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Topological phases and collective modes in U(1) and SU(2) sectors of spin-orbit-coupled
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We study the emergence of finite-temperature topological phase transitions of the Berezinskii-Kosterlitz-
Thouless type and the collective mode spectrum of two-dimensional Fermi gases in the presence of attractive
s-wave interactions, spin-orbit coupling, and Zeeman fields. We show that neglecting the spin-dependent phase
shift on the fermionic wave function misses an important point. Including this spin-dependent shift, we derive
the effective low-energy and long-wavelength quantum action for independent (unlocked) phase fluctuations in
the U(1) (charge) and SU(2) (spin) sectors and show that at least two phase transitions occur because charge
and spin degrees of freedom are coupled due to the presence of spin-orbit and Zeeman fields. Furthermore,
we demonstrate that vortex and antivortex excitations are characterized by two topological quantum numbers,
corresponding to the quantized circulation of charge and spin velocities. Finally, we show that there are two
collective modes in the superfluid phase at low temperatures which arise due to the coupling between sound and
transverse-spin waves.
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I. INTRODUCTION

Recently, there has been a tremendous interest in topologi-
cal phase transitions occurring in condensed-matter supercon-
ductors [1–3] and ultracold Fermi superfluids [4–8], where
the interplay between pairing and spin-orbit coupling plays
a crucial role. The classification of zero-temperature topo-
logical phases in superconductors was proposed [9,10] based
on symmetry considerations of independent (quasi)particle
Hamiltonians [11] for systems in which superconductivity is
induced by the proximity effect in metals or in semiconductors
with strong spin-orbit coupling. In this case, a mean-field
description that neglects fluctuations is generally sufficient
[12–15]. In ultracold Fermi superfluids, the situation is quite
different because it is possible to create an artificial strong
spin-orbit coupling [16,17] directly in the superfluid with
controllable pairing interactions [18,19]. This implies that the
order parameter for superfluidity in ultracold atoms is a self-
consistent quantity and that changing the interactions from
weak to strong requires an analysis beyond mean-field theory
[20,21]. In particular, if one wants to study topological super-
fluidity in two-dimensional systems at nonzero temperature it
is essential to include the effects of phase fluctuations [22–24].

In previous work discussing the effects of spin-orbit cou-
pling in two-dimensional Fermi superfluids [4–8], including
our own work [25,26], the phase shift of the fermions was
assumed to be spin independent so that only charge degrees of
freedom were included, that is, a total U(1) phase. However,
this assumption ignores the existence of a spin-dependent
phase shift on the wave function of individual fermions. In
contrast, we show that the inclusion of this spin degree of

freedom, the SU(2) phase, cannot be ignored when spin-orbit
coupling is present and may lead to new physics. In par-
ticular, the inclusion of this spin degree of freedom leads
to an XY spin stiffness and an additional finite-temperature
phase transition of the Berezinskii-Kosterlitz-Thouless (BKT)
universality class [27,28]. Note that this is a phase transition
induced by the proliferation of topological defects such as
vortices and antivortices, but it is not a transition between dif-
ferent topological phases that have different global topological
invariants.

In this paper, we derive the quantum effective action in-
cluding U(1) and SU(2) phase fluctuations for contact s-wave
interactions, spin-orbit coupling, and Zeeman fields. The re-
sulting action contains phase stiffnesses in the U(1), SU(2),
and U(1)×SU(2) sectors. The SU(2) and the U(1)×SU(2)
phase stiffnesses emerge due to spin-orbit coupling and Zee-
man fields and affect not only collective modes, but also
topological excitations such as vortices and antivortices. An
analysis of the U(1) and SU(2) vortices or antivortices and
their unbinding reveals the existence of at least two finite-
temperature topological phase transitions of the BKT type.
Furthermore, in the superfluid phase at low temperatures, the
low-energy and long-wavelength collective excitations are no
longer the pure sound mode found in the U(1) sector; instead
there are two eigenmodes resulting from the coupling between
sound and transverse-spin waves originated from the U(1) and
SU(2) sectors, respectively.

This paper is structured as follows. We start by defining
the system through its Hamiltonian in Sec. II using a general
spin-orbit coupling. The U(1) and SU(2) phase fields are in-
troduced in Sec. III. The effective action for these phase fields

2469-9926/2022/105(3)/033304(10) 033304-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2123-0000
https://orcid.org/0000-0001-8814-6837
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.033304&domain=pdf&date_stamp=2022-03-07
https://doi.org/10.1103/PhysRevA.105.033304


DEVREESE, TEMPERE, AND SÁ DE MELO PHYSICAL REVIEW A 105, 033304 (2022)

is expanded to second order, leading to a description of the
coupled phase fluctuations in Sec. IV. We particularize the
general spin-orbit coupling to the equal Rashba-Dresselhaus
case relevant to the ultracold atomic gases and discuss the
results in Sec. V. We make some final remarks in Sec. VI and
state our conclusions in Sec. VII. Details of the calculations
are given in the Appendices, to keep the readability of the
paper.

II. SYSTEM HAMILTONIAN

In order to describe the physics outlined above, we begin
by defining our unit system, where we set h̄ = 2m = EF = 1,
with m and EF the atom mass and the Fermi energy, re-
spectively. This means that the momentum scale is the Fermi
momentum kF =

√
2mEF /h̄2 = 1 and that the velocity scale

is vF = h̄kF /m = 2. We begin our analysis from the Hamilto-
nian density

H(r) = H0(r) + HSO(r) + HI (r), (1)

where r = (r, τ ) is a three-vector representing the particle
position r = (x, y) in two spatial dimensions and imaginary
time τ . The independent-particle contribution without spin-
orbit coupling is

H0(r) =
∑
s,s′

ψ†
rs[K̂sδss′ − (hzσz )ss′]ψrs′ , (2)

where K̂s = −∇2
r − μs is the kinetic energy of a fermion

with spin s = (↑,↓) measured with respect to its chemical
potential μs. Here hz plays the role of a Zeeman field along the
z axis, while ψ†

rs and ψrs are fermionic fields and σi represents
the ith [=(x, y, z)] Pauli matrix.

