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Quantum simulators are attracting great interest because they promise insight into the behavior of quantum
many-body systems that are prohibitive for classical simulations. The generic output of quantum simulators
are snapshots, obtained by means of projective measurements. These provide new information, such as full
distribution functions, that goes beyond the more commonly evaluated expectation values of observables while
adding shot-noise uncertainty to the latter. Hence, a central goal of theoretical efforts must be to predict these
exact same quantities that can be measured in experiments. Here, we report on a snapshot-based study of particle
currents in quantum lattice models with a conserved number of particles. It is shown how the full probability
distribution of locally resolved particle currents can be obtained from suitable snapshot data. Moreover, we
investigate the Hall response of interacting bosonic flux ladders, exploiting snapshots drawn from matrix-product
states. Flux ladders are minimal lattice models, which enable microscopic studies of the Hall response in
correlated quantum phases, and they are successfully realized in current quantum-gas experiments. Using a
specific pattern of unitary two-site transformations, it is shown that the Hall polarization and the Hall voltage
can be faithfully computed from a realistic number of snapshots obtained in experimentally feasible quench and
finite-bias simulations.
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I. INTRODUCTION

Quantum simulators are attracting great interest because
they promise insight into the behavior of quantum many-
body systems that are prohibitive for classical simulations
[1]. In addition to trapped ions [2] and superconducting
qubits [3], ultracold atoms in optical lattices are a particularly
successful platform for this purpose [4–6]. The generic out-
put of any quantum simulator is snapshots, which are taken
in the framework of projective measurements. For instance,
quantum-gas microscopes for ultracold atoms in optical lat-
tices offer single-atom, single-site, and spin-state resolution
[7–11]. They enable measurements of nonlocal observables,
which are inaccessible in other physical platforms. Moreover,
snapshots not only give rise to expectation values, which are
obtained by standard averaging, but further provide access
to the full probability distribution of specific observables
[12–15] and allow for the observation of the logarithmic
growth of entanglement in many-body localized systems [16].

In view of the experimental advances, the benchmarking
and verification of quantum simulators by means of powerful
classical algorithms have become a difficult and important
task [17]. Predicting the snapshot characteristics, such as
higher moments of their distributions, that can be measured
in experiments must be a central goal of theoretical efforts. In
recent years, data science tools and machine learning tech-
niques have proven effective for the analysis of snapshots
obtained from real quantum-gas simulators [18–22]. More-
over, theoretical snapshots offer great flexibility, and they are a

key resource for the further development of machine learning
approaches in the context of quantum lattice models [23–28].
In this paper, we demonstrate how state-of-the-art numerical
matrix-product-state algorithms can be used to generate snap-
shot data to model realistic experimental settings of current
interest.

Matrix-product states are particularly efficient representa-
tions of quantum lattice wave functions, especially for the
ground states of one-dimensional systems. They are at the
heart of successful algorithms for the classical simulation of
quantum systems, such as the density-matrix renormalization-
group method [29–31] and state-of-the-art time-evolution
algorithms [32,33]. Moreover, it has been shown that snap-
shots can be efficiently sampled from matrix-product states
[23]. Overall, theoretical snapshots obtained from matrix-
product states enable the benchmarking and verification of
real quantum devices, and they allow us to better evaluate the
feasibility of theoretical proposals.

As a concrete physical system, we will consider flux lad-
ders. These are minimal lattice models which allow us to
study the rich interplay between effective magnetic fields and
interactions among quantum particles. Because of this inter-
play, flux-ladder models host a myriad of ground-state phases
[34–54]. Flux ladders have been successfully realized in var-
ious quantum-gas experiments, including real-space [55,56]
and synthetic-dimension implementations [57–63]. Moreover,
they are the simplest models enabling microscopic studies
of the Hall response in strongly correlated quantum phases
[64–68].
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In this paper, we present a snapshot-based study of the
Hall response in an interacting bosonic flux-ladder model,
mimicking actual experiments with quantum-gas microscopes
for ultracold atoms in optical lattices [56]. The focus is on
the measurement of the Hall polarization PH and the Hall
voltage VH, which can be probed in the transient dynamics
induced by experimentally feasible quench protocols [68]. To
this end, we draw independent snapshots from matrix-product
states according to the perfect sampling scheme outlined
by Ferris and Vidal [23]. The employed sampling approach
and its peculiarities are discussed in detail. For our study
it is crucial that the sampling algorithm preserves the U(1)
symmetry corresponding to the particle-number conservation
of the flux-ladder model. Moreover, the definitions of the
Hall polarization PH and the Hall voltage VH are based on
particle-density distributions as well as on particle currents.
The latter cannot be directly inferred from snapshots taken
in the standard Fock measurement basis. Thus, we employ
suitable unitary two-site transformations which enable the
sampling of the full probability distribution of local particle
currents. The current-sampling strategy is exemplified for the
case of the vortex-lattice1/2 phase of interacting bosons on a
flux ladder. Finally, using a suitable pattern of two-site cur-
rent transformations, we simultaneously sample the transverse
particle-density gradient and the longitudinal particle current
required for the estimation of the Hall response in flux lad-
ders from the same snapshot data. In a broader perspective,
our work motivates the feasibility of measurements of the
Hall response in optical lattice experiments with quantum-
gas microscopes by considering a realistic number of actual
snapshots.

