, character-
ized by the presence of inter-length-scale transfers (cascades)
of certain (conserved) quantities. An important role in un-
derstanding turbulent BEC and the processes leading to its
formation, is played by the statistical description of random
weakly nonlinear waves—the so-called wave turbulence the-
ory (WTT) [29,40–42,51,54,57].

The WTT starts by considering the wave system in a
periodic box of side L, in the present case a cubic domain
of volume V = L3. The waves constituting the system are
assumed to have random independent phases and amplitudes
(RPA) at each wave number. Moreover, in WTT the infinite
box limit L → ∞ is taken before the weak-nonlinearity limit,
which means that there is a large number of quasiresonances
each of which is as important as the exact wave resonance
(for a detailed discussion see Ref. [51]). One of the important
objects in WTT is the wave action spectrum. For our system,
it is defined as

n(k, t ) = lim
L→∞

[
L3

(2π )3
〈|ψ̂ (k, t )|2〉

]
, (6)

where ψ̂ is the Fourier coefficient,

ψ̂ (k, t ) = 1

L3

∫
V

dr ψ (r, t )e−i(k·x), (7)

and 〈·〉 denotes the RPA averaging.
The WTT analysis of the GPE (1), in the absence of forcing

and dissipation, along with the assumption of isotropy leads to
the following WKE for the wave action spectrum,

∂nω

∂t
= πω−1/2

∫
S(ω,ω1, ω2, ω3)δ(ω + ω1 − ω2 − ω3)

× nωn1n2n3(n−1
ω + n−1

1 − n−1
2 − n−1

3 )dω1dω2dω3,

(8)

see, e.g., Ref. [29]. Observe that we have switched from
the wave number to the frequency space: nω(t ) = n[k(ω), t],

where ω(k) = k2 is the wave frequency k = |k| and have in-
troduced shorthand notations ni = n(ωi, t ), ωi = k2

i , i = 1–3.
The integral in (8) is taken over the positive values of ω1, ω2,
and ω3. The kernel of the integral is

S(ω,ω1, ω2, ω3) = min(
√

ω,
√

ω1,
√

ω2,
√

ω3). (9)

Like the original GPE (1), Eq. (8) conserves the total mass and
the total energy, which now look as follows:

M = 2π

∫ ∞

0
ω1/2 nωdω, (10)

and

E = 2π

∫ ∞

0
ω3/2nωdω. (11)

Equation (8) has two thermodynamic equilibrium solutions
nω = const and nω ∼ ω−1 corresponding to the particle and
the energy equipartition in the 3D k space, respectively. It also
has two nonequilibrium stationary power-law spectra nω ∼
ω−x with x = 7/6 and x = 3/2. These are the Kolmogorov-
Zakharov (KZ) spectra corresponding to the inverse and direct
cascades of M and E , respectively [29,51].

The nonstationary solutions of the WKE (8) in the con-
densation (inverse cascade) settings were studied numerically
in Refs. [40–42,54]. The spectrum was shown to have a
tendency to blow up to infinity in a finite time t� at ω = 0
(corresponding to k = 0). Moreover, these studies showed that
a power-law behavior nω(t ) ∼ ω−x� starts to develop in the
tail and invades the whole inverse cascade range as t → t�.
Naively, one could think that this power law has exponent
7/6 as in the inverse cascade KZ spectrum. This statement
was indeed made in Refs. [38,39] but later proven wrong in
Refs. [40–42,54] wherein the numerically observed exponent
is in the range of x� ≈ 1.23 to 1.24, which is clearly different
from the exponent 7/6 ≈ 1.167.

The blowup behavior of the solution was attributed to
its property of self-similarity of the second kind. Accord-
ing to the Zeldovich-Raizer classification scheme, a solution
whose similarity properties cannot be fully determined from
a conservation law (conservation of mass in our case) has
the self-similarity of the second kind [58]. This is because
the self-similar part of the evolving solution contains only
a tiny part of the total mass. (The respective spectrum is
said to have a finite capacity.) As a consequence, one cannot
find the exponent x� of the asymptotic tail exactly: One has
to solve a “nonlinear eigenvalue problem.” Such a nonlinear
eigenvalue problem was addressed directly in Ref. [55] where
the self-similar solution to the WKE was found with ∼5%
accuracy and with x� ≈ 1.22. In this paper, the low-frequency
asymptotics of the spectrum was rigorously proven to be in-
dependent of the frequency—a property which was previously
observed numerically in Refs. [40,41]. As we see, both direct
solutions of WKE (8) to find the evolving spectrum and the
solution of (8) restricted to the similarity ansatz lead to mutu-
ally consistent results.