The second term in Eq. (1) is given by

HSO(r) = −
∑
ss′

ψ†
rs[2αk̂x(σy)ss′ − 2γ k̂y(σx )ss′ ]ψrs′ (3)

and describes spin-orbit coupling. Here the momentum oper-
ator is k̂η = −i(∂/∂η), with η = {x, y}, while the parameters
α = (vR + vD)/2 and γ = (vR − vD)/2 are the sum and dif-
ference of the Rashba [29] and Dresselhaus [30] couplings
vR and vD, respectively. Notice in Eq. (3) that the spin-
orbit coupling is in general two dimensional, and thus we
can study spin-orbit couplings from the limit of the ex-
tremely anisotropic equal Rashba-Dresselhaus (ERD) case
(vR = vD = v, α = v, and γ = 0) found easily in the con-
text of ultracold atoms to the limit of Rashba-only case
(vD = 0, vR �= 0, and α = γ = vR/2) or Dresselhaus-only
case (vD �= 0, vR = 0, and α = −γ = vD/2) encountered in
typical condensed-matter systems.

The terms involving α and γ in Eq. (1) can be inter-
preted as the components of the transverse field operator
ĥ⊥ = (ĥx, ĥy), with ĥx = −2γ k̂y and ĥy = 2αk̂x. The corre-
sponding matrix for the spin-orbit Hamiltonian density can
be written as −ĥ⊥σ− − ĥ∗

⊥σ+, where ĥ⊥ = ĥx + iĥy is the
complex transverse field operator and σ± = (σx ± iσy)/2 is
the spin raising (+) or lowering (−) operator. The last term in
Eq. (1) represents the interaction Hamiltonian density

HI (r) = −gψ†
r↑ψ

†
r↓ψr↓ψr↑, (4)

which describes fermions interacting via an attractive s-wave
contact interaction with strength g > 0.

III. EFFECTIVE ACTION FOR THE PHASE FIELDS

To obtain the effective action, we begin from the partition
function Z = ∫

Dψ†Dψ exp[−S(ψ†, ψ )], where the starting
action is

S(ψ†, ψ ) =
∫

dr

[∑
s

ψ†
rs

∂

∂τ
ψrs + H(r)

]
. (5)

To keep the readability of the paper, we defer details of the
derivation to Appendix A. Thus, below we only outline some
steps and discuss the physical meaning of the resulting terms.

First, we write the contribution of the interaction Hamil-
tonian density HI (r) to the action in terms of a Hubbard-
Stratonovich transformation involving complex fields 
∗

r and

r as

Sint =
∫

dr

(
ψ

†
r,↑ψ

†
r,↓
r + ψr,↓ψr,↑
†

r − 
†
r
r

g

)
. (6)

Second, we perform a spin-dependent gauge transformation
in the Fermi fields by writing

ψrs → ψ̃rse
iφs (r), (7)

ψ†
rs → ψ̃†

rse
−iφs (r), (8)


r → 
̃reiφ↑(r)+iφ↓(r) = 
̃reiφ+ . (9)

It is important to emphasize that the phase φs(r) is spin de-
pendent, as this has profound consequences on the resulting
effective action. The phase φ+(r) = φ↑(r) + φ↓(r) character-
izes the U(1) charge sector of the particle-particle channel.
However, there is also an associated SU(2) spin-flip phase
φ+(r) = φ↑(r) − φ↓(r) in the particle-hole sector of the off-
diagonal elements of HSO(r).

To see this explicitly, it is more convenient to write
the spin-orbit Hamiltonian density HSO(r) = −ψ

†
r↑ĥ∗

⊥ψr↓ −
ψ

†
r↓ĥ⊥ψr↑ in terms of the spin operators S+(r) = ψ

†
r↑ψr↓ and

S−(r) = ψ
†
r↓ψr↑, yielding

HSO = − ĥ∗
⊥S+(r) − ĥ⊥S−(r)

+ [ĥ∗
⊥, ψ

†
r↑]ψr↓ + [ĥ⊥, ψ

†
r↓]ψr↑. (10)

Under the spin-dependent gauge transformation the spin-
flip operators transform as S̃+(r) = S+(r)eiφ−(r) and S̃−(r) =
S−(r)e−iφ−(r), where φ−(r) = φ↑(r) − φ↓(r) plays the role
of an SU(2) transverse-spin phase. Hence, when spin-orbit
coupling is present, the phases φ+(r) and φ−(r) both play an
important role in the final effective action obtained below.

After integration over the Fermi fields ψ̃rs and ψ̃†
rs, the

partition function Z is a functional of the phases φ↑(r) and
φ↓(r) and of the amplitude |
r |. However, since we expect
phase fluctuations to provide the dominant contributions in
two dimensions, we assume that the order parameter is uni-
form in space and imaginary time by setting |
r | = |
|.
Performing a Fourier transformation, we obtain the partition
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function Z = ∫
Dφ↑φ↓ exp{−Seff [φ↑, φ↓]}, where the action

Seff = −1

2
Tr

{
ln

[
β

(
A+ B+
B− A∗

−

)]}
− βL2|
|2

g
+ Sx,

(11)
with β the inverse temperature and L2 the area of the two-
dimensional system. The traces are taken over k = (k, iωn),
where k is the fermionic wave vector and ωn = (2n + 1)π/β

is the fermionic Matsubara frequency. The 2 × 2 matrices A+
and A∗

− describe energies in the particle-hole sector, while
matrices B+ and B− describe energies in the particle-particle
sector, and Sx is independent of interactions. Expressions for
all these terms can be found in Appendix A.

IV. COUPLED PHASE FLUCTUATIONS

An expansion in φs results in an effective action Seff =
SSP + Sfl, where the first term is the saddle-point contribution
leading to the thermodynamic potential

�SP =
∑

k

(
−1

2β

∑
i=±

ln[2 + 2 cosh(βEi )] + ξk

)
− L2|
|2

g
.