This paper is organized as follows. In Sec. II, we in-
troduce the paradigmatic bosonic two-leg flux-ladder model
and the ground-state phases which are considered in this
paper. In Sec. III, we present the matrix-product-state-based
snapshot-sampling approach for generic measurement setups.
Moreover, we discuss how local particle currents can be effec-
tively sampled by means of unitary two-site transformations.
We exemplify the sampling of particle-current statistics in
Sec. IV, focusing on characteristic current patterns in the
vortex-lattice1/2 phase of the flux-ladder model. In Sec. V,
we discuss and exemplify a realistic scheme for the snapshot-
based estimation of the Hall response in flux ladders. We
present and verify snapshot results for the Hall polarization
and for the Hall voltage, which are obtained in the frame-
work of quench protocols. Finally, we summarize our work
in Sec. VI.

II. BOSONIC FLUX-LADDER MODEL

In terms of site-local bosonic (annihilation) creation oper-
ators â(†)

r,m, the paradigmatic two-leg flux-ladder Hamiltonian
reads

Ĥ = − tx

1∑
m=0

L−1∑
r=0

(ei(m−1/2)χ â†
r,mâr+1,m + H.c.)

− ty

L−1∑
r=0

(â†
r,0âr,1 + H.c.) + Ĥint, (1)

where m = 0 and m = 1 refer to the lower and upper leg
of the ladder, respectively, and r = 0, 1, . . . , L − 1 denotes
the rung of the ladder. Particle hopping along the legs and
rungs of the ladder is governed by tx and ty, respectively,
and the leg-hopping terms are accompanied by complex
phase factors realizing a magnetic flux χ per plaquette, as
shown in Fig. 1(a). The interacting part of the Hamiltonian
(1) is explicitly given by Ĥint = U

2

∑
m,r n̂r,m(n̂r,m − 1), with

n̂r,m = â†
r,mâr,m, and the interparticle interaction strength is

parametrized by U . The flux-ladder Hamiltonian (1) com-
mutes with n̂tot = ∑

m

∑
r n̂r,m, and thus, the total number of

particles is conserved. Throughout this paper, we refer to the
particle filling, meaning the total number of particles divided
by the total number of lattice sites, with ν = 〈n̂tot〉/(2L). Note
that here and in the following, angle brackets denote expecta-
tion values.

Because of the interplay between effective magnetic fields
and interactions among quantum particles, flux ladders exhibit
various ground-state phases [34,50]. The list of accessible
ground states includes biased-ladder states [69], charge-
density waves [54], and precursors of fractional quantum
Hall states [46,48,52,53,70,71]. In the following, we consider
model parameters corresponding to the superfluid Meiss-
ner phase [34,42] and to the superfluid vortex-lattice1/2

phase [37,44,72], noting that Mott-insulating variants of both
ground-state phases can be stabilized for commensurable par-
ticle fillings. Ground states in the Meissner phase exhibit
homogeneous particle-density profiles and uniform particle
currents running along the legs of the ladder in opposite
directions, while rung currents are vanishing in the center
of the system. They adiabatically extend to the noninter-
acting regime, corresponding to U = 0 [39]. Figure 1(b)
shows a ground state in the Meissner phase, which is re-
alized for U/tx = 2, ty/tx = 1.6, χ/π = 0.2, and ν = 0.8.
The key feature of vortex-lattice phases is the presence of
localized current vortices. In contrast to the Meissner phase,
vortex-lattice phases require weak, but finite, interparticle
interactions. Figure 1(c) shows the vortex-lattice1/2 phase,
which will be discussed later on, with an alternating pattern
of rung currents and a unit cell comprising two plaquettes of
the ladder. The model parameters considered in Fig. 1(c) are
the same as in Fig. 1(b), except χ/π = 0.98.

In addition to particle-density profiles 〈n̂r,m〉, local parti-
cle currents are key for the characterization of the various
ground-state phases of the flux-ladder model. From the conti-
nuity equation for the occupation of individual lattice sites,
local particle currents along the rungs and legs of the lad-
der are found to be given by j⊥r = −ity〈â†

r,0âr,1〉 + H.c. and
j‖r,m = −itxei(m−1/2)χ 〈â†

r,mâr+1,m〉 + H.c., respectively. More-
over, the staggered rung-current operator is defined as ĴS =
−ity

∑
r (−1)r â†

r,0âr,1/L + H.c.
Figures 1(d) and 1(e) show the full probability distributions

of the staggered rung-current operator P (ĴS) in the Meiss-
ner phase and in the vortex-lattice1/2 phase, respectively. To
calculate them, we used snapshots of the particle currents,
which we will discuss in great detail in this paper. The
distribution P (ĴS) shown in Fig. 1(d) is symmetrically cen-
tered around zero, which is in accordance with the vanishing
rung currents in the Meissner phase. In the vortex-lattice1/2
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FIG. 1. (a) Sketch of the flux-ladder model. The Hamiltonian parameters U , χ , tx , and ty are introduced in the context of Eq. (1). The
ground-state phases considered in this paper are (b) the superfluid Meissner phase and (c) the superfluid vortex-lattice1/2 phase [34]. The
length of the arrows depicts the strength of the particle currents in a finite-size ladder comprising L = 10 rungs. (d) Snapshots taken in suitable
measurement bases immediately give rise to full counting statistics of nontrivial operators. Here, we show the sampled probability distribution
P (ĴS) of staggered rung-current operator Ĵ , which is defined in Sec. II, using N = 104 snapshots in the Meissner phase. (e) The probability
distribution of the staggered rung-current operator P (ĴS) obtained by means of N = 104 snapshots in the vortex-lattice1/2 phase. In the Meissner
phase, the distribution P (ĴS) is symmetrically centered around zero, which is in accordance with the expected vanishing of the rung currents,
j⊥r = 0. In contrast, in the vortex-lattice1/2 phase, the expectation value of the staggered rung-current operator ĴS takes on a finite value.

phase, the pattern of alternating rung currents gives rise to
a current distribution P (ĴS = j) that is nonsymmetric under
translations j → − j, as shown in Fig. 1(e). This is a hall-
mark of spontaneous symmetry breaking, which also yields
a nonzero expectation value of the staggered rung-current
operator. Notably, a bimodal distribution is obtained if an
explicitly symmetric ensemble of symmetry-breaking ground
states is assumed: That is, snapshots still reveal spontaneous
symmetry breaking even when 〈ĴS〉 = 0.