Furthermore, it was argued in Refs. [40,41] and supported
by numerical simulations of the Boltzmann kinetic equa-
tions that the postblowup evolution leads to the creation of
a condensate and a thermalized component whose spectral
signatures are the formation of a Dirac-δ spectrum at k = 0
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and an equiparition of energy for the k �= 0 wave numbers,
respectively.

Before concluding this section, below we briefly mention
three facts from the WTT that will be required for the dis-
cussion of our results, for a detailed account of these, see
Ref. [51].

(A) The leading-order nonlinear effect in the four-wave
systems is actually not the spectrum evolution described by
the WKE but a nonlinear frequency shift  that leaves the
spectrum unchanged

 = 2g〈ρ〉. (12)

This frequency shift will be seen in the spatiotemporal spectra
measured in our simulations.

(B) Apart from the small nonlinearity, the applicability of
the WKE requires that the finite-box effect and associated
with it the discreteness of the k space are not important. This
means that the nonlinear frequency broadening δω (which is
on the order of inverse characteristic time of the spectrum evo-
lution τWKE) must be larger than the distance between adjacent
linear-wave frequencies �ω ≈ (dωk/dk)�k = 2αk(2π/L).

(C) All of the WTT theory described above, including
WKE (8), refers to the four-wave regime characterized by a
small nonlinearity,

η = E4

E2
 1. (13)

However, if during the course of the evolution the conden-
sate present at k = 0 grows to a large value, then it starts to
affect the dynamics of the uncondensed waves with k �= 0.
Moreover, if the condensate fraction M0/M ∼ 1, then such
waves can be regarded as small perturbations ψ̃ over a strong
uniform condensate state ψ0 (in the physical space), i.e.,
|ψ̃ |  |ψ0|. Under these circumstances, such waves acquire
acoustic properties and their frequency satisfies the so-called
Bogoliubov dispersion relation [59],

ωB(k) = g|ψ0|2 ±
√

2g|ψ0|2k2 + αk4. (14)

It is well known that this regime can also be described within
the framework of the WTT and results in a three-wave WKE
[29,51]. In this paper, we will observe such an acoustic regime
when the condensate fraction reaches a high value close to
one. We will examine the realizability of the Bogoliubov dis-
persion relation Eq. (14), but we will not discuss the spectral
evolution governed by the three-wave WKE.

IV. NUMERICAL SETUP

We perform direct numerical simulations (DNS) of the
forced-dissipated GPE by using a pseudospectral method over
triply periodic cubic domain V with volume (2π )3 using
N3

c = 5123 collocation points. In this method, we evaluate the
linear terms in Fourier space and the nonlinear term in the
physical space, which we then transform to Fourier space.
To this end, we use the GPE solver of our general purpose
code “VIKSHOBHA” [60] wherein we use the FFTW library
to compute Fourier-transform operations [61]. A fourth-order
Runge-Kutta scheme is used to evolve these equations in
time [62]. Limited computational resources did not allow us
to perform ensemble averaging over different realizations of

TABLE I. The parameter α fixes the quantum of circulation
4πα = h/m for a particular run. Parameters α, c∗ = 1, and ρ∗ = 1
fix the length scale ξ ∗(ξ for the initial state). f0 is the forcing
amplitude.

Run α ξ ∗ g = c∗2/2αρ∗ f0

Run 1 0.0347 0.0491 14.41 108

Run 2 0.0347 0.0491 14.41 107

Run 3 0.0087 0.0123 57.47 108

forcing, which, in fact, is computationally extremely demand-
ing given the duration of runs that we consider.

Fixing the values of ρ, c, and α in the absence of forc-
ing and dissipation, fixes the variables ξ and g. However, in
the presence of forcing and dissipation, the volume-averaged
density 〈ρ(t )〉 varies with time which, in turn, makes c and ξ

time dependent. Therefore, in our simulations presented here,
we choose an initial state such that 〈ρ〉 = ρ∗ = 1, c = c∗ = 1
[63]. Furthermore, in all our runs we choose the hypervis-
cosity coefficient νh = 10−35 (see Appendix C) and use the
boundaries of the forcing range at k f 1 = 130 and k f 2 = 131.
Forcing amplitude f0 and the parameter α used in different
simulations are shown in Table I. Moreover, we use these to
construct units of length ξ ∗ = √

2α/c∗, time t∗ = ξ ∗/c∗ (not
to be confused with the blowup time t�), and energy density
E∗ = ρ∗c∗2. Note that ξ ∗ is the initial healing length, which
is used as a reference length scale for the run (the true healing
length evolves in time).