(12)
Here

E± =
√

[ES (k) ± |heff (k)|]2 + |
T (k)|2 (13)

are the quasiparticle energies, ES (k) =
√

ξk
2 + |
S (k)|2 is

the energy associated with the order parameter component

S (k) = |
|hz/|heff (k)| in the singlet sector, and 
T (k) =
|
|h∗

⊥(k)/|heff (k)| is the order parameter component in the
triplet sector induced by spin-orbit coupling, where heff (k) =
[hx(k), hy(k), hz] plays the role of an effective momentum-
dependent Zeeman field. Finally, we substitute the interaction
g by the two-body binding energy Eb via the Lippmann-
Schwinger relation

1

g
= −

∫
dk

(2π )2

1

2k2 + Eb
(14)

in two spatial dimensions.
The second term in the expansion is the phase-fluctuation

action, written in terms of the phases φ+(r) in the U(1) sector
and φ−(r) in the SU(2) sector as

Sfl = 1

2

∫
dx dy dτ (κmn∂τφm∂τφn + ρνλ

mn∂νφm∂λφn), (15)

where the indices m, n take values {+,−}, ∂τ indicates the
partial imaginary-time derivative, and ∂ν and ∂λ describe par-
tial spatial derivatives with ν or λ being {x, y}. Details of
the derivation can be found in Appendix B. The detailed
microscopic expressions for κmn and for ρνλ

mn are discussed in
Appendix C.

The quantum action shown in Eq. (15) describes two cou-
pled systems: One is the charge sector labeled by {++}, the
other is the spin sector labeled by {−−}, and their coupling is
labeled by {+−}, {−+}. The gradients ∂λφ+(r) and ∂λφ−(r)
play the roles of the superfluid velocity and of the spatial
derivative of the transverse magnetization, respectively. No-
tice that the quantum action reveals a drag effect between
charge and spin currents due to the coupling between ∂νφ+
and ∂λφ− induced by the presence of spin-orbit coupling.

The coupling term is very important in the analysis of the
collective phase modes that will be discussed later.

The coefficient κ++ describes the compressibility of the
U(1) sector associated with φ+(r) only; κ−− reflects the com-
pressibility of the transverse-spin SU(2) sector associated with
φ−(r) only; κ+− and κ−+ are compressibilities that reveal
the coupling between the two sectors. In the limit where the
spin-orbit coupling is zero, κ+−, κ−+, κ−− vanish and only
the U(1) sector corresponding to the superfluid component
remains. Furthermore, for nonzero spin-orbit coupling, only
the κ++ term contributes when the phases are locked, that
is, when φ−(r) = 0. The tensor ρνλ

mn represents a generalized
phase stiffness. Again, in the limit of zero spin-orbit coupling
the phase-stiffness components ρνλ

−+, ρνλ
+−, ρνλ

−− vanish and
only ρνλ

++ = ρ++δνλ survives in the U(1) sector corresponding
to a superfluid density tensor that is isotropic. In addition,
when the spin-orbit coupling is nonzero and the phases are
locked with φ−(r) = 0, only the U(1) sector contributes to the
action, but the superfluid density tensor ρνλ

++ is anisotropic.
The microscopic expressions for κmn and for ρνλ

mn are found in
Appendix C.

Next we rotate (x, y) into (x̃, ỹ) such that the phase stiffness
tensor is diagonal in spatial coordinates, with elements ρ x̃x̃

mn

and ρ
ỹỹ
mn. Finally, we rescale x̃ = [ρ x̃x̃

mn]1/2x̄ and ỹ = [ρ ỹỹ
mn]1/2ȳ

to make the phase stiffness tensor isotropic in space, ρ̄mn =
[ρ x̃x̃

mn ⊗ ρ
ỹỹ
mn]1/2. This turns the action from Eq. (15) into

Sfl = 1

2

∫
dx̄ dȳ dτ (κ̄mn∂τφm∂τφn + ρ̄mn∂ν̄φm∂ν̄φn) (16)

in the coordinate system (x̄, ȳ). In Eq. (16) the renormalized
compressibility matrix elements are κ̄mn = ρ̄mn ⊗ κmn, where
⊗ represents direct product. Stability requires that κ̄mn and ρ̄mn

are matrices with positive eigenvalues, that is, the traces and
the determinants of κ̄mn and ρ̄mn are positive.

In thermodynamic equilibrium the phase fields are inde-
pendent of time τ and thus only the spatial part of the action
is important. Since the phases φ+(x, y) and φ−(x, y) in the
original coordinates (x, y) are defined modulo 2π , vortex so-
lutions associated with these phase fields have to satisfy the
quantization of circulation

∮
C ∇φm(r) · d� = 2πQm, where

Qm is the topological index characterizing the vorticity, that
is, the topological charge. Since Qm is a scalar, any conformal
deformation of φm(r) produces the same topological charge;
thus in the transformed coordinates (x̄, ȳ) the circulation quan-
tization is written as

∮
C ∇̄φm(r̄) · d �̄ = 2πQm.

The topological excitations of the action in Eq. (16) are
vortices with topological indices (Q+, Q−). A phase transition
occurs at the critical temperature T++ = π

2 ρ̄++ in the charge
sector when charge vortex (Q+ = +1, Q− = 0) and antivor-
tex (Q+ = −1, Q− = 0) unbind. Similarly, a phase transition
occurs at T−− = π

2 ρ̄−− in the spin sector when the spin vor-
tex (Q+ = 0, Q− = +1) and antivortex (Q+ = 0, Q− = −1)
unbind. An illustration of the vortex-antivortex pairs in the
two sectors is shown in Fig. 1. We also mention in passing
the possibility of another transition when there is vorticity
in both charge and spin sectors. Such transitions corre-
spond to unbinding of the composite vortex (Q+ = +1, Q− =
+1) and composite antivortex (Q+ = −1, Q− = −1) or un-
binding of the composite vortex (Q+ = +1, Q− = −1) and
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FIG. 1. Schematic illustration of the two BKT transitions, related
to unbinding of vortex-antivortex pairs in the spin sector and the
charge sector, consecutively, as the temperature T/TF is increased.
The blue triangles and dashed line represent the BKT temperature
for the spin sector and the black circles and curve represent the
transition temperature for the charge sector, both for v/ṽF = 0.6 and
hz/EF = 0.01. In the shaded area, |
| = 0.

composite antivortex (Q+ = −1, Q− = +1). For instance,
when the off-diagonal stiffness ρ̄+− is positive but sufficiently
small such that ρ̄+− < max{ρ̄++, ρ̄−−}/2 while still satisfying
the stability condition |ρ̄+−| < [ρ̄++ρ̄−−]1/2 for the positivity
of ρ̄mn, this new phase does not emerge, at least in the ERD
case discussed below and for the parameters used below.