III. DRAWING SNAPSHOTS FROM
MATRIX-PRODUCT STATES

In the following, we first account for a generic quan-
tum measurement setup in Sec. III A. Second, we discuss
how snapshots can be sampled from matrix-product states in
Sec. III B. In Sec. III C, we focus on the sampling of particle
currents in flux-lattice models using suitable unitary two-site
transformations.

A. Quantum measurement setup

Here, we consider generic quantum lattice models with
a total number of L sites, labeled by i = 1, 2, . . . , L. For
simplicity, we assume all sites to be of the same kind,
with a site-local Hilbert space spanned by d basis states
|ei〉 = |1〉 , |2〉 , . . . , |d〉. A generic quantum state of interest
is denoted by |ψ〉, and its matrix-product-state representation
takes the form

|ψ〉 =
d∑

e1=1

d∑
e2=1

· · ·
d∑

eL=1

Me1
1 Me2

2 · · · MeL
L

× |e1, e2, . . . , eL〉 , (2)

with matrices Mei
i .

Snapshots are obtained from a simultaneous measurement
of site-i-local observables, given by Ôi = ∑

ki
oki P̂ki . Here,

oki represent site-local measurement outcomes correspond-
ing to site-local projectors P̂ki . For different lattice sites, the
site-local observables do not necessarily need to coincide.
However, the site-local projectors need to add up to the site-
local identity operator,

∑
ki

P̂ki = Ii. While taking a snapshot,
all site-local measurements are performed at the same time.
Thus, the global snapshot observable takes the form

Ô =
∑

k1

∑
k2

· · ·
∑

kL

(ok1 , ok2 , . . . , okL )

× P̂k1 P̂k2 · · · P̂kL , (3)

where the tuples (ok1 , ok1 , . . . , okL ) represent the global mea-
surement outcomes, that is, the snapshots of interest. Most
often, the Fock basis consisting of site-local occupation num-
bers ni is used, but the formalism is more general. In this
paper, we will also consider particle-current measurement
bases.

B. Matrix-product-state approach

In order to draw independent snapshots from matrix-
product states, we essentially follow the perfect sampling
approach outlined by Ferris and Vidal [23]. Here, perfect
sampling refers to the fact that this scheme generates per-
fectly uncorrelated snapshots, without the need to account
for additional equilibration or autocorrelation times, as in
Markov-chain–Monte Carlo approaches [73–75]. For our re-
sults concerning the bosonic flux-ladder model, which will be
presented later on, it is crucial to additionally account for the
U(1) symmetry corresponding to the conservation of the par-
ticle number while generating snapshots from matrix-product
states. Matrix-product states and their canonical forms and
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FIG. 2. Sketch of the snapshot-sampling routine [23]. In order to
draw independent snapshots, we proceed as follows. (a) Starting with
a copy of the matrix-product-state representation of the underlying
quantum state of interest |ψ〉, which is composed of right-canonical
tensors (leftward triangles) [31], the probability of finding a certain
measurement outcome ok1 on the first site P (ok1 ) can be directly
evaluated from the first (leftmost) tensor, as shown in (b). In accor-
dance with the probability distribution P (ok1 ), a local projector Pk1

is picked at random, determining the first digit of the snapshot ok1 .
(c) A transformed matrix-product state |ψ1〉 = Pk1 |ψ〉 /

√〈ψ | Pk1 |ψ〉
is obtained by locally applying Pk1 and renormalizing the projected
state while shifting the center of orthogonality to the second site (red
circle) by means of a singular-value decomposition [31]. Compared
to the original state |ψ〉, the first and second tensors of |ψ1〉 are
transformed, which is indicated by the different colors. The condi-
tional probabilities P (ok2 |ok1 ) are determined efficiently from |ψ1〉,
as shown in (d). (e) After drawing the second digit of the snapshot
ok2 at random and in accordance with P (ok2 |ok1 ), the corresponding
projector Pk2 is applied to |ψ1〉. The projected state is subsequently
normalized while shifting the center of orthogonality to the right,
giving rise to |ψ2〉. (f) Repeating these steps in a complete left-to-
right sweep eventually gives rise to a left-canonical matrix-product
state |ψL〉, indicated by the rightward triangle-shaped tensors, and
the desired snapshot (ok1 , ok1 , . . . , okL ) sampled from |ψ〉.

elementary operations, which are taken for granted in the fol-
lowing, are discussed in detail in Ref. [31]. We emphasize that
for the snapshot sampling of matrix-product states, the evalua-
tion of conditional probabilities P (oki |oki−1 , oki−2 , . . . , ok1 ) and
the application of site-local projectors Pki play a central role.
A sketch illustrating the sampling approach employed in this
work is shown in Fig. 2.