V. RESULTS

First of all, we note that larger forcing amplitude f0 and
smaller coefficient α (hence, larger g) mean stronger initial
degree of nonlinearity of the system. Thus, among the runs
listed in Table I, Run 3 has the highest and Run 2 has the
lowest nonlinearity. This agrees with Fig. 1(a) where the evo-
lution of the ratio of the quadric to quadratic parts of the
energy η is shown for the three runs. (Recall that the quadratic
and the quadric energies correspond to the linear and the
nonlinear dynamics, respectively.) The initial rapid decrease
in η is an artifact of the choice of initial condition 〈ρ〉 = 1
at t = 0; this continues until forcing starts to dominate the
dynamics. Nonetheless, after an initial adjustment and up until
t/t∗ ≈ 2000 even Run 3 remains relatively weakly nonlinear
with η < 0.2. Nonlinearities of the runs Run 1 and Run 2
remain rather weak through their entire durations (very weak
for Run 2). Note that the normalized durations of the runs
Run 1 and Run 2 were much less than the one of Run 3
because their respective values of the characteristic time t∗
are much longer.

Figure 1(b) shows the evolution of the condensate fraction
M0/M in the k = 0 mode for the runs Run 1–Run 3. We find
that in Run 2 the condensate fraction unexpectedly grows to a
large value of (M0/M ∼ 0.65), even though it has the lowest
value of nonlinearity among the three runs. This observation
is counterintuitive; we discuss its plausible explanation later
in this section. It must also be mentioned that even though
the condensate fraction is high, its absolute value remains
rather small (ρ0 ∼ 0.1 with total density ρ ∼ 0.2). Moreover,
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FIG. 1. Temporal evolution of (a) nonlinearity parameter η = E4/E2 [see Eqs. (4), (5), and (13) for the definitions], (b) the condensate
fraction M0/M.

we will see that it does not affect the dispersion properties of
the uncondensed excitations (k �= 0). Run 3 exhibits the sec-
ond strongest condensate fraction (M0/M ∼ 0.5), and despite
being strongly nonlinear, the condensate growth is smaller
than what is observed in Run 2 (when the growth interval
is measured in units of t∗). However, the condensate fraction
in case of Run 1 (with intermediate nonlinearity) remained
vanishingly small throughout the duration of the run.

In Figs. 2 and 3 we show one-dimensional (1D) wave-
action spectra at different moments of time computed for the
runs Run 1–Run 3. We obtain a 1D wave-action spectrum
n1D(k, t ) by summing the 3D spectra ∼|ψ̂ (k, t )|2 in a spherical
shell of radius k and thickness δk and dividing by δk. In other
words, n1D(k, t ) is the wave-action density in k = |k|; the
angle dependence is erased as the system is expected to be
approximately statistically isotropic. Moreover, for future ref-
erence, we find it pertinent to mention that the power spectrum
nω ∼ ω−x written in terms of frequency ω corresponds to the
wave-action spectrum n1D(k) ∼ k2−2x.

From the plots in Figs. 2 and 3, we observe that the spectra
are in qualitative (and to a varying degree in quantitative)
agreement with the WTT results obtained by numerically
solving the WKE (8). Namely, the plots in Figs. 2 and 3 are
consistent with the preblowup and the postblowup behaviors.
Indeed, the early evolution in Fig. 2 exhibits emergence of

a power -law scaling n1D(k) ∼ k2 which corresponds to nω ∼
const; this is in agreement with the low-frequency asymptotics
of the self-similar solution of the WKE. This is followed
by the development of a second power-law scaling region at
the higher-k side of the inverse cascade range with slopes
∼− 0.58 in Run 1, ∼− 0.80 in Run 2, and ∼− 0.52 in Run
3 that correspond to exponents x ≈ 1.29, 1.40, and 1.26, re-
spectively, for nω. Note that these slopes are computed over
the range 1/ξ < k < k f 1 because for k � 1/ξ the nonlinearity
fails to be weak (see Appendix C). It is evident that these
exponents are close to the values obtained for the self-similar
solution of the WKE, x� ≈ 1.22–1.24, for details see Sec. III.
Later, we will discuss the possible reason why Run 3 gives the
closest result.