The phase transition in the SU(2) spin channel will lead
to a direct signature in the spin susceptibility. This quan-
tity has been measured experimentally in strongly interacting
Fermi gases by various techniques, using the equation of
state [31], speckle imaging [32], and radio-frequency dress-
ing [33]. In addition, vortex rotation can be detected by
Bragg spectroscopy [34,35], and spin-dependent Bragg spec-
troscopy could be used to detect the SU(2) channel vortices.
Vortex-antivortex unbinding has been detected through inter-
ferometric [36,37] or density techniques [38] that can be made
spin selective [39].

V. RESULTS AND DISCUSSION FOR THE ERD CASE

All the analytical results discussed above are valid for
general two-dimensional spin-orbit couplings, that is, for any
linear combination of Rashba and Dresselhaus contributions.
However, in the remainder of this paper, we focus on the equal
Rashba-Dresselhaus case vR = vD = v, which is relevant for
ultracold fermions. In Fig. 2, we show the behavior of T++
and T−− (in units TF = EF /kB) versus Eb and Zeeman field
hz for fixed values of the ERD spin-orbit coupling parame-
ter v. In Fig. 2(a), hz/EF = 0.01 is small in comparison to
v/ṽF with ṽF = vF /2, where the system is nearly Galilean

FIG. 2. The BKT transition temperatures T++ for the charge
sector and T−− for the spin sector. (a) Temperatures T++ (circles,
v/ṽF = 0.8) and T−− (diamonds, v/ṽF = 0.6; squares, v/ṽF = 0.8;
and triangles, v/ṽF = 1.0) are shown as a function of Eb for hz/EF =
0.01. The curves for T−− scale approximately as v2. (b) Temperatures
T++ (circles) and T−− (squares) are shown as a function of Eb at
hz/EF = 0.6, v/ṽF = 0.8. (c) and (d) Temperatures T++ (circles)
and T−− (triangles) are shown for v/ṽF = 1.0 as a function of hz

at (c) Eb/EF = 0.1 and (d) Eb/EF = 0.25. The shaded area above
the red solid line represents the region where the order parameter
|
| = 0. Curves connecting symbols are a guide for the eye.

invariant. The temperature T++ in the charge sector and the
boundary of the shaded area where |
| = 0 is largely insen-
sitive to the values of v/ṽF . However, T−− increases with
growing values of v/ṽF , reflecting the mounting importance
of the spin sector and the induced triplet component of the
order parameter. Within the superfluid region, notice that T−−
decreases as a function of the binding energy. The reason is
that larger binding energies favor spin-singlet pairing, which
in turn suppresses longitudinal spin fluctuations (z axis). Due
to the noncommuting nature of the spin operators, this will
enhance the transverse-spin fluctuations (xy plane), thereby
reducing the transverse-spin stiffness. In Fig. 2(b), hz/EF =
0.6 is comparable to v/ṽF = 0.8. The effect of an increase in
hz is detrimental for the quantities related to the charge sector
(T++ and the temperature where |
| = 0 are reduced), but it
enhances the importance of the spin sector in the triplet chan-
nel (T−− increases), as can be more clearly seen in Figs. 2(c)
and 2(d). As hz approaches the pair-breaking |
| = 0 region,
T−− becomes suppressed by the closing of the gap, giving
rise to a maximum as a function of hz. As can be seen in
Figs. 2(a)–2(c), the T−− curve crosses into the region where
|
| = 0. Due to spin-orbit coupling, the spin sector in our
system has a spin stiffness that is nonzero even when the
superfluid order parameter is zero. Above the line |
| = 0,
the spin stiffness is independent of Eb, but it still depends
on v/ṽ and hz. When |
| > 0, the transition temperature is
modified by the coupling to the superfluid sector and thus
becomes dependent on Eb.

In Fig. 3, we show the phase stiffnesses in the charge
(ρ̄++), spin (ρ̄+−), and mixed (ρ̄+− = ρ̄−+) sectors, illustrat-
ing their universal jumps at the vortex-antivortex unbinding
critical temperatures T++ and T−− in the charge and spin
sectors, respectively. Notice that ρ̄+− jumps to zero always
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FIG. 3. Phase stiffnesses ρ̄mn are shown as a function of T/TF

for several values of the binding energy Eb (in units EF ), the SOC
strength v (in units ṽF ) and hz (in units EF ): (a) hz = 0.5, v = 1,
and Eb = 0.1; (b) hz = 0.5, v = 1, and Eb = 0.2; (c) hz = 0.3, v =
0.6, and Eb = 0.15; and (d) hz = 0.5, v = 0.6, and Eb = 0.15. The
stiffnesses corresponding to charge (ρ̄++) and spin (ρ̄−−) sectors are
shown by the black solid and the blue dashed curves, respectively.
The red dash-dotted line shows ρ̄+−. The phase stiffnesses are scaled
by π/2, so the intersect with the temperature (black dash-dotted thin
line) indicates the critical BKT temperature corresponding to each
curve, where the phase stiffness drops discontinuously to zero.

at the min{T−−, T++}. The terms involving ρ̄+− and ρ̄−+
describe a charge-spin or spin-charge drag effect induced by
the simultaneous presence of spin-orbit coupling and Zeeman
fields.