Given a right-canonical matrix-product-state representa-
tion of the underlying wave function of interest |ψ〉, snapshots
are computed by sweeping through the tensors from left to
right, that is, from i = 1 to i = L, as shown in Fig. 2. First, the
probabilities of the possible measurement outcomes P (ok1 )
on the first (i = 1) site can be directly evaluated because
of the right-canonical form of the matrix-product state. In
accordance with the probability distribution P (ok1 ), a local
projector P̂k1 is chosen at random, determining the first digit
of the snapshot, that is, ok1 . Next, the local projector P̂k1 is
applied to |ψ〉. On the matrix-product-state level this is a local
operation. The projected matrix-product state is subsequently
normalized by means of a singular-value decomposition, shift-

ing the center of orthogonality to the second (i = 2) site. The
so-transformed state is denoted as |ψ1〉,

|ψ1〉 = P̂k1 |ψ〉 /

√
〈ψ | P̂k1 |ψ〉. (4)

Note that the steps so far involved transformations of only the
first and second matrix-product-state tensors, that is, using the
notation from Eq. (2), M1 and M2.

From |ψ1〉, the conditional probabilities of the possible
measurement outcomes on the second site P (ok2 |ok1 ) can
be directly evaluated from local contractions because of the
mixed-canonical form. Hence, the second digit of the snapshot
ok2 is drawn at random, in accordance with P (ok2 |ok1 ). The
matrix-product state is then projected by applying P̂k2 locally
and normalized while shifting the center of orthogonality
further to the right. Repeating these steps in a complete left-to-

right sweep, according to |ψn〉 = P̂kn |ψn−1〉 /

√
〈ψ | P̂kn |ψn−1〉,

while maintaining a canonical form of the transformed state
eventually yields the snapshot (ok1 , ok1 , . . . , okL ). Note that
the protocol discussed here can be understood as an efficient
evaluation of the conditional probabilities on the right-hand
side of the following identity:

P (ok1 ok2 , . . . , okL ) =P (ok1 )P (ok2 |ok1 ) × · · ·
× P (okL |okL−1 , okL−2 , . . . , ok1 ). (5)

Moreover, the sampling protocol discussed above is ap-
plicable to matrix-product states with protected quantum
symmetries, such as the U(1) symmetry corresponding to
the particle-number conservation of the flux-ladder Hamilto-
nian (1). For this, it needs to be ensured that the successive
projections, which are applied during the left-to-right sweep,
preserve the symmetry-sector information on the level of the
matrix-product state [76].

C. Particle currents

Next, we demonstrate that we can take snapshots in a
measurement basis different from the standard Fock basis.
Specifically, we show how snapshots of particle currents can
be obtained. Later on, this will become important for the
estimation of the Hall response. There, one requires informa-
tion about particle densities as well as about particle currents.
Thus, we introduce suitable unitary two-site transformations,
which allow us to simultaneously determine both the required
particle-density profiles and particle-current profiles from the
same snapshot data.

In order to introduce the unitary two-site current trans-
formation, we consider the generic case of two neighboring
bosonic lattice sites, labeled by indices k and l . Particle ex-
change between these lattice sites is assumed to be governed
by a generic complex hopping term T̂k,l ,

T̂k,l = tk,l exp(iφk,l )â
†
k âl + H.c., (6)

with bosonic annihilation (creation) operators â(†)
α (for α =

k, l) and real-valued tk,l and φk,l . The corresponding particle-
current operator, which is derived from the continuity
equation for the occupation of individual lattice sites, reads

Ĵk,l = −itk,l exp(iφk,l )â
†
k âl + H.c. (7)
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FIG. 3. Particle-current sampling from vortex-lattice1/2 snapshots of a bosonic flux ladder comprising 10 rungs, considering U/tx = 2,
ty/tx = 1.6, χ/π = 0.98, ν = 0.8, and a local bosonic cutoff of at most three particles per lattice site. (a) Vortex-lattice1/2 phase with local
particle currents and local particle densities, which are directly computed from the matrix-product ground-state representation. Red arrows
indicate the direction and, by their length, the strength of local particle currents. The size of the black circles indicates the local particle
density, which is homogeneous in the vortex-lattice1/2 phase. (b) Four independent ground-state snapshots corresponding to the standard
site-local Fock-measurement basis. From these Fock-basis snapshots, the site-local particle density can be reconstructed. (c) Two-site unitary
transformations, indicated by the blue ellipses and introduced in the context of Eq. (8), are applied to neighboring sites sharing a rung of
the ladder. Hence, these snapshots taken in the ñr,m basis directly reveal the local rung currents. (d) Four independent ground-state snapshots
corresponding to the ñr,m-measurement basis. (e) Probability distribution f of (ñr,0 − ñr,1) obtained from N = 104 snapshots. Note the central
symmetry between rungs r = 4 and r = 5 of the ladder. (f) Average local rung currents j⊥r obtained from the sampled (ñr,0 − ñr,1) distribution
(brown upward triangles) and the corresponding standard deviations σ j⊥r (yellow downward triangles). Lines are a guide to the eye. Open
circles show results that are directly computed from the underlying matrix-product state.

For the occupation-number operators n̂α = â†
α âα of

nearest-neighbor lattice sites (α = k, l ), the unitary two-site
current transformation is given by ñα = Ûk,l n̂αÛ †

k,l , with

Ûk,l = exp
[
i
π

4
(eiφk,l â†

k âl + H.c.)
]
. (8)

Importantly, the so-transformed operators ñα satisfy

ñk + ñl = n̂k + n̂l , ñk − ñl = Ĵk,l/tk,l . (9)

Hence, sampling the particle-density profiles of two current-
transformed lattice sites, ñk and ñl , directly gives rise to the
statistics of their joint occupation number n̂k + n̂l as well as
the statistics of the local particle current Ĵk,l between them.