The late-time behavior shown in Fig. 3 is consistent with
the post-t� behavior of the WKE evolution. For all three runs,
at the higher-k end of the inverse cascade range, we observe
formation of a plateau n1D(k) ∼ const which corresponds to
the thermodynamic energy equipartition nω ∼ 1/ω. At the
lowest wave numbers we observe a sharply peaked spectrum
that appears to decay as k−2.5 instead of the predicted in-
finitely thin (Dirac-δ) distribution at k = 0 mode representing
the condensate. It is natural that such an idealized distribution
is not observed in our DNS because the low-k dynamics is
affected by both the finite size of the system and an enhanced

FIG. 2. Temporal evolution of spectra n1D(k) vs k at early stages of our numerical simulations. Plots (a)–(c) correspond to Run 1 (0 �
t c∗/ξ ∗ � 1.93 × 103), Run 2 (0 � t c∗/ξ ∗ � 2.54 × 103), and Run 3 (0 � t c∗/ξ ∗ � 2.0 × 103), respectively. The vertical dotted line indicates
the position of kξ (t ) ∼ 1 at the latest moment of time. The various slopes shown here by dashed lines represent power-law fits in the interval
(1/ξ, k f 1) at the latest time. The dot-dashed line in (a) shows the k2 scaling at small wave numbers.
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FIG. 3. Temporal evolution of spectra n1D(k) at later stages of our numerical simulations. Plots (a)–(c) correspond to Run 1 (2.03 ×
103 � t c∗/ξ ∗ � 8.95 × 103), Run 2 (3.05 × 103 � t c∗/ξ ∗ � 8.80 × 103), and Run 3 (2.08 × 103 � t c∗/ξ ∗ � 3.64 × 104), respectively. The
vertical dotted line indicates the position of kξ (t ) ∼ 1. The various slopes shown here by dashed lines indicate power-law fits to the spectra at
different times.

nonlinearity. Thus, the condensate emerging in our simula-
tions is imperfect: It contains space-time-dependent strongly
nonlinear coherent structures, and we will revisit this again
later. The slope −2.5 for the 1D wave-action spectrum is
rather close to the low-k slope −3 (−5 for the 3D wave-action
spectrum) observed in a closed system for a freely decaying
initial condition (no forcing or dissipation) in Ref. [17] where
a scaling argument suggested that the −3 slope should be
observed for strong turbulence.

Figure 3(a) for Run 1 shows that n1D(k) spectra at later
stages of the simulation exhibits a pronounced peak at small
wave numbers around kξ ∗ = 0.1, which appears to be contin-
ually growing. Therefore, the condensate fraction is expected
to grow further, if the simulation is run longer.

Also note that both the condensate and the plateau region
in the spectrum at late times for Run 3 are located at the wave
numbers well below 1/ξ . This means that the influence of the
condensate onto the high-k modes is significant: These modes
behave as sound waves and, therefore, are not described by the
four-wave WKE (8); see Sec. III. However, it is interesting to
observe that the energy equipartition spectrum in this case as
well is given by n1D(k) ∼ const, which for the present state is
called the Bogoliubov spectrum [32,33,44,64].

Next we make use of the ST spectra of field ψ (r, t ) to
characterize and emphasize the differences between different
stages of the evolution of our three runs Run 1–Run 3. The ST
spectrum gives the power spectrum of a given quantity as a

function of wave number and frequency. In Figs. 4–6 we show
these ST spectra for the runs Run 1–Run 3. We compute ST
spectra by performing Fourier transform over a finite window
of size T which is greater than the linear wave period and less
than the characteristic time over which the spectrum evolves.
Since the spectrum is nearly isotropic, we choose ky = 0 and
perform the Fourier transform in time for each (kx, kz ); this
is followed by angle averaging on the (kx, kz ) plane to finally

obtain ST spectra as a function of k =
√

k2
x + k2

y and ω. More-

over, plots in Figs. 4–6 are presented in such a way that at each
k we normalize the integral over ω to the same constant; this
allows us to see the details of the spectrum at each k clearly,
even though its value varies over many orders of magnitude in
the k range.