To study the collective modes, we take into account the
spatial and temporal dependences of the phase fields φm(r̄, τ )
and work in momentum and frequency space. The analytic
continuation iωn → ω + iδ leads to

Sfl = 1

2

∑
q̄,ω

[ω2κ̄mn − q̄2ρ̄mn]φm(−q̄, ω)φn(q̄, ω). (17)

There are two eigenmodes. Only when ρ̄+− = ρ̄−+ = 0 there
are pure charge (sound-wave) and pure spin (transverse-spin-
wave) modes. In this case, the charge mode has dispersion
ω2(q̄) = c̄2

+q̄2, where c̄+ = [ρ̄++/κ̄++]1/2 plays the role
of the sound velocity, and the spin mode has dispersion
ω2(q̄) = c̄2

−q̄2, where c̄− = [ρ̄−−/κ̄−−]1/2 plays the role of
the transverse-spin-wave velocity. However, for nonzero spin-
orbit coupling and Zeeman fields, the sound- and spin-wave
modes are always coupled, leading to dispersions ω2

1 =
c̄2

1q̄2 with propagation speed c̄2
1 = c̄2

s + (c̄4
d + c̄4

+−)1/2 for
the higher-frequency mode and ω2

2 = c̄2
2q̄2 with propaga-

tion speed c̄2
2 = c̄2

s − (c̄4
d + c̄4

+−)1/2 for the lower-frequency
mode. Here the squared-sum speed is c̄2

s = (c̄2
+ + c̄2

−)/2, the
squared-difference speed is c̄2

d = (c̄2
+ − c̄2

−)/2, and the cross
speed is c̄4

+− = ρ̄+−ρ̄−+/κ̄++κ̄−−. The dispersions are given
in transformed momentum coordinates (q̄x, q̄y), where the
action is isotropic. A return to the original momentum co-
ordinates (qx, qy) requires undoing the scaling and rotation
transformations, implemented earlier in real space. In the
original coordinates, the collective mode velocities c1,x and
c2,x in the x direction are different from c1,y and c2,y in the

FIG. 4. Collective mode velocities (in units ṽF = vF /2) are
shown for the first mode c1,x (closed black circles) and c1,y (open
black circles) and for the second mode c2,x (closed blue triangles)
and c2,y (open blue triangles). Collective mode velocities are plot-
ted as a function of the binding energy for (a) smaller spin-orbit
coupling (v/ṽF = 0.4) and (b) larger spin-orbit coupling (v/ṽF =
0.8), at hz/EF = 0.1. (c) At fixed Eb/EF = 0.15 and Zeeman field
hz/EF = 0.3, the velocities are shown as a function of the ERD
spin-orbit coupling v/ṽF . (d) The effect of increasing hz is shown
at Eb/EF = 0.1 and v/ṽF = 0.8.

y direction, reflecting the anisotropy of the ERD spin-orbit
coupling. In the case of pure Rashba or Dresselhaus spin-orbit
coupling, the collective mode velocities are isotropic; how-
ever, any nontrivial linear combination of the two terms will
always lead to anisotropies. In Fig. 4, we show the collective
mode velocities at T/TF = 0.01. In Figs. 4(a) and 4(b), they
are shown as a function of Eb/EF at hz/EF = 0.1, for smaller
[Fig. 4(a)] and larger [Fig. 4(b)] spin-orbit coupling. In this
regime, the charge and spin modes are weakly coupled: The
first mode (black circles) has dominantly charge character,
whereas the second mode (blue triangles) has predominantly
spin character. In the regions of the phase diagram where
T++ > T−−, the collective modes are a mix of sound and
spin waves for T < T−−, but for T−− < T < T++ where ρ̄−−
and ρ̄+−, ρ̄−+ have vanished, there is only the sound mode
left. Conversely, in regions where T++ < T−−, the collective
modes are a mix of sound and spin waves for T < T++, but
for T++ < T < T−− where ρ̄++ and ρ̄−+, ρ̄+− have vanished,
there is only the spin-wave mode left. This shows that for fixed
binding energy, spin-orbit coupling, and Zeeman fields, but
changing temperatures, one can probe one or two collective
modes.

For the domain of binding energies Eb shown, the first
mode velocity is largely insensitive to changes in Eb or v

and is nearly isotropic, whereas the second mode is visibly
anisotropic and its velocity increases as a function of v. More-
over, c2,y (open blue triangles) is more sensitive to Eb than
c2,x (closed blue triangles). Figure 4(c) shows the influence
of the spin-orbit-coupling strength on the modes, revealing
two avoided crossings. In the x direction the first (second)
mode, shown with closed circles (closed triangles), is mostly a
charge (spin) mode before the avoided crossing, turning into a
predominantly spin (charge) mode afterward. A similar effect
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happens in the y direction. In Fig. 4(d), with increasing hz, the
excitation spectrum of the superfluid changes from a regime
with an indirect gap (hz/EF � 0.4) to a regime with a node
(hz/EF � 0.4) which affects the curvature and slopes of all
collective mode velocities.

VI. FINAL REMARKS

We would like to emphasize that the theory described in
this paper includes only phase fluctuations, which works well
for values of Eb/EF � 0.4 [26]. For larger values of the bind-
ing energy it is necessary to include also fluctuations of the
order parameter modulus, given that the coupling between the
phase and modulus increases from the BCS to the Bose regime
as in the three-dimensional case. These corrections modify
the chemical potential, the sound velocity, and the critical
temperature as the Bose regime is approached. The study of
these effects is left for later investigation.

VII. CONCLUSION

In conclusion, we have shown that spin-orbit-coupled
Fermi gases in two dimensions may exhibit two distinct topo-
logical phase transitions belonging to the BKT universality
class. The first one occurs in the U(1) charge sector and is
related to the phase sum of both spin components, while the
second one occurs in the SU(2) spin sector and is related
to the phase difference between the spin components. We
characterized the critical temperatures for these transitions in
various regimes, as well as the collective modes at low temper-
ature. Our results suggest that spin-orbit coupling introduces
additional topological phases and collective excitations as a
result of the interplay between charge and spin degrees of
freedom, relevant not only for superfluid Fermi gases but also
for solid-state superconductors.
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APPENDIX A: DERIVATION OF THE EFFECTIVE ACTION
FOR THE PHASE FIELDS

The Hamiltonian H(r) defined in Eq. (1) leads straightfor-
wardly to the action functional S = Sfree + Sint that can be
split in a part describing the noninteracting Fermi system,