IV. SAMPLING PARTICLE CURRENTS IN
BOSONIC FLUX LADDERS

In this section, we exemplify the snapshot sampling of
local particle currents using matrix-product states. To this
end, we consider the superfluid vortex-lattice1/2 phase of the
paradigmatic bosonic flux-ladder model [34]. Here, a vortex-
lattice1/2 matrix-product state is obtained by means of a
density-matrix renormalization-group simulation, considering
an interparticle interaction strength U/tx = 2, a rung-hopping
strength ty/tx = 1.6, a magnetic flux χ/π = 0.98, and a par-
ticle filling of ν = 0.8 bosons per lattice site [50]. Localized
current vortices on every second plaquette of the ladder, which

give rise to a regular and alternating pattern of rung currents,
are a key feature of the vortex-lattice1/2 phase [see Fig. 1(c)].

Figure 3(a) shows the particle-current profile and the
homogeneous particle-density profile in the superfluid vortex-
lattice1/2 phase of a ladder comprising 10 rungs. Sampling
snapshots in the standard site-local Fock-measurement basis
immediately give rise to the statistics of n̂r,m and thus to
the average particle-density profile 〈n̂r,m〉. Four independent
snapshots are shown in Fig. 3(b). They are drawn from the
vortex-lattice1/2 matrix-product state considering the standard
Fock basis.

In order to resolve characteristic particle-current patterns
of the vortex-lattice1/2 phase, we apply the unitary two-site
current transformation, introduced in the context of Eq. (8),
to neighboring lattice sites on each rung of the ladder, as
indicated by the blue ellipses in Fig. 3(c). Sampling the site-
local occupations of the so-transformed state directly gives
rise to the distributions of ñr,m. Moreover, according to Eq. (9),
the rungwise differences in the occupation of the transformed
lattice sites (ñr,0 − ñr,1) yield the statistics of the local rung
currents j⊥r . As an example, Fig. 3(d) shows four independent
snapshots drawn from the underlying vortex-lattice1/2 matrix-
product state considering the ñr,m basis.

For a local bosonic cutoff of at most three particles per
lattice site, the distribution of (ñr,0 − ñr,1) obtained from N =
104 snapshots is shown separately for each rung r in Fig. 3(e).
It possesses a point symmetry between the central rungs r =
4 and r = 5 of the ladder. Most importantly, the maximum
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points of (ñr,0 − ñr,1) alternate in sign between neighboring
rungs r, which is a clear fingerprint of the vortex-lattice1/2

phase.
In Fig. 3(f), brown upward triangles show the average

local rung currents j⊥r calculated from the snapshot-sampled
(ñr,0 − ñr,1) distribution. Note that the lines are a guide to the
eye and that alternating rung currents are expected for the
vortex-lattice1/2 phase. The snapshot-sampled average cur-
rents j⊥r perfectly coincide with the values that are directly
calculated from the underlying vortex-lattice1/2 state and that
are indicated by the black open circles. Additionally, yellow
downward triangles show standard deviations of the rung cur-
rents σ j⊥r , as obtained from the snapshot-sampled (ñr,0 − ñr,1)
distribution shown in Fig. 3(e). The sampled results for σ j⊥r
also perfectly coincide with the standard deviations that are
directly computed from the underlying matrix-product state,
indicated by the black open circles.

Here, it is worth noting that snapshots taken in the ñr,m

basis, as described above and shown in Fig. 3(d), also give rise
to the full-counting statistics of nontrivial observables, such as
the staggered rung-current operator ĴS, introduced in Sec. II.
Indeed, the probability distributions P (ĴS) corresponding to
the Meissner phase and to the vortex-lattice1/2 phase that are
shown in Figs. 1(d) and 1(e), respectively, are obtained from
N = 104 snapshots.

To sum up, Fig. 3 shows that the statistics of local parti-
cle currents in the vortex-lattice1/2 phase can be effectively
sampled using unitary two-site transformations on the matrix-
product-state level. While standard snapshots, corresponding
to Fock-basis measurements, show a homogeneous particle-
density profile, current snapshots, which are taken after the
rungwise unitary transformation of the underlying ground
state, clearly reveal the structure of the underlying vortex-
lattice1/2 phase.

V. SAMPLING THE HALL RESPONSE OF FLUX LADDERS

In this section, we present a snapshot-based analysis of
the Hall response in the Meissner phase, which is the most
prominent ground-state phase of the flux-ladder model. Con-
cretely, we focus on the Hall polarization PH and on the Hall
voltage VH [68]. We first recap the definition of the Hall
polarization PH and the Hall Voltage VH in the paradigmatic
two-leg flux-ladder model (1) and how both quantities can be
probed by means of realistic quench protocols in Sec. V A. In
Sec. V B, we put forward a suitable pattern of unitary two-site
current transformations, enabling the direct estimation of the
Hall polarization PH from snapshot data. In Sec. V C, we
present snapshot results from time-dependent quench simu-
lations. Results concerning the Hall voltage VH are discussed
in Sec. V D.

It is worth noting that instead of using snapshots, the Hall
polarization PH and the Hall Voltage VH can be computed more
directly from suitable matrix-product states. However, here,
our explicit focus is on the exact same and primary quantities
measured in experiments, that is, from a finite number of in-
dependent snapshots. We will provide successful comparisons
between the expectation values of all relevant observables as
computed from snapshots versus directly from the underlying
matrix-product states. Our analysis provides an estimate of

how many experimental snapshots would be required for an
accurate determination of the Hall response.