Before proceeding further, we remark that a weak nonlin-
earity manifests itself in the form of a narrow distribution of
the ST spectrum around the linear dispersion relation ωk =
αk2, along with a small nonlinear correction  = 2gM/L3.
This is indeed what we find during the initial evolution as
shown in the plots of Figs. 4–6. Late evolution in Run 1
is characterized by very similar plots of ST spectra (omit-
ted here) because the condensate faction remains negligible
throughout its duration. On the other hand, late evolution in
runs Run 2 and Run 3 is characterized by a large condensate
fraction. Hence, it is not surprising that the ST spectra in these
cases follow more closely the Bogoliubov dispersion relation

FIG. 4. Plots of spatiotemporal spectra for Run 1 computed over the time interval 1.14 × 103 � T c∗/ξ ∗ � 1.37 × 103. (a) The full
spectrum; (a1) and (a2) zoom at small and large wave numbers, respectively. The forcing range is k f ξ

∗ ∈ (6.3830, 6.4321). During the above
time interval n1D(k) ∼ k−0.58, see Fig. 2(a).
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FIG. 5. Plots of spatiotemporal spectra for Run 2. (a) ST spectra computed over the time-interval 2.45 × 103 � T c∗/ξ ∗ � 2.67 × 103.
(a1) and (a2) show a zoom at small and large wave numbers, respectively. During the above time-interval n1D(k) ∼ k−0.8, see Fig. 2(b). (b) ST
spectra computed over the time interval 6.52 × 103 � T c∗/ξ ∗ � 6.75 × 103; (b1) and (b2) show a zoom at small and large wave numbers,
respectively. The forcing range is k f ξ

∗ ∈ (6.3830, 6.4321).

Eq. (14) rather than ω(k) = αk2 + , see the plots (b) and
(b1) in Figs. 5–6. Furthermore, in these plots the condensate
component shows up as a short piece of horizontal line at

small k’s and ω = gρ. The fact that the condensate has short
but finite range in k means that it is not perfectly uniform
in the physical space, whereas the fact that its ST spectrum

FIG. 6. Plots of spatiotemporal spectra for Run 3. (a) ST spectra computed over the time-interval 1.30 × 103 � T c∗/ξ ∗ � 2.14 × 103;
(a1) and (a2) show a zoom at small and large wave numbers, respectively. During the above time-interval n1D(k) ∼ k−0.52, see Fig. 2(c). (b) ST
spectra computed over the time-interval 2.80 × 104 � T c∗/ξ ∗ � 2.89 × 104; (b1) and (b2) show a zoom at small and large wave numbers,
respectively. The forcing range is k f ξ

∗ ∈ (1.5990, 1.6113).
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FIG. 7. Spectral broadening δω vs k obtained from the spatiotemporal spectra for Runs: (a) Run 1 (1.14 × 103 � tc∗/ξ ∗ � 1.37 × 103);
(b) Run 2 (2.45 × 103 � tc∗/ξ ∗ � 2.67 × 103); and (c) Run 3 (1.30 × 103 � tc∗/ξ ∗ � 2.14 × 103). The vertical dotted line indicates the
position of kξ (t ) ∼ 1 at time: (a) tc∗/ξ ∗ = 1.3 × 103, (b) tc∗/ξ ∗ = 2.54 × 103, and (c) tc∗/ξ ∗ = 2.0 × 103. Shaded area indicates the
approximate region over which power-law scaling are observed in Fig. 2. The dashed-dot lines represent the curve αk2, whereas solid lines
represent �ω = 2αk.

is nearly horizontal means that the condensate represents a
coherent component which oscillates at approximately the
same frequency as a whole.

Note that the negative frequency branch of the Bogoliubov
excitations shows up much more prominently for Run 2 in
Figs. 5(b) and 5(b1) than for Run 3 in Figs. 6(b) and 6(b1).
This is because Fig. 5 for Run 2 shows that the system is
still in the four-wave regime, whereas Fig. 6 for Run 3 the
system has moved to a three-wave regime. In the presence
of a condensate there are two Bogoliubov branches in the
Fourier transform of ψ . Also, the normal modes (ak and a∗

−k)
of the Bogoliubov wave are a linear combination of ψk and
ψ∗

−k and vice versa (see Ref. [51] for more details). The lower
branch (negative ω) is associated with the contribution of a∗

k .
Therefore, the observations of Figs. 6(b) and 6(b1) tell us that
the coefficients in front of ak and a∗

−k are unequal and depend
on the condensate strength, and here the former gets favored
over the latter. Also, Run 3 has the highest nonlinearity and
Run 2 the lowest; therefore, in the latter condensate density
is extremely small and hardly any (or no) negative frequency
branch is present, and the dispersion is primarily ω ∼ k2.