Sfree =
∫

dr

{
ψ

†
r,↑

(
∂

∂τ
− ∇2

r − μ↑ − hz

)
ψr,↑

+ ψ
†
r,↓

(
∂

∂τ
− ∇2

r − μ↓ + hz

)
ψr,↓

− ψ
†
r,↑ĥ∗

⊥ψr,↓ − ψ
†
r,↓ĥ⊥ψr,↑

}
, (A1)

where r = {r, τ } and
∫

dr = ∫ β

0 dτ
∫

dr, and a part describing
the interactions Sint, which is given by Eq. (6) after intro-
ducing the Hubbard-Stratonovich fields. Performing the gauge
transformation (7)–(9) leads to

Sfree =
∫

dr

{
− eiφ−ψ̃

†
r,↓[ĥ⊥ + h⊥(φ↑)]ψ̃r,↑

+ ψ̃
†
r,↓

(
∂

∂τ
− ∇2

r − μ↓ + hz + ξ (φ↓) − ζ̂ (φ↓)

)
ψ̃r,↓

+ ψ̃
†
r,↑

(
∂

∂τ
− ∇2

r − μ↑ − hz + ξ (φ↑) − ζ̂ (φ↑)

)
ψ̃r,↑

− e−iφ−ψ̃
†
r,↑[ĥ∗

⊥ + h∗
⊥(φ↓)]ψ̃r,↓

}
, (A2)

where we have introduced some additional notation:

ξ (φs) = i
∂φs

∂τ
+ (∇rφs)2, (A3)

ζ̂ (φs) = 2i(∇rφs) · ∇r, (A4)

h⊥(φs) = 2iα(∂xφs) − 2γ (∂yφs). (A5)

The interaction action Sint [Eq. (6)] is left invariant by the
spin-dependent gauge transformation.

Before making a Fourier transformation, we assume that
the phase fields φs vary slowly in space and time with respect
to the typical variations of the fermionic degrees of freedom.
When that is the case, we can coarse grain the system accord-
ing to the slow degrees of freedom φs. The fast variables ψ̃r,τ,s
are integrated out, assuming they are in local equilibrium.

To perform the integration over the fast fermionic degrees
of freedom, the Fourier transform convention is used,

ψk,s = 1√
βL2

∫
dr ei(ωnτ−k·r)ψ̃r,τ,s, (A6)

where k = (k, iωn), with ωn = (2n + 1)π/β the fermionic
Matsubara frequencies with n ∈ Z. The resulting action func-
tional for the terms describing the noninteracting system is

Sfree =
∫

dr
∑

k

{−e+iφ− [h⊥(k) + h⊥(φ↑)]ψ†
k,↓ψk,↑

+ [−iωn + ξk + ξ (φ↑) − hz − ζk(φ↑)]ψ†
k,↑ψk,↑

+ [−iωn + ξk + ξ (φ↓) + hz − ζk(φ↓)]ψ†
k,↓ψk,↓

− e−iφ− [h∗
⊥(k) + h∗

⊥(φ↓)]ψ†
k,↑ψk,↓}. (A7)

In this expression, we introduce again additional notation to
keep the expressions somewhat compact:

ξk = k2 − μ, (A8)

ξ (φs) = i
∂φs

∂τ
+ (∇rφs)2, (A9)

ζk(φs) = −2(∇rφs) · k, (A10)

h⊥(k) = 2iαkx − 2γ ky. (A11)
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The interaction part of the action functional in turn transforms
to

Sint =
∫

dr
∑

k

{ψ†
k,↑ψ

†
−k,↓
 + ψ−k,↓ψk,↑
∗} − 

∗

g
.

(A12)
Some remarks are in order. First, note that the Fourier trans-
form was taken with respect to the fast variables, so the deriva-
tives of the phase fields remain. Moreover, the integration
over the imaginary-time and space dependence of the phase
fields is still present, indicated by

∫
dr = (βL2)−1

∫
dr
∫

dτ ,
where L2 is the area of the two-dimensional Fermi system.
Second, we use μ = (μ↑ + μ↓)/2. If any spin imbalance
ζ = (μ↑ − μ↓)/2 is present, its effect can be absorbed in
hz + ζ → hz. Third, for the pair field, we assume that pair
condensation is present in the q = (q, i�n) = 0 state, setting

q = |
|δ(q)δn,0, with �n the bosonic Matsubara frequen-
cies for the pair field. From here onward, we treat |
| at the
saddle-point level and take into account fluctuation effects
generated only by the phase fields.

The action S = S free + Sint is quadratic in the fermionic
fields, and in reciprocal space it is block diagonal. To bring
out this block-diagonal structure, we use Nambu spinors with
the following ordering convention:

η
†
k = (ψ†

k,↑ ψ
†
k,↓ ψ−k,↑ ψ−k,↓). (A13)

Using this notation, the action functional can be written as

S =1

2

∫
dr
∑

k

η
†
kCkηk − 

∗

g
+ Sx. (A14)

The action is diagonal in k. The factor 1
2 appears to avoid dou-

ble counting. The 4 × 4 inverse Green’s function Ck for the
fermionic fields (more commonly denoted by −G−1

k ) exhibits
the substructure

Ck =
(

A+ B+
B− A∗

−

)
(A15)

with 2 × 2 blocks. The A+ (particle-hole) block can be read
off from Sfree [Eq. (A7)], keeping the usual order of operators:

A+ =
( −iωn + ξk + ξ (φ↑) − hz − ζk(φ↑) − e−iφ− [h∗

⊥(k) + h∗
⊥(φ↓)]

−e+iφ− [h⊥(k) + h⊥(φ↑)] − iωn + ξk + ξ (φ↓) + hz − ζk(φ↓)

)
. (A16)

Similarly, the A∗
− (hole-particle) block is obtained by anticommuting the fields and performing a parity transformation

(k, iωn) → (−k,−iωn):

A∗
− =

( −iωn − ξk − ξ (φ↑) + hz − ζk(φ↑) − e+iφ− [h⊥(k) − h⊥(φ↑)]
−e−iφ− [h∗

⊥(k) − h∗
⊥(φ↓)] − iωn − ξk − ξ (φ↓) − hz − ζk(φ↓)

)
. (A17)

Finally, B+ (B−) provides the particle-particle (hole-hole)
terms, with B− = −B∗

+. From Eq. (A12) it is clear that

B+ =
(

0 


−
 0

)
. (A18)

Using the anticommutation of fermionic field operators, we
get additional terms that no longer depend on the fermionic
fields. They are collected in

Sx = β
∑

k

{
(−iωn + ξk ) + 1

2

∫
dr

∑
s∈{↑,↓}

(∇rφs)2

}
,

(A19)
and we need to keep these terms since they regularize the total
action.