A. Definition of the Hall response

At the core of the characterization of the ground-state Hall
response, meaning the Hall polarization PH and the Hall volt-
age VH, are the transverse polarization py and the longitudinal
current jx. For the two-leg ladder Hamiltonian (1), these quan-
tities are explicitly given by

py = 1

2L
〈P̂y〉, jx = 1

2L

1∑
m=0

L−1∑
r=0

j‖r,m, (10)

with P̂y = ∑
m

∑
r (m − 1/2)n̂r,m and local leg currents j‖r,m as

defined in Sec. II.
The Hall polarization is defined as the ratio between the

transverse polarization py and the longitudinal current jx,

PH = py/ jx. (11)

In a ring-shaped ladder with periodic boundary conditions, a
finite longitudinal current jx is typically induced by means of
an additional Aharonov-Bohm flux piercing the ring [64–67].
In systems with open boundaries, transient longitudinal cur-
rents can be realized by means of time-dependent ramps or
tilts. Note that the consistent calculation of the Hall polariza-
tion PH and the Hall voltage VH in time-dependent protocols
for systems with open boundaries and in the ground states of
ring-shaped ladders is discussed in detail in Ref. [68].

The formal definition of the Hall voltage VH requires the
extension of the flux-ladder Hamiltonian by an additional
transverse potential, Ĥ + μyP̂y. Concretely, in a ring-shaped
ladder with periodic boundary conditions, μy needs to be
adjusted in such a way that the transverse polarization py

vanishes in the ground state. For this suitably chosen value
of μy, the Hall voltage is then defined as

VH = μy/ jx. (12)

However, in Ref. [68] it is also shown that in Meissner and
vortex-lattice phases, the Hall voltage VH can be faithfully
approximated by means of VH = PH(μy/py), with (μy/py)
obtained from an independent simulation with a small, but
finite, bias, μy → 0. We recap that the Hall voltage VH is a key
quantity: Compared to the Hall polarization PH, it exhibits a
remarkable robustness with respect to the particle filling ν and
the interparticle interaction strength U and also for multileg
ladders [68].

B. Snapshot approach

Probing the Hall response in a flux ladder requires mea-
surements of the transverse particle-density gradient and
the longitudinal particle current. Figure 4 shows a pattern
of unitary two-site current transformations that allow us to
determine both quantities simultaneously from the same snap-
shot data. Concretely, the two-site transformations, which are
introduced in the context of Eq. (8), are applied to neighbor-
ing lattice sites of the ladder in the longitudinal direction,
as indicated by the blue ellipses. The transverse polariza-
tion and the longitudinal current of a (potentially mixed)
state ρ of the ladder that is transformed as Ū †

k,lρŪk,l , with
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FIG. 4. Sketch of the current-transformation scheme employed
for the estimation of the Hall response. Two-site unitary transforma-
tions, indicated by the blue ellipses and introduced in the context of
Eq. (8), are applied to neighboring lattice sites along the longitudinal
direction, as shown above. The scheme enables the simultaneous es-
timation of the longitudinal current jx and the transverse polarization
py from the same snapshot data. It is discussed in more detail in the
main text.

Ū = ∏1
m=0

∏L/2
r′=0 Û(2r′,m),(2r′+1,m), can be directly snapshot

sampled via

py =
1∑

m=0

L−1∑
r=0

2m − 1

4L
〈ñr,m〉, (13)

jx =
1∑

m=0

L/2∑
r′=0

tx
2

〈ñ2r′,m − ñ2r′+1,m〉. (14)

Note that it is sufficient to restrict the unitary current
transformations to a central region of the ladder in which
the quantities of interest can be faithfully determined. For
instance, for the results shown in Sec. V C only the eight
centralmost rungs of a ladder comprising a total number of
L = 40 rungs are transformed in order to probe the Hall po-
larization in a suitable quantum quench.

In quantum-gas experiments realizing flux ladders with op-
tical lattices [55] and with a quantum-gas microscope [56], the
required snapshots for measurements of particle currents can
be obtained as follows. First, all sites are decoupled, and the
particle-hopping dynamics are frozen by deepening the lattice
potentials. Second, an optical superlattice is used to switch
back on tunneling between neighboring lattice sites k and l ,
as shown in Fig. 4. During this step, interactions between
bosons on the same site must be turned off. If the latter are
realized through a magnetic Feshbach resonance, this can be
achieved by tuning the magnetic field; if interactions cannot
be tuned efficiently by an external field, the atoms in the
individual lattice sites can first be loaded into elongated one-
dimensional tubes along the third direction, lowering their
density and effectively removing the interactions. The extra
tunneling is switched on for a period of time corresponding
to a π/2 pulse, effectively rotating the bosonic operators to
a basis â±,k,l = (âk ± âl )/

√
2. Using the superlattice again to

switch on a staggered potential +
 (−
) on sites k (l) for a
controlled period of time τ allows us to rotate the measure-
ment basis to ã±,k,l = (ãk ± ie−iφk,l ãl )/

√
2, where the relative

phase φk,l − π/2 ∝ 
τ is controlled by the offset 
 and the
duration τ .

After applying the above sequence, a measurement of the
local occupation numbers on the physical lattice sites k and
l yields the densities in the transformed basis ñk,l . Expressed
in the original basis, where the flux ladder was defined, this
reads

ñk = 1
2 (n̂k + n̂l − Ĵk,l ), (15)

and similar, but with −Ĵk,l , for ñl . Hence, combining these
expressions yields the total particle number and the current as
described in Eq. (9). This demonstrates that the total density
and the required currents can efficiently be read from individ-
ual snapshots in a realistic experimental setting.