The ST spectra can also be used to measure the nonlinear
frequency broadening δω and, therefore, directly examine if
the conditions of applicability of the WTT are satisfied. We
recall from the previous discussion [see Sec. III point (B)]
that for the WTT applicability δω must satisfy 2αk(2π/L) =
�ω  δω  ωk = αk2. On the ST spectra plots, we define
δω at each fixed k as the full width at half maximum of the ω

peak. Figures 7(a)–7(c) show the plots of δω together with ωk

and �ω for the three runs. The time intervals for these plots
are chosen to be around the time at which the pre-t� power-law
scalings are present, and the shaded regions indicate the k
range over which these scalings were observed. We clearly
see that the degree of nonlinearity in these scaling intervals is
low δω < ωk as required by the WTT. On the other hand, we
see that the condition δω > �ω is well satisfied for Run 3 only.
Thus, the applicability of the WTT description is best satisfied
in Run 3, which explains why this run gives the best agree-
ment with the WKE result for the pre-t� power-law exponent
x� (1.26 in Run 3 vs 1.22–1.24 from the WKE simulations).
We also recall that the nonlinearity of Run 3 is the highest
among the three runs, and it is the higher nonlinearity that

allows it to overcome the effect of discreteness of the k space.
Run 1 and Run 2 are both affected by the k-space discreteness
[65]. However, the nonlinearity of Run 1 is higher than the one
of Run 2, and it is, therefore, natural that the pre-t� power-law
exponent x� in Run 1 is closer to the WKE result (1.28 and
1.40 in Run 1 and Run 2, respectively, vs 1.22–1.24 from the
WKE simulations).

It is interesting to note that the nonlinear frequency broad-
ening has qualitatively the same behavior in the plots (a) and
(b) of Fig. 7, even though the degree of nonlinearity of runs
Run 1 and Run 2 are very different: It is in approximate
balance with the linear wave frequency spacing δω ∼ �ω,
which is particularly clear in the scaling range. A possible
explanation for this behavior is a sandpile effect which was
initially discussed in the context of water waves [66]. In forced
systems, the turbulent cascade (the inverse cascade of mass in
our case) is initially impeded by the discreteness of the Fourier
space because there are less frequency and wave number
resonances in the discrete k space compared to the continuous
one. Given that the system is continuously forced, it will result
in an accumulation on the spectrum in the vicinity of the
forcing wave number, which, in turn, will lead to an increase
in the nonlinear broadening δω. This spectrum accumulation
will continue until δω reaches the typical values of �ω at
which point the quasiresonances will become active and will
trigger the turbulent cascade in the k space. Then turbulent
cascade will start to deplete the accumulated spectrum and
if the forcing is weak the broadening δω will return to the
critical values with δω(k) ∼ �ω(k), but not below it because
this would switch off the quasiresonances and re-initiate the
spectrum accumulation. Of course, such a sandpile scenario is
very speculative and can be only taken as a plausible explana-
tion of the observed behavior.

We now return to the discussion of the emergence of the
condensate as a result of the inverse cascade process. We
have already mentioned, whereas discussing the features of
the ST spectra, that the condensate is imperfect: It is nonuni-
form in the physical space. In Figs. 8(a)–8(c) we show the
isosurface plots of density ρ(r, t ) for the runs Run 1 at ρ =
0.055〈ρ〉, Run 2 at ρ = 0.023〈ρ〉, and Run 3 at ρ = 0.49〈ρ〉,
respectively, at times not far from the end of these runs.
The chosen threshold values allow us to visualize quantum

033305-8



NONEQUILIBRIUM BOSE-EINSTEIN CONDENSATION PHYSICAL REVIEW A 105, 033305 (2022)

FIG. 8. Isosurface plots of the condensate density for the runs: (a) Run 1 at tc∗/ξ ∗ = 8.5 × 103 for 〈ρ〉/ρ∗ = 0.055; (b) Run 2 at tc∗/ξ ∗ =
6.75 × 103 for 〈ρ〉/ρ∗ = 0.023; (c) Run 3 at tc∗/ξ ∗ = 2.89 × 104 〈ρ〉/ρ∗ = 0.49. Visualization is for the entire simulation domain L3 = (2π )3.