The action in Eq. (A14) is quadratic in the fermionic fields
where Ck has a block-diagonal form. The fermionic fields can
then be easily integrated out, and the resulting effective action
can be written down using the trace-logarithmic formula

Seff = −1

2
Tr(ln[βCk ({φ↑, φ↓})]) − βL2 

∗

g
+ Sx. (A20)

This effective action for the phase fields is the same as in
Eq. (11).

APPENDIX B: DERIVATION OF THE PHASE
FLUCTUATION ACTION

To obtain the phase fluctuation action from Seff [Eqs. (A20)
and (11)], a low-energy and long-wavelength expansion to

Gaussian order in (φ↑, φ↓) needs to be performed. The trace
in Eq. (A20) above is written as

Tr(ln[βCk ({φ↑, φ↓})]) =Tr(ln[βCk ({0, 0})])

+ Tr
(
ln
[
I+C−1

k ({0, 0})Dk ({φ↑, φ↓})
])

(B1)

to separate the saddle-point contribution Ck ({0, 0}) from

Dk ({φ↑, φ↓}) = Ck ({φ↑, φ↓}) − Ck ({0, 0}) (B2)

containing phase fluctuations. In turn, this allows us to write
Seff = SSP + Sfl, where the saddle-point action is

SSP = − 1

2
Tr(ln[βCk ({0, 0})]) + β

∑
k

(−iωn + ξk )

− βL2 

∗

g
(B3)

and the phase fluctuation action becomes

Sfl = − 1
2 Tr

(
ln
[
C−1

k ({0, 0})Dk ({φ↑, φ↓})
])

+ 1
4 Tr

[
ln

([
C−1

k ({0, 0})Dk ({φ↑, φ↓})
]2)]

, (B4)

after an expansion the logarithm of the second term in
Eq. (B1). The matrix for the phase fluctuations is

Dk ({φ↑, φ↓})=

⎛
⎜⎜⎜⎝
e
↑
+(k)

[
h

↓
+(k)

]∗
0 0

h
↑
+(k) e

↓
+(k) 0 0

0 0 e
↑
−(k) h

↑
−(k)

0 0
[
h

↓
−(k)

]∗
e
↓
−(k)

⎞
⎟⎟⎟⎠,

(B5)
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with matrix elements

es
±(k) = ±ξ (φs) − ζk(φs), (B6)

hs
±(k) = −e+iφ− [h⊥(k) ± h⊥(φs)]. (B7)

The inverse matrix C−1
k ({0, 0}) has only six independent com-

ponents due to symmetry,

C−1
k ({0, 0}) = 1

D

⎛
⎜⎜⎝

A1,1 A1,2 A1,3 A1,4

A∗
1,2 A2,2 − A1,4 A2,4

A∗
1,3 − A∗

1,4 − A∗
1,1 A∗

1,2
A∗

1,4 A∗
2,4 A1,2 − A∗

2,2

⎞
⎟⎟⎠,

(B8)
where the determinant D(k, iωn) of Ck ({0, 0}) is

D(k, iωn) = (−iωn + ε1)(−iωn + ε2)

× (−iωn − ε1)(−iωn − ε2) (B9)

and the Bogoliubov energies in the presence of the spin-orbit
coupling and Zeeman fields are

ε1 =
√

E2
k + |heff(k)|2 + 2

√
E2

k |heff(k)|2 − |
|2|h⊥(k)|2,
(B10)

ε2 =
√

E2
k + |heff(k)|2 − 2

√
E2

k |heff(k)|2 − |
|2|h⊥(k)|2,
(B11)

with E2
k = ξ 2

k + |
|2 and |heff(k)|2 = h2
z + |h⊥(k)|2. The

components of C−1
k ({0, 0}) are functions of {k, iωn} and are

given by

A1,1 = (−iωn + ξk + hz )(−iωn − ξk + hz )

× (−iωn − ξk − hz ) + |
|2(iωn + ξk + hz )

− (−iωn + ξk + hz )|h⊥(k)|2, (B12)

A1,2 = h⊥(k)|h⊥(k)|2 + |
|2h⊥(k) + h∗
⊥(k)

× (−iωn − ξk + hz )(−iωn − ξk − hz ), (B13)

A1,3 = 2h⊥(k)
(ξk + hz ), (B14)

A1,4 = |
|2
 + |h⊥(k)|2

−
(−iωn + ξk + hz )(−iωn − ξk + hz ), (B15)

A2,2 = (−iωn + ξk − hz )(−iωn − ξk + hz )

× (−iωn − ξk − hz ) − |
|2(−iωn − ξk + hz )

− (−iωn + ξk − hz )|h⊥(k)|2, (B16)

A2,4 = −2h∗
⊥(k)
∗(ξk − hz ). (B17)

These components are the building blocks for the analytical
expressions of the phase stiffness and compressibility tensor
listed in Appendix C. In the present Appendix, we focus on
the resulting form of the fluctuation action

Sfl = 1

2

∫
dr(κss′∂τφs∂τφs′ + ρλν

ss′ ∂λφs∂νφs′ ), (B18)

after the traces are taken in Eq. (B4). Here s and s′ are spin
{↑,↓} indices, ∂τ is the partial derivative with respect to imag-
inary time τ , and ∂λ and ∂ν are the partial spatial derivatives
with λ or ν being {x, y}. We use Einstein’s summation conven-
tion of repeated indices. The tensor κss′ is the spin-dependent
compressibility and the tensor ρλν

ss′ describes a spin-dependent
phase stiffness connecting the same or different spatial direc-
tions. The quantum action is more transparent when written
in terms of the phases φ+ of the U(1) charge sector and φ− of
the SU(2) spin sector. The resulting expression is

Sfl = 1

2

∫
dr(κmn∂τφm∂τφn + ρλν

mn∂λφm∂νφn), (B19)

where now the indices m and n take values {+,−}. The
coefficient κ++ and the matrix ρλν

++ now represent the com-
pressibility and spin stiffness matrix for the U(1) charge
sector, whereas κ−− and ρλν

−− are their counterparts in the
SU(2) spin sector. Finally, there are coefficients κ+−, κ−+
and matrices ρλν

+−, ρλν
−+ that characterize the coupling between

the U(1) and SU(2) sectors for compressibility and phase
stiffness, respectively. In Appendix C we provide explicit
expressions for κmn and ρλν

mn in the case of equal Rashba
and Dresselhaus spin-orbit coupling, which is relevant for the
present work focusing on ultracold fermions.