C. Snapshot analysis of a static tilt

In the following, we demonstrate that the Hall polarization
PH can be efficiently sampled from snapshot data. For this,
we employ a suitable and realistic quench protocol [68], con-
sidering a system with open boundaries and focusing on the
Meissner phase. The protocol starts off with the ground state
of the flux-ladder Hamiltonian (1), which is obtained from a
preliminary single-site density-matrix renormalization-group
simulation [29,31], using subspace expansion [77]. A tran-
sient longitudinal current is induced by statically tilting the
ladder in the longitudinal direction. Explicitly, at time τ =
0, the ladder is instantaneously subjected to an additional
linear potential V̂x = μx

∑
m

∑
r rn̂r,m. Subsequently, the

state evolves according to Ĥ + V̂x. Actual snapshots are then
taken in the transient regime. Concretely, at times τ/tx =
2.0, 2.5, . . . , 6.0, the eight centralmost rungs of the ladder
are current transformed as discussed in the previous section,
and an experimentally feasible number of N = 104 snapshots
are sampled from the time-evolved and transformed states.
Note that for the time evolution of matrix-product states, we
employ the two-site variant of the time-dependent variational
principle algorithm [32,33], as implemented in the SYTEN

toolkit [78,79].
The snapshot results for the Hall polarization are shown

in Fig. 5. The considered model parameters, namely,
the interparticle interaction strength U/tx = 2, the inter-
leg hopping strength ty/tx = 1.6, the particle filling ν =
0.8, and the various values of the magnetic flux χ/π =
−0.05, 0.00, . . . , 0.25, all correspond to the Meissner phase.
Moreover, the tilt parameter is chosen to be μx/tx = 0.1, and
in the numerical simulations, a site-local cutoff of at most
three bosons per lattice site is employed.

Figure 5(a) shows the transient Hall polarization PH for the
various values of the magnetic flux χ after inducing the tilt
dynamics at time τ = 0. The solid lines show exact results
that are directly calculated in the central eight rungs from the
time-evolved matrix-product states [68] for increasing values
of the magnetic flux χ from top to bottom. For the different
values of χ , the transient dynamics in the Hall polarization PH

reveal clear oscillations with different time averages. At times
τ/tx = 2.0, 2.5, . . . , 6.0, black circles show snapshot-based
data for PH, which are obtained from N = 104 snapshots,
with error bars corresponding to two standard deviations,
±2σPH/

√
N . The time-dependent snapshot-based data for PH

are in accordance with the exact results, but we emphasize
that our theoretical modeling makes a quantitative prediction
of the error bars due to shot noise.

Figures 5(b) and 5(c) show the tilt dynamics in the trans-
verse polarization py and in the longitudinal current jx,
respectively. The solid lines show exact results, using the color
code from Fig. 5(a), and black circles indicate the snapshot-
based mean values. In Fig. 5(b), the error bars correspond to
two standard deviations, ±2σpy/

√
N . The data corresponding
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FIG. 5. Snapshot-based estimation of the Hall polarization in a
statically tilted two-leg ladder, considering U/tx = 2, ty/tx = 1.6,
μx/tx = 0.1, ν = 0.8, and a local bosonic cutoff of at most three
particles per lattice site. Unitary two-site current transformations,
enabling the sampling of the Hall response, are applied to neigh-
boring lattice sites between the eight centralmost rungs of each leg
of the ladder, as described in the context of Fig. 4. (a) Transient
dynamics of the Hall polarization PH = py/ jx after statically tilt-
ing the ladder in the longitudinal direction. The solid lines show
exact results that are directly computed from time-evolved matrix-
product states, corresponding to different values of the magnetic
flux per plaquette χ . From top to bottom, the different lines are for
χ/π = −0.05 (blue), χ/π = 0.00 (orange), χ/π = 0.05 (green),
χ/π = 0.10 (red), χ/π = 0.15 (purple), χ/π = 0.20 (brown), and
χ/π = 0.25 (pink). Black circles show snapshot-based estimators
for the transient Hall polarization at times τ/tx = 2.0, 2.5, . . . , 6.0,
using N = 104 snapshots. The error bars indicate two standard devia-
tions of the mean value of PH, ±2σPH/

√
N . (b) Transient dynamics in

the transverse polarization py, with error bars corresponding to two
standard deviations, ±2σpy /

√
N . (c) Transient dynamics in the lon-

gitudinal current jx . The data for different values of χ are vertically
offset by 0 (χ/π = −0.05), −2 (χ/π = 0.00), −4 (χ/π = 0.05),
−6 (χ/π = 0.10), −8 (χ/π = 0.15), −10 (χ/π = 0.20), and −12
(χ/π = 0.25) for the purpose of a clear presentation. The errors
±2σ jx /

√
N for the longitudinal current are comparable to the size

of the symbols (black circles). Hence, they are not explicitly shown.
Note that snapshot-based estimators of the Hall polarization PH =
py/ jx are computed from the transverse polarization py and the lon-
gitudinal current jx , which can be directly sampled from the snapshot
data, with propagated uncertainties. All sets of model parameters
considered here correspond to the superfluid Meissner phase.

to different values of the magnetic flux χ shown in Fig. 5(b)
are set off vertically for the purpose of a clear presentation.
Note that the snapshot-based Hall polarization PH = py/ jx
shown in Fig. 5(a) is computed from the transverse polariza-
tion py and the longitudinal current jx shown in Figs. 5(b) and
5(c). The transverse polarization py and the longitudinal cur-
rent jx are directly sampled from the snapshots, as discussed
in Sec. V B. The uncertainties of PH = py/ jx are propagated
accordingly.