vortices clearly. We remind that at the vortex center ρ = 0 and
at distances ∼ξ away from it the density ρ goes back to the
values of the surrounding medium (hence, the name healing
length). In Run 2 and Run 3 we see a few well-formed vortex
lines, which is not surprising, because the condensate fraction
reaches rather high values by the end of these simulations
(even though the global nonlinearity parameter η in Run 2
remains very low). These vortices are sometimes called phase
defects—they are the physical space manifestations of the
condensate imperfection. What is surprising, however, is that
the large-scale vortexlike structures are also seen in Run 1
wherein the condensate fraction remains tiny. Note that the
presence of large density fluctuations render this vortex-loop
fuzzy and result in the appearance of what are called “ghost
vortices,” which are not actual vortices but merely regions of
zero density, but the overall large-scale coherence of such vor-
tices is evident. Thus, large-scale vortices seem to be robust
structures even in cases without well-formed condensate.

Finally, as we had remarked earlier, we are puzzled by the
fact that the condensate fraction in Run 2 grows to a large
value, whereas it remains tiny in Run 1, even though the
latter is more strongly nonlinear than the former. It seems that
the discreteness of the k space, which is a significant factor
in Run 2, helps in the steady growth of the k = 0 compo-
nent. A possible reason behind this could that it is harder to
“spill out” particles from the k = 0 mode into the neighboring
modes when the dynamics is strongly restricted by the k-space
discreteness. However, further studies are required to better
understand this phenomenon.

VI. CONCLUSIONS

We have elucidated the inverse cascade process that leads
to the Bose-Einstein condensation under nonequilibrium con-
ditions within the framework of the force-dissipated GPE.
Results obtained from the DNS of the GPE equation in the
WTT regime are in agreement with the WKE predictions both
the pre-t� self-similar behavior leading to blow up in a finite
time and appearance of a condensate and the thermalization
process that ensues after time t�. We find that the character-
istics of the inverse cascade regime that develops is strongly
dependent on the level of nonlinearity present in the system,

the latter itself varies with time (as we are not investigating
steady states).

We were able to identify three regimes with different scal-
ing behaviors during the course of the evolution: (i) at early
times the presence of n1D(k) ∼ k2 scaling at wave numbers
smaller than the forcing wave number; (ii) followed by the
emergence of k−α with α between 0.5 and 0.8 for different
cases considered here, over wave numbers between 1/ξ and
the forcing wave number; (iii) finally, n1D(k) tends to de-
velop a plateau with near-zero exponents at wave numbers
close but smaller than the forcing wave number, and at still
smaller wave numbers we observe a spectrum with a large
negative exponent (∼− 2.5) associated with development of
a condensate at the k = 0 mode. Regimes (i) and (ii) corre-
spond to the pre-t� evolution of the system and at intermediate
times these regimes coexist, whereas regime (iii) is associated
with the post-t� dynamics. Our spatiotemporal analysis clearly
shows that if the nonlinearity is small and the finite-box ef-
fect is negligible, then the four-wave WTT holds, and we
obtain n1D(k) ∼ k−0.52 scaling which is compatible with and
corresponds to the WKE predictions of nω(t ) ∼ ω−x� with
exponent x� ≈ 1.23 to 1.24. The post-t� dynamics is domi-
nated, depending on the level of nonlinearity, by weak waves
involved in four-wave interactions described by the WTT or
by the presence of coherent structures—a strong coherent
condensate along with well-developed loops of hydrodynamic
vortices. However, in either of these cases the turbulent spec-
trum is characterized by an energy equipartition at high wave
numbers and a steep spectrum at low-wave numbers.

In our simulations, we do not dissipate particles at low-
wave numbers. The condensate forming at low wave numbers
absorbs particles cascading from the high-wave number re-
gion of the spectrum. Naively thinking, eventually we can
regard it as an effective particle sink and, therefore, expect the
formation of the KZ inverse cascade spectrum with exponent
x = 7/6. However, our numerical simulations show that this
is not the case. Indeed, the condensate component cannot
serve as an effective sink of particles: It reflects particles back
to the high-wave-number range and a spectrum close to the
thermodynamic one forms instead of the KZ spectrum. On
the other hand, this leaves unanswered the question if the
full or a partial suppression of the condensate component
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FIG. 9. Temporal evolution of total density [top panel (a)-(c)] and different energy components [bottom panel (d)-(f)] for the runs Run 1,
Run 2, and Run 3. Ei

kin and Ec
kin denote the incompressible and compressible components of the kinetic energy, respectively. Eq and Eint denote

the quantum pressure energy and the interaction energy, respectively.