APPENDIX C: PHASE STIFFNESS AND
COMPRESSIBILITY TENSORS

We have derived the components of the compressibility
matrix κmn and the phase stiffness tensor ρνλ

mn in general,
but here we focus on the ERD case, deferring the general
spin-orbit coupling (including the Rashba-only limit) to future
work. In the ERD case, the fluctuation action expressed for the
phase fields of the charge and spin sectors reads

Sfl[{φ+, φ−}] = 1

2

∫
dτ

∫
dr

⎡
⎢⎣η̄(τ )

r,τ

(
κ++ κ+−
κ+− κ−−

)
η(τ )

r,τ

+ η̄(r)
r,τ

⎛
⎜⎝

ρxx
++ 0 ρxx

+− 0
0 ρ

yy
++ 0 ρ

yy
+−

ρxx
+− 0 ρxx

−− 0
0 ρ

yy
+− 0 ρ

yy
−−

⎞
⎟⎠η(r)

r,τ

⎤
⎥⎦,

(C1)

where now we use the Nambu spinor notation for the spatial
partial derivatives as

η̄(r)
r,τ = (∂xφ+ ∂yφ+ ∂xφ− ∂yφ−) (C2)

and for the temporal partial derivatives as

η̄(τ )
r,τ = (∂τφ+ ∂τφ−). (C3)

We express the phase stiffnesses and the compressibilities
in terms of auxiliary functions built from the matrix elements
of C−1

k ({0, 0}), given in Eqs. (B9) and (B12)–(B17). In terms
of these functions, the compressibilities are

κ+− = 1

4βL2

∑
k,iωn

1

[D(k, iωn)]2

[
A2

2,2(k, iωn) − A2
1,1(k, iωn) + |A1,3(k, iωn)|2 − |A2,4(k, iωn)|2

]
, (C4)
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κ±± = 1

4βL2

∑
k,iωn

1

[D(k, iωn)]2

[|A2,4(k, iωn)|2 + |A1,3(k, iωn)|2 − A2
2,2(k, iωn) − A2

1,1(k, iωn)

±2A2
1,4(k, iωn) ∓ 2A1,2(k, iωn)A∗

1,2(k,−iωn)
]
. (C5)

The phase stiffnesses are written as

ρxx
++ = r↑↑(xx)

1 + r↓↓(xx)
1 + 2

(
r↑↓(xx)

1 + r↑↓(xx)
2 + r↑↑(xx)

2 + r↑↑(xx)
4 + r↓↓(xx)

4

)+ r↑↑
6 + r↓↓

6 , (C6)

ρxx
−− = r↑↑(xx)

1 + r↓↓(xx)
1 − 2

(
r↑↓(xx)

1 + r↑↓(xx)
2 − r↑↑(xx)

2

)+ r↑↑
6 + r↓↓

6 , (C7)

ρxx
+− = r↑↑(xx)

1 − r↓↓(xx)
1 + r↑↑(xx)

4 − r↓↓(xx)
4 + r↑↑

6 − r↓↓
6 . (C8)

The expressions for ρ
yy
++, ρyy

−−, and ρ
yy
+− can be found by substituting xx → yy in the expressions above. The auxiliary r functions

are in turn listed below. The r (xx)
1 functions are

r↑↑(xx)
1 = 1

βL2

∑
k,iωn

1

[D(k, iωn)]2

[
A2

1,1(k, iωn) + |A1,3(k, iωn)|2]k2
x , (C9)

r↓↓(xx)
1 = 1

βL2

∑
k,iωn

1

[D(k, iωn)]2

[
A2

2,2(k, iωn) + |A2,4(k, iωn)|2]k2
x , (C10)

r↑↓(xx)
1 = 1

βL2

∑
k,iωn

1

[D(k, iωn)]2

[
A2

1,4(k, iωn) + A1,2(k, iωn)A∗
1,2(k,−iωn)

]
k2

x . (C11)

The corresponding r1 functions with yy index are found by replacing k2
x by k2

y as the last factor in these expressions. For the
functions r2 we have

r↑↓(xx)
2 = v2

βL2

∑
k,iωn

A1,1(k, iωn)A2,2(k, iωn) + |A1,4(k, iωn)|2
[D(k, iωn)]2

, (C12)

r↑↑(xx)
2 = v2

βL2

∑
k,iωn

A2
1,2(k, iωn) − A1,3(k, iωn)A∗

2,4(k, iωn)

[D(k, iωn)]2
, (C13)

and r↑↓(yy)
2 = 0 = r↑↑(yy)

2 . The functions r4 are given by

r↑↓(xx)
4 = −4v2

βL2

∑
k,iωn

A1,2(k, iωn)A2,2(k, iωn) + A2,4(k, iωn)A∗
2,4(k, iωn)

[D(k, iωn)]2h⊥(k)
k2

x , (C14)

r↑↑(xx)
4 = −4v2

βL2

∑
k,iωn

A1,1(k, iωn)A1,2(k, iωn) − A1,3(k, iωn)A1,4(k, iωn)

[D(k, iωn)]2h⊥(k)
k2

x , (C15)

and r↑↓(yy)
4 = 0 = r↑↑(yy)

4 . Finally, the r6 functions are given by

r↑↑
6 = 1

2βL2

∑
k,iωn

(
β

2
− A1,1(k, iωn)

D(k, iωn)

)
, (C16)

r↓↓
6 = 1

2βL2

∑
k,iωn

(
β

2
− A2,2(k, iωn)

D(k, iωn)

)
(C17)

and are independent of the spatial indices.
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