FIG. 6. Snapshot-based estimation of the Hall voltage, consid-
ering U/tx = 2, ty/tx = 1.6, ν = 0.8, and a local bosonic cutoff of
at most three particles per lattice site. (a) Hall voltage VH versus
magnetic flux χ as computed from ground-state ring-ladder sim-
ulations (DMRG) and from a semiclassical coherent-state ansatz
(semi.-class.) [68]. Black circles and error bars (corresponding to
±2 standard deviations) show the snapshot-based estimators for VH,
using the snapshot results for the Hall polarization PH shown in
Fig. 5 and additional snapshots results for μy/py, as discussed in
the main text and shown in (c). (b) Hall polarization PH versus
magnetic flux χ . Black dots show time-averaged results from Fig. 5,
and the error bars show the propagated uncertainty corresponding to
±2 standard deviations. The red solid line shows the result obtained
from a ground-state calculation in ring ladders with periodic bound-
ary conditions. (c) Black circles show averaged snapshot results for
μy/py for N = 104 and μy/tx = 1, with error bars corresponding to
two standard deviations, ±2σμy/py/

√
N . The orange solid line shows

results that are directly calculated from the underlying ground states.
Note that the ring-ladder approach and the semiclassical ansatz are
both discussed in detail in Ref. [68]. All of the model parameters
considered here correspond to the Meissner phase.

D. Estimation of the Hall voltage

Finally, we turn to the snapshot-based estimation of the
Hall voltage VH via VH = PH(μy/py). First, the Hall polariza-
tion is calculated by time averaging the snapshot results for
PH = py/ jx in the transient dynamics that are induced by a
static longitudinal tilt with μx/tx = 0.1. Explicitly, for each
value of the magnetic flux χ/π = −0.05, 0.00, . . . , 0.25,
we obtain PH as the time average of all of the snap-
shot results which are shown in Fig. 5, that is, for values
of τ/tx = 2.0, 2.5, . . . , 6.0. Second, snapshot results for
(μy/py) are obtained from an additional finite-bias calcula-
tion. For this, the ground state of Ĥ + μyP̂y is optimized in
a density-matrix renormalization-group (DMRG) simulation,
and subsequently, standard Fock-basis snapshots are drawn
from the finite-bias ground state. These snapshots directly
give rise to (μy/py).

For the model parameters that are considered in Sec. V C,
Fig. 6 presents snapshot results concerning the Hall voltage
VH. As a function of the magnetic flux χ , Fig. 6(a) shows VH
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independently obtained from density-matrix renormalization-
group simulations in ring ladders with periodic boundary
conditions (labeled DMRG), from semiclassical calculations
(labeled semi.-class.), and from matrix-product-state-based
snapshots of systems with open boundaries (labeled snap-
shots) [68]. Importantly, the snapshot-based results for the
Hall voltage are in accordance with the ring-ladder simu-
lations and with the semiclassical calculations. We recall
that the snapshot results are computed by means of VH =
PH(μy/py). In Fig. 6(b) the black circles show snapshot results
for PH as a function of the magnetic flux χ , which are ob-
tained from the static-tilt protocol discussed in Sec. V C with
N = 104 snapshots per data point. The error bars correspond
to two standard deviations. The red solid line in Fig. 6(b)
shows ground-state results for PH that are directly computed
in ring ladders with periodic boundary conditions, employing
density-matrix renormalization-group simulations [77]. Using
N = 104 snapshots for each value of χ , the black circles in
Fig. 6(c) show finite-bias ground-state results for (py/μy),
considering μy = tx in a ladder with L = 40 rungs and open
boundaries. The error bars shown in Fig. 6(c) correspond to
two standard deviations, ±2σμy/py/

√
N . The orange solid line

shows results for (py/μy) that are directly computed in the
underlying ground states.

Overall, the agreement between snapshot, semiclassical,
and ring-ladder results shows that the Hall polarization PH and
the Hall voltage VH can be faithfully sampled in experimen-
tally feasible quench and finite-bias simulations. It is worth
noting that the predicted uncertainties shown in Fig. 6 are
based on N = 104 snapshots per data point, which is a feasible
number in experiments [18].

VI. SUMMARY

In this paper, we simulated realistic time-dependent mea-
surement protocols for the Hall response of interacting bosons
in two-leg flux ladders out of equilibrium. For this, we sam-
pled snapshots from matrix-product states that enable the
study of local particle-current statistics.

The snapshot-sampling routine, which is based on the ap-
proach outlined by Ferris and Vidal [23], was discussed in

detail. Our implementation ensures that the U(1) quantum
symmetry corresponding to the particle-number conserva-
tion of the flux-ladder Hamiltonian (1) is preserved while
snapshots are sampled. Particular focus was placed on the
exploitation of unitary two-site transformations that enable the
sampling of local-particle currents in bosonic lattice models.

In order to exemplify the sampling approach, we concen-
trated on characteristic rung-current patterns in the vortex-
lattice1/2 phase of the flux-ladder Hamiltonian (1). It was
shown that the local rung-current statistics and the full prob-
ability distribution of the staggered rung-current operator can
be efficiently obtained from sampled ground-state snapshots.

Moreover, we computed the Hall polarization and the
Hall voltage from theoretical snapshot data and predicted
the experimentally expected error bars due to shot noise.
Concretely, the snapshots were obtained from time-evolved
matrix-product states, following feasible quench and finite-
bias simulations [68]. A suitable pattern of unitary two-site
transformations enabled the simultaneous sampling of the
particle-current profiles and the particle-density profiles,
which are both required for the characterization of the Hall
response.

The theoretical methods employed in this work can guide
future experiments with quantum-gas microscopes measur-
ing the Hall response in quasi-one-dimensional flux-lattice
systems. They might prove useful for further explorations
of the Hall response in the two-dimensional regime as well
[80]. Our sampling approach facilitates the exchange of ideas
between theory and experiment by analyzing the exact same
data and paves the way for future snapshot-based studies of
particle currents in interesting quantum states in flux ladders
[52,53,71], flux cylinders [81], and beyond.
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