(by introducing an extra dissipation mechanism at low-wave
numbers) could lead to formation of the stationary KZ
spectrum. This question should be studied theoretically and
numerically in the future. In the case of the positive answer,
one could further investigate if the inverse cascade KZ spec-
trum could be implemented in a BEC experiment.
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APPENDIX A: FORCED-DISSIPATED GPE

To describe the nonequilibrium states of a system of
weakly interacting Bose, in the presence of forcing and

dissipation, we use the following modified Gross-Pitaevskii
equation:

ih̄
∂�

∂t
=− h̄2

2m
∇2�+g|�|2�+ ih̄√

m
F (r, t ) − ih̄νh(−∇2)8�.

(A1)

Here, in general, the total number of bosons N varies with
time and is given by∫

V
dr|�(r, t )|2 = N (t ). (A2)

If we let α ≡ h̄/2m and define the mass density as

ρ(r, t ) ≡ m|�(r, t )|2 = |ψ (r, r)|2, (A3)

then we can write the forced-dissipated GPE as

i
∂ψ

∂t
= −α0∇2ψ + g|ψ |2ψ + F (r, t ) − iνh(−∇2)8ψ,

(A4)
where g → g/h̄m.

APPENDIX B: TEMPORAL EVOLUTION OF DENSITY
AND ENERGY COMPONENTS

In Fig. 9 we show the temporal evolution of the total
density (top panel) and different energy components (bottom
panel) for runs Run 1, Run 2, and Run 3.

APPENDIX C: A FEW COMMENTS ON THE NUMERICAL
SIMULATIONS

1. Hyperviscosity

Turbulence modeling studies, including wave turbulence,
frequently use hyperviscosity to avoid wasting numerical
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FIG. 10. Temporal evolution of the healing length for Run 3.

resolution by restricting the range of scales over which dis-
sipation occurs (see Refs. [67–69]). This is true for numerical
simulations of both 2D and 3D turbulences. For example, in
Ref. [69] it was shown that 3D inertial-range dynamics seems
to be relatively independent of the form of the hyperviscosity
and that modest-resolution simulations with high-order hy-
perviscosity lead to inertial ranges allowing computation of
quantities that are otherwise intractable.

We have used hyperviscosity with a similar aim of pro-
viding an effective energy sink at small scales. Such a
dissipation is significant only for wave numbers close to kd �

kmax = Nc/3. Therefore, a rough estimate of the coefficient
of hyperviscosity can be obtained as follows: νhk16

max ∼ 1;
thus, νh ∼ (3/512)16 = 2 × 10−36. “Choosing carefully” in
our case means avoiding the spectrum pile up near kmax, and
the above estimate ensures this; we have used νh = 10−35 in
all the runs. Varying νh (e.g., within an order of magnitude)
shows that results are not sensitive to this. Also, note that no
fine-tuning of νh was performed in order to obtain the desired
result.

2. Adequateness of the numerical resolution

Note that the choice of the unit ξ ∗ is based on the ini-
tial condition wherein ρ = 1 and c = 1. However, during the
course of the evolution the density ρ(t ) of the system in Run
3 (and all other runs reported here) changes with time as the
system is far from a steady state; therefore, the actual healing
length ξ (t ) = √

α/gρ also varies with time, see Fig. 10 below.
The scaling shown in Fig. 2(c) is during a period when the ac-
tual healing length ξ (t )/ξ ∗ > 2. Therefore, the healing length
is well resolved. Moreover, Fig. 2(c) clearly shows that 1/ξ

is well separated from kmax. At a later stage 1/ξ is closer to
kmax [see Fig. 3(c)] and tight discretizations are usual for GPE
(turbulence) simulations. Also, the structure of an individual
vortex might not be well resolved, but for this late stage we are
concerned with scales larger than it. Therefore, even though
the vortex cores are not resolved at late times in Run 3, and,
hence, their motion may alter at higher resolution, but the
larger scales should not be affected.
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